Package ‘Cardinal’

February 6, 2026
Type Package

Title A mass spectrometry imaging toolbox for statistical analysis
Version 3.13.0
Date 2015-1-12

Description Implements statistical & computational tools for analyzing
mass spectrometry imaging datasets, including methods for efficient
pre-processing, spatial segmentation, and classification.

License Artistic-2.0 | file LICENSE

Depends R (>=4.4), BiocParallel, BiocGenerics, ProtGenerics,
S4Vectors, methods, stats, stats4

Imports CardinallO, Biobase, EBImage, graphics, grDevices, irlba,
Matrix, matter (>= 2.7.10), nlme, parallel, utils

Suggests BiocStyle, testthat, knitr, rmarkdown, emmeans, Ime4,
ImerTest

VignetteBuilder knitr

biocViews Software, Infrastructure, Proteomics, Lipidomics,
MassSpectrometry, ImagingMassSpectrometry, ImmunoOncology,
Normalization, Clustering, Classification, Regression

URL http://www.cardinalmsi.org

BugReports https://github.com/kuwisdelu/Cardinal/issues
git_url https://git.bioconductor.org/packages/Cardinal

git_branch devel

git_last_commit 2d83be5

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-06

Author Kylie Ariel Bemis [aut, cre]

Maintainer Kylie Ariel Bemis <k.bemis@northeastern.edu>

1

http://www.cardinalmsi.org
https://github.com/kuwisdelu/Cardinal/issues

2 Contents

Contents
Cardinal-package 3
bin . . . 4
colocalized e 6
deprecated 7
estimateDomain 8
features L L e 9
findNeighbors e 10
MassDataFrame-class 11
MeansTest e e 12
MSImagingArrays-class 15
MSImagingExperiment-class 16
normalize e 18
peakAlign e e e e 19
peakPick L L 22
peakProcesso L. e 24
Pixels . . .o 26
plot-image 27
plot-spectra 29
PositionDataFrame-class oL 31
PIOCESS + v v e o e e e e e e e e e e e e e e e e e e e 32
readMSIData e 34
recalibrate L e 36
reduceBaseline 38
TEEXPOILS e e 39
ResultsList-class e 39
selectROL L 40
simulateSpectra L e e 41
sliceImage L e 45
SMOOth e e e e 46
SpatialCV oL e 47
SpatialDGMM e 49
spatialDists 51
SpatialFastmap 52
SpatialKMeans e e e e e e 54
SpatialNMF e 57
SpatialPCA e 58
SpatialPLS 60
SpatialResults-class 62
SpatialShrunkenCentroids Lo 64
spatialWeightso 67
SpectraArrays-class e e e e e e e 69
SpectrallmagingArrays-class 70
SpectrallmagingData-class 71
SpectrallmagingExperiment-class oL oL, 73
spectrapply L e 74

subsetFeatures e 76

Cardinal-package 3

summarizeFeatures e e 77
writeMSIData e e 79
XDataFrame-class e e e 80
Index 82
Cardinal-package Mass spectrometry imaging tools
Description

Implements statistical & computational tools for analyzing mass spectrometry imaging datasets,
including methods for efficient pre-processing, spatial segmentation, and classification.

Details

Cardinal provides an abstracted interface to manipulating mass spectrometry imaging datasets, sim-
plifying most of the basic programmatic tasks encountered during the statistical analysis of imaging
data. These include image manipulation and processing of both images and mass spectra, and dy-
namic plotting of both.

While pre-processing steps including normalization, baseline correction, and peak-picking are pro-
vided, the core functionality of the package is statistical analysis. The package includes classifi-
cation and clustering methods based on nearest shrunken centroids, as well as traditional tools like
PCA and PLS.

Type browseVignettes(”Cardinal”) to view a user’s guide and vignettes of common workflows.

Options

The following Cardinal-specific options are available:

* getCardinalParallel(), setCardinalParallel (workers=snowWorkers()): Setup ade-
fault parallelization backend (if passed TRUE, a number of workers, or a vector of node names,
or turn off parallelization (if FALSE or NULL.

e getCardinalBPPARAM(), setCardinalBPPARAM(BPPARAM=NULL): The default backend to use
for parallel processing. By default, this is initially set to NULL (no parallelization). Otherwise,
it must be a BiocParallelParam instance. See documentation for bplapply.

* getCardinalVerbose(), setCardinalVerbose(verbose=interactive()): Should progress
messages be printed?

The following Cardinal-controlled matter chunk options are available:

e getCardinalNChunks(), setCardinalNChunks(nchunks=20L): The default number of data
chunks used when iterating over large datasets. Used by many methods internally.

e getCardinalChunksize(), setCardinalChunksize(chunksize=NA, units=names(chunksize)):
The approximate size of data chunks used when iterating over large datasets. Can be used as
an alternative to setting the number of chunks. The default (NA) means to ignore this parameter
and use the getCardinalNChunks().

4 bin

e getCardinalSerialize(), setCardinalSerialize(serialize=NA): Whether data chunks
should be loaded on the manager and serialized to the workers (TRUE), or loaded on the work-
ers (FALSE). The default (NA) means to choose automatically based on the type of data and the
type of cluster.

The following Cardinal-controlled matter logging options are available:

» getCardinallLogger(), setCardinallLogger(logger=matter_logger()): The loggerused
by Cardinal for messages, warnings, and errors. The logger must be of class simple_logger.

* saveCardinalLog(file="Cardinal.log")): Save the log to a file. Note that Cardinal will
continue to log to the specified file until the end of the R session or until saved to a new
location.

Additionally, visualization parameters are available:

e vizi_style(): Set the default plotting style and color palettes.
e vizi_engine(): Set the default plotting engine.

e vizi_par(): Set default graphical parameters.

Author(s)

Kylie A. Bemis
Maintainer: Kylie A. Bemis <k.bemis @northeastern.edu>

bin Bin spectra

Description

Apply on-the-fly binning to spectra.

Usage

S4 method for signature 'MSImagingExperiment'’

bin(x, ref,
spectra = "intensity”, index = "mz",
method = c("sum”, "mean”, "max", "min",

"linear”, "cubic"”, "gaussian", "lanczos"),

resolution = NA, tolerance = NA, units = c("ppm”, "mz"),
mass.range = NULL, ...)

S4 method for signature 'MSImagingArrays'

bin(x, ref,
spectra = "intensity”, index = "mz",
method = c("sum”, "mean”, "max", "min",
"linear"”, "cubic"”, "gaussian", "lanczos"),

resolution = NA, tolerance = NA, units = c("ppm”, "mz"),

bin 5

mass.range = NULL, ...)

S4 method for signature 'SpectrallmagingExperiment'’

bin(x, ref,
spectra = "intensity”, index = NULL,
method = c("sum”, "mean”, "max", "min",
"linear”, "cubic"”, "gaussian”, "lanczos"),
resolution = NA, tolerance = NA, units = c("relative”, "absolute"),
verbose = getCardinalVerbose(), ...)

S4 method for signature 'SpectrallmagingArrays'

bin(x, ref,
spectra = "intensity”, index = NULL,
method = c("sum”, "mean”, "max", "min",
"linear”, "cubic"”, "gaussian", "lanczos"),
resolution = NA, tolerance = NA, units = c("relative”, "absolute"),
verbose = getCardinalVerbose(), ...)
Arguments
X A spectral imaging dataset.
ref Optional. The bin centers, or their range if resolution is specified. Created
from resolution if not provided.
spectra The name of the array in spectraData() to bin.
index The name of the array in spectraData() (for SpectralImagingArrays) or
column in featureData() (for SpectralImagingExperiment) to use for the
bins.
method The peak picking method to use. See approx1 for details.
resolution The spacing between bin centers. If tolerance is not provided, then this is also
used to calculate the bin width.
tolerance The half-bin width.
units The units for the above resolution.
mass.range An alternative way of specifying the mass range (replaces the value of ref).
verbose Should progress messages be printed?
Ignored.
Details

The binning is applied but not processed immediately. It is performed on-the-fly whenever the
spectra are accessed.

Value

A new object derived from SpectralImagingExperiment with the binned spectra.

6 colocalized

Author(s)

Kylie A. Bemis

See Also

approx1, estimateDomain, estimateReferenceMz

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelImage(preset=1, npeaks=10, dim=c(3,3))

bin to unit resolution
mse2 <- bin(mse, resolution=1, units="mz")

bin to a specific range and resolution
mse3 <- bin(mse, ref=c(800, 1000), resolution=1, units="mz")

colocalized Colocalized features

Description

Find colocalized features in an imaging dataset.

Usage

S4 method for signature 'MSImagingExperiment'’
colocalized(object, mz, ...)

S4 method for signature 'SpectrallmagingExperiment'’
colocalized(object, i, ref,
threshold = median, n = Inf,
sort.by = c("cor”, "MOC", "M1", "M2", "Dice"”, "none"),
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpatialDGMM'
colocalized(object, ref,
threshold = median, n = Inf,
sort.by = c(”"MOC", "M1", "M2", "Dice”, "none"),
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

deprecated 7

Arguments
object An imaging experiment.
mz An m/z value of a feature in object to use as a reference.
i The index of a feature in object to use as a reference.
ref Either a flattened image (i.e., a numeric vector) or a logical mask of a region-of-
interest to use as a reference.
threshold Either a function that returns the cutoff to use for creating logical masks of
numeric references, or a numeric threshold to use.
n The number of top-ranked colocalized features to return.
sort.by The colocalization measure used to rank colocalized features. Possible options
include Pearson’s correlation ("cor"), Manders overlap coefficient ("MOC"),
Manders colocalization coefficients ("M1" and "M2"), and Dice similarity coef-
ficient ("Dice".
verbose Should progress messages be printed?
chunkopts Chunk processing options. See chunkApply for details.
BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
Options passed to chunkApply.
Value

A data frame with the colocalized features, or a list of data frames if multiple references are given.

Author(s)
Kylie A. Bemis

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
x <- simulatelImage(preset=1, dim=c(10,10), centroided=TRUE)

find features colocalized with first feature
colocalized(x, i=1)

deprecated Deprecated and defunct objects in Cardinal

Description

These functions are provided for compatibility with older versions of Cardinal, and will be removed
in the future.

estimateDomain

estimateDomain

Estimate shared domain

Description

For unaligned spectral data, it is often necessary to estimate a suitable shared domain in order to
calculate statistical summaries like the mean spectrum.

Usage
estimateDomain(xlist,
width = c("median”, "min", "max"”, "mean"),
units = c("relative”, "absolute"),
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)
estimateReferenceMz(object,
width = c("median”, "min", "max", "mean"),
units = c("ppm”, "mz"),
verbose = getCardinalVerbose(), chunkopts = list(),

BPPARAM

getCardinalBPPARAM(), ...)

estimateReferencePeaks(object, SNR = 2,
method = c("diff"”, "sd", "mad”, "quantile”, "filter", "cwt"),

verbose
BPPARAM

Arguments

xlist
object
units

width

method
SNR
verbose
chunkopts
BPPARAM

getCardinalVerbose(), chunkopts
getCardinalBPPARAM(), ...)

list(),

A list of the domain values (e.g., m/z values) for each spectrum.
A mass spectral imaging dataset.
Should the spacing between domain values use absolute or relative units?

How the domain spacing should be estimated from the distribution of resolutions
across all spectra.

The peak picking method to use. See findpeaks for details.

The signal-to-noise threshold to use to determine a peak.

Should progress messages be printed?

Chunk processing options. See chunkApply for details.

An optional instance of BiocParallelParam. See documentation for bplapply

Options passed to chunkLapply.

features 9

Details

For estimateDomain, the domain is estimated by first finding the resolution of each spectrum’s
individual domain values (e.g., the spacing between m/z values), and then creating a sequence of
domain values using (by default) the median resolution of all spectra.

The estimateReferenceMz function simply calls estimateDomain on the appropriate components
of a mass spectral imaging dataset to estimate profile m/z bins.

The estimateReferencePeaks function calculates the mean spectrum (or looks for a "mean" col-
umn in featureData()) and performs peak picking on the mean spectrum. It can be used to create
a set of reference peaks if all relevant peaks appear in the mean spectrum.

Value

A vector of domain values, m/z values, or peaks.

Author(s)
Kylie A. Bemis

See Also

summarizeFeatures, recalibrate, peakAlign, peakProcess

features Find feature indices

Description

Search for the row indices of a spectral imaging dataset that correspond to specificor features, based
on a set of conditions.

Usage
S4 method for signature 'MSImagingExperiment'
features(object, ..., mz, tolerance = NA, units = c("ppm”, "mz"),
env = NULL)

S4 method for signature 'SpectrallmagingExperiment'’

features(object, ..., env = NULL)
Arguments
object A spectral imaging dataset.
Expressions that evaluate to logical vectors in the environment of featureData().
mz The m/z values of features to include.
tolerance The tolerance for matching features to m/z values.
units The units for the above tolerance.

env The enclosing environment for evaluating

10 findNeighbors

Author(s)
Kylie A. Bemis

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelImage(preset=1, npeaks=10, dim=c(10,10))

features(mse, mz > 800, mz < 1800)
features(mse, mz=metadata(mse)$design$featureData$mz)

findNeighbors Find spatial neighbors

Description

Find the indices of spatial neighbors for all observations in a dataset.

Usage

S4 method for signature 'ANY'
findNeighbors(x, r = 1, groups = NULL,
metric = "maximum”, p = 2, matrix = FALSE, ...)

S4 method for signature 'SpectrallmagingData’
findNeighbors(x, r = 1, groups = run(x), ...)

S4 method for signature 'PositionDataFrame'

findNeighbors(x, r = 1, groups = run(x), ...)
Arguments
X An imaging dataset or data frame with spatial dimensions.
r The spatial maximum distance for an observation to be considered a neighbor.
groups A vector coercible to a factor giving which observations should be treated as

spatially-independent. Observations in the same group are assumed to have a
spatial relationship.

metric Distance metric to use when finding the nearest neighbors. Supported metrics
include "euclidean", "maximum", "manhattan", and "minkowski".

p The power for the Minkowski distance.

matrix Should the neighbors be returned as a sparse adjacency matrix instead of a list?

Additional arguments passed to the next call.

Value

Either a list of indices of neighbors or a sparse adjacency matrix (sparse_mat).

MassDataFrame-class 11

Author(s)
Kylie A. Bemis

See Also

spatialWeights
Examples
pdata <- PositionDataFrame(coord=expand.grid(x=1:8, y=1:8))

find spatial neighbors
findNeighbors(pdata, r=1)

MassDataFrame-class MassDataFrame: Extended data frame with key columns

Description

A data frame for mass spectrometry feature metadata with a required column for m/z values.

Usage
MassDataFrame(mz, ..., row.names = FALSE)
Arguments
mz A sorted vector of m/z values.
Arguments passed to the DataFrame().
row.names Either a vector of row names or a logical value indicating whether row names
should be generated automatically (from the m/z values).
Methods
mz(object, ...),mz(object, ...) <-value: Get or set the m/z values.
Author(s)

Kylie A. Bemis

See Also

XDataFrame, PositionDataFrame

Examples

Create an MassDataFrame object
MassDataFrame(mz=sort(500 * runif(10)), label=LETTERS[1:10])

12 MeansTest

MeansTest Linear model-based testing for summarized imaging experiments

Description

Performs hypothesis testing for imaging experiments by fitting linear mixed models to summariza-
tions or segmentations.

Usage

S4 method for signature 'ANY'

meansTest(x, data, fixed, random, samples,
response = "y", reduced = ~ 1, byrow = FALSE,
use_lmer = FALSE,
verbose = getCardinalVerbose(), chunkopts = list(),

BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpectrallmagingExperiment'’
meansTest(x, fixed, random, samples = run(x),
response = "intensity”, ...)

S4 method for signature 'SpatialDGMM'
meansTest(x, fixed, random, class = 1L,
response = "intensity"”, reduced = ~ 1,
use_lmer = FALSE,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

segmentationTest(x, fixed, random, samples = run(x),
class = 1L, response = "intensity"”, reduced = ~ 1, ...)

S4 method for signature 'MeansTest'
topFeatures(object, n = Inf, sort.by = "statistic”, ...)

S4 method for signature 'MeansTest,missing'’
plot(x, i = 1L, type = "boxplot", show.obs = TRUE,

fill = FALSE, layout = NULL, ...)
contrastTest(object, specs, method = "pairwise”, emm_adjust = "none”,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)
Arguments
X A dataset in P x N matrix format or a set of spatially segmented images.

data A data frame of additional variables parallel to x.

MeansTest 13

fixed A one-sided formula giving the fixed effects of the model on the RHS. The
response will added to the LHS, and the formula will be passed to the underlying
modeling function.

random A one-sided formula giving the random effects of the model on the RHS. See
1me for the allowed specifications.

samples A vector coercible to a factor giving the observational unit (i.e., the samples and
replicates).

class For SpatialDGMM, the class (segment) from the Gaussian mixture models that

should be used for the comparison. By default, compare the classes (segments)
with the highest means in each sample.

response The name of to assign the response variable in the fitted models.

reduced A one-sided formula specifying the fixed effects in the reduced model for the
null hypothesis. The default is an intercept-only model. Random effects are
retained.

use_lmer Logical. If TRUE, use 1lmerTest: : 1Imer instead of nlme: : 1me for fitting mixed

effects models. This provides Satterthwaite degrees of freedom and is typically
faster. When TRUE, likelihood ratio tests are not performed; use contrastTest ()
for post-hoc tests. Requires the ImerTest package.

byrow For the default method, are the rows or the columns the x .

verbose Should progress messages be printed?

chunkopts Chunk processing options. See chunkApply for details.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

For meansTest, passed to internal linear modeling methods (1m, 1me, or ImerTest: : 1Imer).
For contrastTest, passed to emmeans: : emmeans() or emmeans: :contrast().

specs For contrastTest, specification for estimated marginal means passed to emmeans: : emmeans ().
Can be a character vector of factor names (e.g., "condition”), a formula (e.g.,
~condition), or more complex specifications. See ?emmeans: :emmeans for
details.

method For contrastTest, the contrast method. Common options include "pairwise”
(all pairwise comparisons), "trt.vs.ctrl” (treatment vs control), "poly” (poly-
nomial contrasts), or a named list of custom contrasts. See ?emmeans: : contrast
for all options.

emm_adjust For contrastTest, the p-value adjustment method passed to emmeans: : contrast().
Options include "none”, "bonferroni”, "tukey”, "fdr", etc. See ?emmeans: : summary .emmGrid
for all options. Note: adjustment only affects results when testing multiple con-
trasts (e.g., 3-level factors produce 3 pairwise contrasts).

object A fitted model object to summarize.

n, sort.by For topFeatures, the number of top features to return and how to sort them.

i The index of the model(s)/feature(s) to plot.

type The type of plot to display.

show. obs Should individual observations (i.e., the summarized mean for each sample) be
plotted too?

fill Should the boxplots be filled?

layout A vector of the form c(nrow, ncol) specifying the number of rows and columns

in the facet grid.

14 MeansTest

Details

Likelihood ratio tests are used for hypothesis testing when use_lmer = FALSE (the default). When
use_lmer = TRUE, models are fit with ImerTest: : Imer using REML, but no hypothesis tests are
performed. Instead, use the contrastTest () function for post-hoc comparisons.

The contrastTest() function provides flexible post-hoc testing for models fit with use_lmer =
TRUE. It uses emmeans: : emmeans () to compute estimated marginal means and emmeans: : contrast()

to perform comparisons. The function operates on all m/z features in parallel and returns a ContrastTest
object with contrast statistics.

When using contrastTest(), p-value adjustments (via the adjust parameter) only show differ-
ences from unadjusted values when testing multiple contrasts. For example, a 2-level factor pro-
duces only 1 contrast, so Bonferroni adjustment yields p * 1 =p (no change). A 3-level factor
produces 3 pairwise contrasts, demonstrating visible adjustment effects.

Value

For meansTest: An object of class MeansTest derived from ResultsList, where each element
contains a linear model (1m, 1me, or ImerMod object).

For contrastTest: A ContrastTest object (extends ResultsList) where each element contains
an emmeans contrast object. The mcols metadata includes contrast estimates and p-values with
columns named as "[contrast_name].estimate” and "[contrast_name].pvalue”.

Author(s)

Dan Guo, Kylie A. Bemis, and Ethan Rogers

See Also

Im, Ime, ImerTest: :1mer, emmeans: : emmeans, emmeans: : contrast, spatialDGMM

Examples

set.seed(1, kind="L'Ecuyer-CMRG")

x <- simulatelImage(preset=4, nrun=3, npeaks=10,
dim=c(10,10), peakheight=5, peakdiff=2,
centroided=TRUE)

samples <- replace(run(x), !(x$circleA | x$circleB), NA)

Fit with nlme::1me (performs likelihood ratio tests)
fit <- meansTest(x, ~condition, samples=samples)
print(fit)

Fit with lmerTest::1lmer (no tests, use contrastTest() instead)
Not run:
fit_lmer <- meansTest(x, ~condition, samples=samples, use_lmer=TRUE)

Post-hoc contrasts with p-value adjustment
contr <- contrastTest(fit_lmer, specs="condition”,
method="pairwise"”, emm_adjust="bonferroni")

MSImagingArrays-class 15

print(contr[[1]]1) # First m/z feature
mcols(contr) # All contrast statistics

End(Not run)

MSImagingArrays-class MSImagingArrays: MS imaging data with arbitrary m/z values

Description

The MSImagingArrays class provides a list-like container for high-throughput mass spectrometry
imaging data where every mass spectrum may have its own m/z values. It is designed for easy
access to raw mass spectra for the purposes of pre-processing.

It can be converted to a MSImagingExperiment object for easier image slicing and for applying
statistical models and machine learning methods.

Usage

Instance creation

MSImagingArrays(spectraData = SimplelList(),
pixelData = PositionDataFrame(), experimentData = NULL,
centroided = NA, continuous = NA, metadata = list())

Additional methods documented below

Arguments
spectraData Either a list-like object with lists of individual spectra and lists of their domain
values, or a SpectraArrays instance.
pixelData A PositionDataFrame with pixel metadata, with a row for each spectrum.

experimentData Either NULL or a ImzMeta object with MS-specific experiment-level metadata.

centroided A logical value indicated whether the spectra have been centroided.
continuous A logical value indicated whether the spectra all have the same m/z values.
metadata A list of arbitrary metadata.

Slots

spectraData: A SpectraArrays object storing one or more array-like data elements with con-
formable dimensions.

elementMetadata: A PositionDataFrame containing spectrum-level metadata, including each
spectrum’s pixel coordinates and experimental run information.

processing: A list containing unexecuted ProcessingStep objects.

experimentData: Either NULL or an ImzMeta object containing experiment-level metadata (nec-
essary for writing the data to imzML).

centroided: A logical value indicated whether the spectra have been centroided (if known).

continuous: A logical value indicated whether the spectra all have the same m/z values (if known).

16 MSImagingExperiment-class

Methods

All methods for SpectralImagingData and SpectralImagingArrays also work on MSImagingArrays
objects. Additional methods are documented below:

mz(object, i =NULL, ...),mz(object, i =NULL, ...) <-value: Get or set the m/z arrays in
the spectraData slot.

intensity(object, i =NULL, ...),intensity(object, i =NULL, ...) <-value: Get or set
the intensity arrays in the spectraData slot.

centroided(object, ...), centroided(object, ...) <- value: Getor setthe centroided slot.
isCentroided(object, ...): Equivalent to isTRUE(centroided(object)).

experimentData(object), experimentData(object) <- value: Get or set the experimentData
slot.
Author(s)
Kylie A. Bemis

See Also

SpectralImagingArrays, MSImagingExperiment

Examples

set.seed(1, kind="L'Ecuyer-CMRG")

x <- replicate(9, rlnorm(10), simplify=FALSE)

mz <- replicate(9, 500 * sort(runif(10)), simplify=FALSE)
coord <- expand.grid(x=1:3, y=1:3)

msa <- MSImagingArrays(
spectraData=list(intensity=x, mz=mz),

pixelData=PositionDataFrame(coord))

print(msa)

MSImagingExperiment-class
MSImagingExperiment: MS imaging data with shared m/z values

Description

The MSImagingExperiment class provides a matrix-like container for high-throughput mass spec-
trometry imaging data where every mass spectrum shares the same m/z values. It is designed to
provide easy access to both the spectra (as columns) and sliced images (as rows).

It can be converted from a MSImagingArrays object which is designed for representing raw mass
spectra.

MSImagingExperiment-class 17

Usage

Instance creation

MSImagingExperiment(spectraData = SimplelList(),
featureData = MassDataFrame(), pixelData = PositionDataFrame(),
experimentData = NULL, centroided = NA, metadata = list())

Additional methods documented below

Arguments
spectraData Either a matrix-like object with number of rows equal to the number of features
and number of columns equal to the number of pixels, a list of such objects, or
a SpectraArrays instance.
featureData A MassDataFrame with feature metadata, with a row for each feature.
pixelData A PositionDataFrame with pixel metadata, with a row for each spectrum.

experimentData Either NULL or a ImzMeta object with MS-specific experiment-level metadata.

centroided A logical value indicated whether the spectra have been centroided.
metadata A list of arbitrary metadata.
Slots

spectraData: A SpectraArrays object storing one or more array-like data elements with con-
formable dimensions.

featureData: A MassDataFrame containing feature-level metadata.

elementMetadata: A PositionDataFrame containing spectrum-level metadata, including each
spectrum’s pixel coordinates and experimental run information.

processing: A list containing unexecuted ProcessingStep objects.

experimentData: Either NULL or an ImzMeta object containing experiment-level metadata (nec-
essary for writing the data to imzML).

centroided: A logical value indicated whether the spectra have been centroided (if known).

Methods

All methods for SpectralImagingData and SpectralImagingExperiment also work on MSImagingExperiment
objects. Additional methods are documented below:

mz(object, ...),mz(object, ...) <- value: Get or set the m/z column in the featureData
slot.
intensity(object, ...), intensity(object, ...) <- value: Getor set the intensity matrix in

the spectraData slot.
centroided(object, ...), centroided(object, ...) <- value: Getor setthe centroided slot.
isCentroided(object, ...): Equivalent to isTRUE(centroided(object)).

experimentData(object), experimentData(object) <- value: Getor setthe experimentData
slot.

18 normalize

Author(s)
Kylie A. Bemis

See Also

SpectralImagingExperiment, MSImagingArrays

Examples

set.seed(1, kind="L'Ecuyer-CMRG")

x <= matrix(rlnorm(81), nrow=9, ncol=9)
mz <- sort(runif(9))

coord <- expand.grid(x=1:3, y=1:3)

mse <- MSImagingExperiment(
spectraData=x,
featureData=MassDataFrame(mz=mz),
pixelData=PositionDataFrame(coord))

print(mse)

normalize Normalize spectra

Description

Apply deferred normalization to spectra.

Usage
S4 method for signature 'MSImagingExperiment_OR_Arrays'
normalize(object,
method = c("tic"”, "rms”, "reference"),
scale = NA, ref = NULL, ...)

S4 method for signature 'SpectrallmagingData’

normalize(object,
method = c("tic"”, "rms”, "reference"”), ...)
Arguments
object A spectral imaging dataset.
method The normalization method to use. See rescale for details.
scale The scaling value to use for the normalized spectra.
ref The reference peaks to use for normalization.

Additional arguments passed to the normalization function.

peakAlign
Details

The supported normalization methods are:

 "tic": Total ion current normalization using rescale_sum.

* "rms": Root-mean-squared normalization using rescale_rms.

* "reference": Normalization according to a reference feature using rescale_ref.

Value

An object of the same class with the processing step queued.

Note

The normalization is deferred until process() is called.

Author(s)

Kylie A. Bemis

See Also

smooth, recalibrate, reduceBaseline, peakPick, process

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelImage(preset=1, npeaks=10, dim=c(3,3))

queue normalization
mse2 <- normalize(mse, method="tic")

apply normalization
mse2 <- process(mse2)

19

peakAlign Align peaks across spectra

Description

Align peaks across spectra in a spectral imaging dataset.

20 peakAlign

Usage

S4 method for signature 'MSImagingExperiment'
peakAlign(object, ref,

spectra = "intensity”, index = "mz",
binfun = "min"”, binratio = 2,
tolerance = NA, units = c("ppm”, "mz"), ...)

S4 method for signature 'MSImagingArrays'
peakAlign(object, ref,

spectra = "intensity”, index = "mz",
binfun = "min"”, binratio = 2,
tolerance = NA, units = c("ppm”, "mz"), ...)

S4 method for signature 'SpectrallmagingExperiment'’
peakAlign(object, ref,

spectra = "intensity”, index = NULL,

binfun = "min”, binratio = 2,

tolerance = NA, units = c("relative”, "absolute”),
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpectrallmagingArrays'
peakAlign(object, ref,

spectra = "intensity”, index = NULL,
binfun = "min", binratio = 2,
tolerance = NA, units = c("relative”, "absolute"),
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)
Arguments
object A spectral imaging dataset.
ref The locations of reference peaks to use for the alignment.
spectra The name of the array in spectraData() to use for the peak intensities.
index The name of the array in spectraData() (for SpectralImagingArrays) or

column in featureData() (for SpectralImagingExperiment) to use for the
peak locations.

binfun The function used to summarize the minimum distance between same-spectrum
peaks across all spectra. This is passed to estimateDomain as width (see "De-
tails").

binratio The ratio between the alignment tolerance and the peak bin widths. If tolerance
is NA, then this is also used to estimate the tolerance from the shared domain (see
"Details").

tolerance The alignment tolerance for matching a detected peak to a reference. If NA, then
the tolerance is automatically determined from binratio times the minimum
distance between same-spectrum peaks (see "Details").

peakAlign 21

units The units for the above tolerance.

verbose Should progress messages be printed?

chunkopts Chunk processing options. See chunkApply for details.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

Options passed to process().

Details

Before peak alignment, process() is called to apply any queued pre-processing steps. It is assumed
that peakPick() has either been queued or already applied to the data.

If ref is provided, then the aligned peaks are returned immediately without additional processing.
(Peaks are binned on-the-fly to the reference peak locations.)

If ref is not provided, then the shared peaks must be determined automatically. This starts with
creation of a shared domain giving a list of possible peak locations. The shared domain is estimated
by estimateDomain().

Next, binpeaks is used to bin the observed peaks to the shared domain. Then, mergepeaks is used
to merge peaks that are separated by a distance less than the given tolerance.

The averaged locations of the merged peaks in each bin are used as the shared peaks for the full
dataset, and the aligned peaks are returned. (Peaks are binned on-the-fly to the shared peak loca-
tions.)

Value

A new object derived from SpectralImagingExperiment with the aligned peaks.

Author(s)
Kylie A. Bemis

See Also

process peakPick, peakProcess

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelImage(preset=1, npeaks=10, dim=c(3,3))

queue peak picking
mse2 <- peakPick(mse, method="diff", SNR=6)

align peaks
mse2 <- peakAlign(mse2)
plot(mse2, i=4)

22

peakPick

peakPick

Peak pick spectra

Description

Apply deferred peak picking to spectra.

Usage

S4 method for signature 'MSImagingExperiment'’

peakPick(object, ref,
method = c("diff", "sd”, "mad"”, "quantile”, "filter", "cwt"),
SNR = 2, type = c("height”, "area"),

tolerance

NA, units = c("ppm”, "mz"), ...)

S4 method for signature 'MSImagingArrays'

peakPick(object, ref,
method = c("diff", "sd”, "mad", "quantile”, "filter"”, "cwt"),
SNR = 2, type = c("height”, "area"),
tolerance = NA, units = c("ppm”, "mz"), ...)

S4 method for signature 'SpectrallmagingData’

peakPick(object, ref,
method = c("diff"”, "sd”, "mad”, "quantile”, "filter", "cwt"),
SNR = 2, type = c("height”, "area"),

tolerance = NA, units = c("relative”, "absolute"”), ...)
Arguments
object A spectral imaging dataset.
ref Optional vector giving locations of reference peaks to extract from the dataset.
method The peak picking method to use. See findpeaks for details.
SNR The signal-to-noise threshold to use to determine a peak.
type The type of value to use to summarize the peak.
tolerance If ref is specified, the tolerance to use when deciding if a local peak in a spec-
trum matches a reference peak. If NA, then the tolerance is automatically deter-
mined as half the minimum distance between peaks in the reference.
units The units for the above tolerance.
Additional arguments passed to the peak picking function.
Details

Unless otherwise specified, peaks are detected as local maxima which are then compared to the
estimated noise level to determine a signal-to-noise ratio for each peak. Most of the peak detection
methods below are differentiated by how they estimate the noise in the specturm.

The supported peak picking methods are:

peakPick 23

« "diff": Estimate noise based on the derivative of the signal using estnoise_diff.
 "sd": Estimate noise from standard deviation using estnoise_sd.
* "mad": Estimate noise from mean absolute deviation using estnoise_mad.

* "quantile": Estimate noise from a rolling quantile of the difference between the raw signal and
a smoothed signal using estnoise_quant.

» "filter": Estimate noise using dynamic filtering of the local peaks using estnoise_filt.

» "cwt": Detect peaks based on continuous wavelet transform (CWT) using findpeaks_cwt.

If ref is provided, then the signal-to-noise ratio is not determined, and any detected local maxima
are summarized as long as they match to a reference peak.

Value

An object of the same class with the processing step queued.

Note

The peak picking is deferred until process() is called.

Author(s)

Kylie A. Bemis

See Also

process, peakAlign, peakProcess, estimateReferencePeaks

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulateImage(preset=1, npeaks=10, dim=c(3,3))

queue peak picking
mse2 <- peakPick(mse, method="diff", SNR=6)
plot(mse2, i=4)

apply peak picking
mse2 <- process(mse2)

24 peakProcess

peakProcess Process peaks in mass spectra

Description

Apply peak picking and alignment to a mass spectrometry imaging dataset.

Usage

S4 method for signature 'MSImagingExperiment_OR_Arrays'
peakProcess(object, ref,

spectra = "intensity”, index = "mz",

method = c("diff"”, "sd", "mad”, "quantile”, "filter", "cwt"),

SNR = 2, type = c("height”, "area"),

tolerance = NA, units = c("ppm”, "mz"),

sampleSize = NA, filterFreq = TRUE, outfile = NULL,

verbose = getCardinalVerbose(), chunkopts = list(),

BPPARAM = getCardinalBPPARAM(), ...)
Arguments

object A spectral imaging dataset.

ref The locations of reference peaks to use for the alignment.

spectra The name of the array in spectraData() to use for the peak intensities.

index The name of the array in spectraData() (for MSImagingArrays) or column in
featureData() (for MSImagingExperiment) to use for the peak locations.

method The peak picking method to use. See findpeaks for details.

SNR The signal-to-noise threshold to use to determine a peak.

type The type of value to use to summarize the peak.

tolerance The tolerance for matching a detected peak to the reference peaks or the shared
m/z values. Passed to peakPick and peakAlign.

units The units for the above tolerance.

sampleSize The count or proportion giving a subset of spectra to use to determine reference
peaks.

filterFreq Either a logical value indicating whether singleton peaks should be removed, or
a count or frequency used as a threshold to filter the peaks.

outfile Optional. The name of a file to write the resulting dataset as imzML.

verbose Should progress messages be printed?

chunkopts Chunk processing options. See chunkApply for details.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

Options passed to process().

peakProcess 25

Details

This method provides a combined interface for peakPick and peakAlign for the most common
approaches to peak processing.

If peakPick() has been queued already, then it will be applied. Otherwise, it will be called inter-
nally with the provided arguments.

There are two main paths depending on whether (1) peaks should be extracted based on a reference
or (2) peak picking should be performed on the full dataset and then aligned.

If either ref is provided or sampleSize is finite, then (1) is chosen and peaks are extracted based
on the reference. If the reference is not provided, then peak picking and alignment performed on a
subset of spectra (according to sampleSize) to create the reference peaks. The reference peaks are
then used to extract peaks from the full dataset.

Otherwise, (2) is chosen and peaks are picked and aligned across all spectra.

The advantage of (1) is that all reference peaks will be summarized even they would not have a high
enough signal-to-noise ratio to be detected in some spectra. The disadvantage is that rare peaks that
do not appear in the sampled subset of spectra will not be included in the process peaks.

The advantage of (2) is that rare peaks will be included because peak detection is performed on all
spectra. The disadvantage is that some peaks may be missing from some spectra despite having
nonzero intensities, because they did not have a high enough signal-to-noise ratio to be detected as
peaks.

Setting sampleSize to 1 will balance these advantages and disadvantages because the reference
will be based on all spectra. However, this means the full dataset must be processed at least twice
(possibly more if intermediate calculations are necessary), so it will be more time-consuming.

Value

A new object derived from MSImagingExperiment with the processed peaks.

Author(s)

Kylie A. Bemis

See Also

process peakPick, peakAlign

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulateImage(preset=1, npeaks=10, dim=c(3,3))

process peaks
mse2 <- peakProcess(mse, method="diff"”, SNR=3)
plot(mse2, i=4)

26 pixels

pixels Find pixel indices

Description

Search for the column indices of a spectral imaging dataset that correspond to specific pixels, based
on a set of conditions.

Usage
S4 method for signature 'SpectrallmagingExperiment'’
pixels(object, ..., coord, run, tolerance = NA,
env = NULL)

S4 method for signature 'SpectrallmagingArrays'
pixels(object, ..., coord, run, tolerance = NA,
env = NULL)

S4 method for signature 'SpectrallmagingData’

pixels(object, ..., env = NULL)
Arguments
object A spectral imaging dataset.

Expressions that evaluate to logical vectors in the environment of pixelData().

coord The coordinates of the pixels to include.

run The run of the pixels to include.

tolerance The tolerance for matching pixels to coordinates.

env The enclosing environment for evaluating
Author(s)

Kylie A. Bemis

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelImage(preset=1, npeaks=10, dim=c(10,10))

pixels(mse, x > 6, y > 6)
pixels(mse, coord=expand.grid(x=1:3, y=1:3))

plot-image 27

plot-image Plot images from a spectral imaging dataset

Description

Create and display sliced images from the spectra or pixel data of a spectral imaging dataset using
a formula interface.

Usage

S4 method for signature 'MSImagingExperiment'’
image(x,

formula = intensity ~ x % vy,

i = features(x, mz=mz),

mz = NULL,

tolerance = NA,

units = c("ppm”, "mz"),
xlab, ylab)

S4 method for signature 'SpectrallmagingExperiment'’
image(x,
formula,
i=1L,
run = NULL,
groups = NULL,
superpose = FALSE,
key = TRUE,
enhance = NULL,
smooth = NULL,
scale = NULL,
subset = TRUE)

S4 method for signature 'PositionDataFrame'’
image(x,

formula,

run = NULL,

superpose = FALSE,

key = TRUE,

enhance = NULL,

smooth = NULL,

scale = NULL,

subset = TRUE)

28

Arguments

X

formula

i
mz

tolerance

units

xlab, ylab

run

groups

superpose

key

enhance

smooth

scale

subset

Author(s)

Kylie A. Bemis

See Also

plot-image

A spectral imaging dataset.

A formula of the form vals ~ x * y giving the image values and the pixel co-
ordinates. The LHS is taken to be the name of an array in spectraData() and
the RHS is taken to be columns of pixelData(). Alternatively, if formula is a
string or if i is NULL, then the LHS is interpreted as the name of a column of
pixelData() as well.

The index of the feature(s) to plot for the image(s).
The m/z value(s) to plot for the image(s).

If specified, the tolerance to consider a feature as being equal to the given mz
value.

The units for the above tolerance.
Additional arguments passed to plot_image.
Plotting labels.

The names of experimental runs to include, or the index of the levels of the runs
to include.

A vector coercible to a factor indicating which of the specified features should
be plotted with the same color.

If multiple images are plotted, should they be superposed on top of each other,
or plotted seperately?

Should a legend or colorkey be plotted?

The name of a contrast enhancement method, such as "hist” or "adapt” for
enhance_hist() and enhance_adapt (), etc. See enhance for details.

The name of a smoothing method, such as "gauss” or "bi” for filt2_gauss()
and filt2_bi(), etc. See filt2 for details.

If multiple images are plotted, should they be scaled to the same intensity scale?

A logical vector indicating which pixels to include in the image.

image, plot_image, selectROI

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
X <- simulatelImage(preset=2, npeaks=10, dim=c(16,16))
peaks <- mz(metadata(x)$design$featureData)

image(x, mz=peaks[1L], tolerance=0.5, units="mz")
image(x, mz=peaks[1L], smooth="gaussian")

plot-spectra 29

image(x, mz=peaks[1:9], smooth="adaptive")

x <- summarizePixels(x, stat=c(TIC="mean"))
image(x, "TIC")

plot-spectra Plot spectra from a spectral imaging dataset

Description

Create and display plots from the spectra or feature data of a spectral imaging dataset using a
formula interface.

Usage

S4 method for signature 'MSImagingExperiment,missing'’
plot(x,

formula = intensity ~ mz,

i = pixels(x, coord=coord, run=run),

coord = NULL,
run = NULL,
xlab, ylab,

isPeaks = isCentroided(x))

S4 method for signature 'MSImagingArrays,missing'’
plot(x,

formula = intensity ~ mz,

i = pixels(x, coord=coord, run=run),

coord = NULL,
run = NULL,
xlab, ylab,

isPeaks = isCentroided(x))

S4 method for signature 'SpectrallmagingExperiment,missing’

plot(x,
formula,
i=1L,

groups = NULL,
superpose = FALSE,
key = TRUE,

n = Inf,

downsampler = "1lttb",
isPeaks = FALSE,
annPeaks = 0)

30 plot-spectra

S4 method for signature 'SpectrallmagingArrays,missing'’

plot(x,
formula,
i=1L,

groups = NULL,
superpose = FALSE,
key = TRUE,

n = Inf,

downsampler = "1ttb",
isPeaks = FALSE,
annPeaks = 0)

S4 method for signature 'XDataFrame,missing'
plot(x,

formula,

superpose = FALSE,

key = TRUE,

n = Inf,

downsampler = "1ttb",

isPeaks = FALSE,

annPeaks = 0)

Arguments

X A spectral imaging dataset.

formula A formula of the form vals ~ t giving the spectra values and their domain loca-
tions. The LHS is taken to be the name of an array in spectraData() and the
RHS is either an array in spectraData() for SpectralImagingArrays-derived
classes or a column of featureData() for SpectralImagingExperiment-derived
classes. Alternatively, if formula is a string or if i is NULL, then the LHS is in-
terpreted as the name of a column of featureData() for SpectralImagingExperiment
as well.

i The index of the spectrum to plot.

coord The coordinates of the spectrum to plot.

run The run of the spectrum to plot.
Additional arguments passed to plot_signal.

xlab, ylab Plotting labels.

isPeaks Should the spectrum be plotted as peaks or as a continuous signal?

annPeaks If isPeaks is TRUE, either an integer giving the number of peaks to annotate
(i.e., label with their location), or a plotting symbol (e.g., "circle", "cross", etc.)
to indicate the peak locations.

groups A vector coercible to a factor indicating which of the specified spectra should be

plotted with the same color.

PositionDataFrame-class 31

superpose If multiple spectra are plotted, should they be superposed on top of each other,
or plotted seperately?

key Should a legend or colorkey be plotted?

n, downsampler A spectrum can contain far more data points than are needed to visualize it,
potentially making the plotting unnecessarily slow. Downsampling can be per-
formed to improve plotting speed while maintaining the visual integrity of the
spectrum. See downsample for details.

Author(s)
Kylie A. Bemis

See Also

plot, plot_signal

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
x <- simulatelmage(preset=1, npeaks=10, dim=c(3,3))

plot(x, i=4)

plot(x, coord=c(x=1, y=2))

plot(x, log2(intensity + 1) ~ mz, i=4,
xlab=expression(italic("m/z")),
ylab=expression(italic(”Log Intensity"”)))

PositionDataFrame-class
PositionDataFrame: Extended data frame with key columns

Description

A data frame for metadata with spatial coordinates and multiple experimental runs.

Usage
PositionDataFrame(coord, run, ..., row.names = FALSE)
Arguments
coord A data frame or matrix of coordinates.
run A factor giving the experimental runs.
Arguments passed to the DataFrame().
row.names Either a vector of row names or a logical value indicating whether row names

should be generated automatically (from the m/z values).

32 process

Methods

coord(object), coord(object) <- value: Get or set the coordinate columns.

coordNames (object), coordNames(object) <- value: Get or set the names of the coordinate
columns.

run(object), run(object) <- value: Get or set the experimental run column.
runNames (object), runNames(object) <- value: Get or set the experimental run levels.
nrun(object): Get the number of experimental runs.

is3D(object): Check if the number of spatial dimensions is greater than 2.

Author(s)
Kylie A. Bemis

See Also

XDataFrame, MassDataFrame

Examples

Create an PositionDataFrame object
coord <- expand.grid(x=1:3, y=1:3)
PositionDataFrame(coord=coord, label=LETTERS[1:9])

process Apply queued processing to spectra

Description

Queue pre-processing steps on an imaging dataset and apply them, possibly writing out the pro-
cessed data to a file.

Usage
S4 method for signature 'MSImagingExperiment'’
process(object, spectra = "intensity", index = "mz",
domain = NULL, outfile = NULL, ...)

S4 method for signature 'MSImagingArrays'
process(object, spectra = "intensity”, index = "mz",
domain = NULL, outfile = NULL, ...)

S4 method for signature 'SpectrallmagingExperiment'’
process(object, spectra = "intensity"”, index = NULL,
domain = NULL, outfile = NULL,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

process 33

S4 method for signature 'SpectrallmagingArrays'
process(object, spectra = "intensity”, index = NULL,
domain = NULL, outfile = NULL,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpectrallmagingData'
addProcessing(object, FUN, label, metadata = list(),

verbose = getCardinalVerbose(), ...)
reset(object, ...)
Arguments
object A spectral imaging dataset.
spectra The name of the array in spectraData() to use for the peak intensities.
index The name of the array in spectraData() (for MSImagingArrays) or column in

featureData() (for MSImagingExperiment) to use for the peak locations.

domain Optional. The name of the array in spectraData() (for MSImagingArrays)
or column in featureData() (for MSImagingExperiment) to use for output
domain (if known).

outfile Optional. The name of a file to write the resulting dataset. Creates an imzML
file for MSImagingExperiment or MSImagingArrays. The "continuous" format
will be written if domain is specified; otherwise the "processed" format will be
used in most cases.

verbose Should progress messages be printed?
chunkopts Chunk processing options. See chunkApply for details.
BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

For process, options passed to chunk_mapply or chunk_colapply. For addProcessing,
arguments to FUN.

FUN A user-specified processing function.
label The name of the processing step.
metadata A list of processing metadata to be added to the object’s metadata after pro-
cessing has been applied. Concatenated with any arguments passed to FUN via
dots.
Details

This method allows queueing of delayed processing to an imaging dataset. All of the queued pro-
cessing steps will be applied in sequence whenever process() is called next. Use reset() to
remove all queued processing steps.

Typically, processing steps are queued using methods like normalize, smooth, peakPick, etc.

However, a processing step can be queued manually with addProcessing.

34 readMSIData

In this case, the user-specified function must accept (1) a first argument giving the spectral intensities
as a numeric vector and (2) a second argument giving the intensity locations (e.g., m/z values) as a
numeric vector.

The value returned by a user-specified function must return either (1) a numeric vector of the same
length as the input intensities or (2) a 2-column matrix where the first column is the new locations
(e.g., m/z values of peaks) and the second column is the new intensities.

Value

An object of the same class as the original object, with all processing steps applied.

Author(s)
Kylie A. Bemis

See Also

normalize, smooth, recalibrate, reduceBaseline, peakPick

Examples
set.seed(1, kind="L'Ecuyer-CMRG")

mse <- simulatelImage(preset=1, dim=c(3,3), baseline=1)

mse2 <- smooth(mse, width=11)
mse2 <- reduceBaseline(mse2)
plot(mse2, i=4)

mse2 <- process(mse2)

readMSIData Read mass spectrometry imaging data files

Description

Read supported mass spectrometry imaging data files, including imzML and Analyze 7.5.

Usage

Read any supported MS imaging file
readMSIData(file, ...)

Read imzML file

readImzML(file, memory = FALSE, check = FALSE,

mass.range = NULL, resolution = NA, units = c("ppm”, "mz"),
guess.max = 1000L, as = "auto”, parse.only=FALSE,

verbose = getCardinalVerbose(), chunkopts = list(),

BPPARAM = getCardinalBPPARAM(), ...)

readMSIData 35

Read Analyze 7.5 file

readAnalyze(file, memory = FALSE, as = "auto”,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

Convert from MSImagingExperiment to MSImagingArrays
convertMSImagingExperiment2Arrays(object)

Convert from MSImagingArrays to MSImagingExperiment
convertMSImagingArrays2Experiment (object, mz = NULL,
mass.range = NULL, resolution = NA, units = c("ppm”, "mz"),
guess.max = 1000L, tolerance = 0.5 * resolution,

verbose = getCardinalVerbose(), chunkopts = list(),

mass.range

BPPARAM = getCardinalBPPARAM(), ...)
Arguments

file The absolute or relative file path. The file extension must be included for readMSIData.

memory Should the spectra be loaded into memory? If TRUE, the spectra are loaded into
in-memory R objects. If FALSE, the spectra are attached as file-backed matter
objects. If memory="shared", the spectra are attached as shared memory-backed
matter objects.

check Should the UUID and checksum of the binary data file be checked against the

corresponding imzML tags?

The mass range to use when converting the data to an MSImagingExperiment.

resolution The mass resolution to use when converting the data to an MSImagingExperiment.
This is the inverse of the instrument resolution, if known. It is the width of the
m/z bins when converting the data to an MSImagingExperiment.

tolerance If the spectra have been centroided but the peaks are unaligned, then this is
passed to peakAlign.

units The units for the above resolution.

guess.max The number of spectra to use when guessing the mass range and resolution, if
they are not provided.

as After reading in the data, what class of object should be returned? The data
is initially loaded as an MSImagingArrays object. It may be converted to an
MSImagingExperiment object. Setting to "auto" means to determine whichever
is more appropriate depending on whether the spectra appear to have been pro-
cessed and centroided.

parse.only If TRUE, return only the parsed imzML metadata without creating a new MSImagingArrays
or MSImagingExperiment object.

verbose Should progress messages be printed?

chunkopts Chunk processing options. See chunkApply for details.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

Additional arguments passed to parseImzML or parseAnalyze.

36 recalibrate

object A mass spectrometry imaging dataset to convert from one class to another.

mz A vector of shared m/z values for converting to MSImagingExperiment, if not
to be determined automatically.

Details

The spectra are initially loaded into aMSImagingArrays object before conversion to MSImagingExperiment
(if applicable).

This conversion can be sped up by specifying the mass.range and resolution so they do not have
to be determined from the spectra directly. Using a larger value of guess.max can improve the
accuracy of the m/z binning for downstream analysis at the expense of a longer conversion time.

If greater control is desired, spectra should be imported as MSImagingArrays, and processing to
MSImagingExperiment can be performed manually.

If problems are encountered while trying to import imzML files, the files should be verified and
fixed with imzMLValidator.

A Java version of imzML validator can be found at: https://gitlab.com/imzML/imzMLValidator.

A web-based version of imzML validator can be found at: https://imzml.github.io.

Value

A MSImagingExperiment or MSImagingArrays object.

Author(s)
Kylie A. Bemis

References

Schramm T, Hester A, Klinkert I, Both J-P, Heeren RMA, Brunelle A, Laprevote O, Desbenoit N,
Robbe M-F, Stoeckli M, Spengler B, Rompp A (2012) imzML - A common data format for the
flexible exchange and processing of mass spectrometry imaging data. Journal of Proteomics 75
(16):5106-5110. doi:10.1016/].jprot.2012.07.026

See Also

parseImzML, parseAnalyze writeMSIData

recalibrate Recalibrate spectra

Description

Apply deferred recalibration to spectra.

https://gitlab.com/imzML/imzMLValidator
https://imzml.github.io

recalibrate 37

Usage

S4 method for signature 'MSImagingExperiment_OR_Arrays'
recalibrate(object, ref,

method = c("locmax”, "dtw"”, "cow"),

tolerance = NA, units = c("ppm”, "mz"), ...)

S4 method for signature 'SpectrallmagingData’
recalibrate(object, ref,

method = c("locmax”, "dtw"”, "cow"),
tolerance = NA, units = c("relative”, "absolute"”), ...)
Arguments
object A spectral imaging dataset.
ref The domain (m/z) values or indices of reference peaks to use for the recalibra-
tion.
method The recalibration method to use. See warp1 for details.
tolerance The tolerance for how much a peak can be shifted in either direction.
units The units for the above tolerance.

Additional arguments passed to the recalibration function.

Details

The supported recalibration methods are:

* "locmax": Align to local maxima using warp1_loc.
e "dtw": Dynamic time warping using warp1_dtw.

* "cow": Correlation optimized warping using warp1_cow.

Value

An object of the same class with the processing step queued.

Note

The recalibration is deferred until process() is called.

Author(s)

Kylie A. Bemis

See Also

normalize, smooth, recalibrate, peakPick, process

38 reduceBaseline

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelImage(preset=1, npeaks=10, dim=c(3,3), sdmz=250)
plot(mse, i=c(2,4,5), superpose=TRUE, xlim=c(1260,1320))

queue recalibration
peaks <- estimateReferencePeaks(mse)
mse2 <- recalibrate(mse, ref=peaks, method="locmax"”, tolerance=500)

apply recalibration
mse2 <- process(mse2)
plot(mse2, i=c(2,4,5), superpose=TRUE, xlim=c(1260,1320))

reduceBaseline Reduce baselines in spectra

Description

Apply deferred baseline reduction to spectra.

Usage

S4 method for signature 'SpectrallmagingData’
reduceBaseline(object,

method = c("locmin”, "hull”, "snip"”, "median"), ...)
Arguments
object A spectral imaging dataset.
method The baseline estimation method to use. See estbase for details.

Additional arguments passed to the baseline estimation function.

Details

The supported baseline estimation methods are:

* "locmin": Interpolate from local minima using estbase_loc.
* "hull": Convex hull estimation using estbase_hull.
* "snip": Sensitive nonlinear iterative peak (SNIP) clipping using estbase_snip.

* "median": Running medians using estbase_med.

Value

An object of the same class with the processing step queued.

Note

The baseline reduction is deferred until process() is called.

reexports 39

Author(s)
Kylie A. Bemis

See Also

normalize, smooth, reduceBaseline, peakPick, process

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelImage(preset=1, npeaks=10, dim=c(3,3), baseline=1)

queue baseline reduction
mse2 <- reduceBaseline(mse, method="locmin")
plot(mse2, i=4)

apply baseline reduction
mse2 <- process(mse2)

reexports Re-exported objects from Cardinal

Description

These functions are re-exported from Cardinal for user convenience. Please see the documentation
in their original packages.

ResultsList-class ResultsList: List of modeling results

Description

The ResultsList class provides a container for modeling results with spatial metadata. Specialized
subclasses include MeansTest for linear model testing, SegmentationTest for segmentation-based
testing, and ContrastTest for post-hoc contrast analysis.

Usage

Instance creation
ResultsList(..., mcols = NULL)

Additional methods documented below

Arguments

The modeling results.

mcols The metadata columns.

40 selectROI

Methods

All methods for SimpleList also work on ResultsList objects. Additional methods are docu-
mented below:

fitted(object, ...): Extract fitted values from each modeling results object in the list.
predict(object, ...): Predict on each modeling results object in the list.
topFeatures(object, ...): Rank top features for each modeling results object in the list.

plot(x, i =1L, ...): Plot the ith modeling results.

image(x, i =1L, ...): Display images for the ith modeling results.

Author(s)
Kylie A. Bemis

See Also

SpatialResults, meansTest, segmentationTest

selectROI Select regions-of-interest in an image

Description

Manually select regions-of-interest or pixels on an imaging dataset. The selectROI method uses
the built-in locator function. It can be used with an existing image plot, or a new image will be
plotted if image arguments are passed via

The regions of interest are returned as logical vectors indicating which pixels have been selected.
These logical vectors can be combined into factors using the makeFactor function.

Usage
S4 method for signature 'SpectrallmagingExperiment'’
selectROI(object, ..., mode = c("region”, "pixels"))
makeFactor(..., ordered = FALSE)
Arguments
object A spectral imaging dataset.
mode The mode of selection: "region" to select a region-of-interest as a polygon, or

"pixels" to select individual pixels.

Additional arguments to be passed to image for selectROI, or name-value pairs
of logical vectors to be combined by makeFactor.

ordered Should the resulting factor be ordered or not?

simulateSpectra 41

Value

A logical vector of length equal to the number of pixels for selectROI.

A factor of the same length as the logical vectors for makeFactor.

Author(s)
Kylie A. Bemis

See Also

image

simulateSpectra Simulate a mass spectrum or MS imaging experiment

Description

Simulate mass spectra or complete MS imaging experiments, including a possible baseline, spatial
and spectral noise, mass drift, mass resolution, and multiplicative variation, etc.

A number of preset imaging designs are available for quick-and-dirty simulation of images.

These functions are designed for small proof-of-concept examples and testing, and may not scale
well to simulating larger datasets.

Usage

simulateSpectra(n = 1L, npeaks = 50L,
mz = rlnorm(npeaks, 7, 0.3), intensity = rlnorm(npeaks, 1, 0.9),
from = 0.9 * min(mz), to = 1.1 * max(mz), by = 400,
sdpeaks = sdpeakmult * loglp(intensity), sdpeakmult = 0.2,
sdnoise = 0.1, sdmz = 10, resolution = 1000, fmax = 0.5,
baseline = @, decay = 10, units=c("ppm"”, "mz"),
centroided = FALSE, ...)

simulateImage(pixelData, featureData, preset,
from = 0.9 * min(mz), to = 1.1 * max(mz), by = 400,
sdrun = 1, sdpixel = 1, spcorr = 0.3, SAR = TRUE,
resolution = 1000, fmax = 0.5, units=c("ppm”, "mz"),
centroided = FALSE, continuous = TRUE,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

addShape(pixelData, center, size, shape=c("circle”, "square"), name=shape)
presetImageDef(preset = 1L, nrun = 1, npeaks = 30L,

dim = c(20L, 20L), peakheight = exp(1), peakdiff = exp(1),
sdsample = 0.2, jitter = TRUE, ...)

Arguments

n
npeaks

mz
intensity
from

to

by
sdpeaks

sdpeakmult

sdnoise
sdmz

resolution

fmax

baseline

decay

units

centroided
continuous
verbose
chunkopts

BPPARAM
pixelData

featureData

simulateSpectra

The number of spectra to simulate.

The number of peaks to simulate. Not used if mz and intensity are provided.
The theoretical m/z values of the simulated peaks.

The mean intensities of the simulated peaks.

The minimum m/z value used for the mass range.

The maximum m/z value used for the mass range.

The step-size used for the observed m/z-values of the profile spectrum.

The standard deviation(s) for the distributions of observed peak intensities on
the log scale.

A multiplier used to calculate sdpeaks based on the mean intensities of peaks;
used to simulate multiplicative variance. Not used if sdpeaks is provided.

The standard deviation of the random noise in the spectrum on the log scale.

The standard deviation of the mass error in the observed m/z values of peaks, in
units indicated by units.

The mass resolution as defined by m / dm, where m is the observed mass and dm
is the width of the peak at a proportion of its maximum height defined by fmax
(defaults to full-width-at-half-maximum — FWHM - definition). Note that this
is NOT the same as the definition of resolution in the readImzML function.

The fraction of the maximum peak height to use when defining the mass resolu-
tion.

The maximum intensity of the baseline. Note that baseline=0 means there is
no baseline.

A constant used to calculate the exponential decay of the baseline. Larger values
mean the baseline decays more sharply at the lower mass range of the spectrum.

The units for by and sdmz. Either parts-per-million or absolute m/z units.

Should the simulated spectrum representation be centroided (TRUE) or profile
(FALSE)?

Should the simulated spectrum storage type be continuous (TRUE) or processed
(FALSE), where "continuous" means a dense representation and "processed" means
a sparse representation?

Should progress messages be printed?
Chunk processing options. See chunkApply for details.
An optional instance of BiocParallelParam. See documentation for bplapply.

A PositionDataFrame giving the pixel design of the experiment. The names
of the columns should match the names of columns in featureData. Each col-
umn should be a logical vector corresponding to a morphological substructure,
indicate which pixels belong to that substructure.

A MassDataFrame giving the feature design of the experiment. Each row should
correspond to an expected peak. The names of the columns should match the
names of columns in pixelData. Each column should be a numeric vector
corresponding to a morphological substructure, giving the mean intensity of that
peak for that substructure.

simulateSpectra

preset
nrun
sdrun
sdpixel

spcorr

SAR

dim
peakheight
peakdiff

sdsample

jitter
center
size
shape

name

Details

43

A number indicating a preset image definition to use.
The number of runs to simulate for each condition.

A standard deviation giving the run-to-run variance.

A standard deviation giving the pixel-to-pixel variance.

The spatial autocorrelation. Must be between 0 and 1, where spcorr=0 indicates
no spatial autocorrelation.

Should a spatial autoregressive (SAR) model be used for simulating spatially-
correlated noise (TRUE) versus a simpler model that uses spatially-smoothed
Gaussian noise (FALSE)? The calculation of the SAR matrix for large images
can be very time-consuming, so if the simpler model is adequate, then setting
this to FALSE can result in significantly faster simulation.

Additional arguments to pass to simulateSpectra or presetImageDef.
The dimensions of the preset image.
Reference intensities used for peak heights by the preset.

A reference intensity difference used for the mean peak height difference be-
tween conditions, for presets that simulate multiple conditions.

A standard deviation giving the amount of variation from the true peak heights
for this simulated sample.

Should random noise be added to the location and size of the shapes?
The center of the shape.

The size of the shape (from the center).

What type of shape to add.

The name of the added column.

The simulateSpectra() and simulateImage() functions are used to simulate mass spectra and
MS imaging experiments. They provide a great deal of control over the parameters of the simula-
tion, including all sources of variation.

For simulateImage(), the user should provide the design of the simulated experiment via matching
columns in pixelData and featureData, where each column corresponds to different morpholog-
ical substructures or differing conditions. These design data frames are returned in the metadata()
of the returned object for later reference.

A number of presets are defined by presetImageDef (), which returns only the pixelData and
featureData necessary to define the experiment for simulateImage(). These can be referenced
for help in understanding how to define experiments for simulateImage().

The preset images are:

e 1: a centered circle

» 2: atopleft circle and a bottomright square

* 3: two corner squares and a centered circle

¢ 4: a centered circle with conditions A and B in different runs

44 simulateSpectra

* 5: atopleft circle and a bottomright square with conditions A and B in different runs
* 6: two corner squares and a centered circle; the circle has conditions A and B in different runs

* 7: matched pairs of circles with conditions A and B within the same runs; includes reference
peaks

* 8: matched pairs of circles inside squares with conditions A and B within the same runs;
includes reference peaks

* 9: a small sphere inside a larger sphere (3D)

The addShape () function is provided for convenience when generating the pixelData for simulateImage(),
as a simple way of adding morphological substructures using basic shapes such as squares and cir-
cles.

Value
For simulateSpectra, a MassDataFrame with elements:

e mz: a numeric vector of the observed m/z values

e intensity: a numeric vector or matrix of the intensities

For simulateImage, a MSImagingExperiment object.

For addShape, a new PositionDataFrame with a logical column added for the corresponding
shape.

For presetImageDef, a list with two elements: the pixelData and featureData to be used as
input to simulateImage().

Author(s)
Kylie A. Bemis

See Also

simspec

Examples

set.seed(1, kind="L'Ecuyer-CMRG")

generate a spectrum
s <- simulateSpectra(1)
plot(s$intensity ~ s$mz, type="1")

generate a noisy low-resolution spectrum with a baseline
s <- simulateSpectra(l, baseline=2, sdnoise=0.3, resolution=100)
plot(s$intensity ~ s$mz, type="1")

generate a high-resolution spectrum
s <- simulateSpectra(l, npeaks=100, resolution=10000)
plot(s$intensity ~ s$mz, type="1")

slicelmage

45

generate an image
mse <- simulatelImage(preset=1, npeaks=10, dim=c(10,10))
peaks <- mz(metadata(mse)$design$featureData)

image(mse, mz=peaks[c(1,4,5,6)1)
plot(mse, coord=c(x=3,y=3))

slicelImage

Slice an image

Description

Slice a spectral imaging dataset as a "data cube".

Usage

sliceImage(x,
simplify =

Arguments

X

i

run

simplify
drop

Value

i = features(x, ...), ..., run = NULL,

TRUE, drop = TRUE)

A spectral imaging dataset.
The indices of features to slice for the images.
Conditions describing features to slice, passed to features().

The names of experimental runs to include, or the index of the levels of the runs
to include.

The image slices be returned as a list, or simplified to an array?

Should redundant array dimensions be dropped? If TRUE, dimensions with only
one level are dropped using drop.

A list or array of the sliced image(s). If multiple images are sliced and simplify=TRUE, then the
last dimension will be the features.

Author(s)

Kylie A. Bemis

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelImage(preset=1, npeaks=10, dim=c(10,10), centroided=TRUE)
peaks <- mz(metadata(mse)$design$featureData)

slice image for first feature
sliceImage(mse, 1)

46 smooth

slice by m/z-value
sliceImage(mse, mz=peaks[1])

slice multiple
sliceImage(mse, mz=peaks[1:3])

smooth Smooth spectra

Description

Apply deferred smoothing to spectra.

Usage

S4 method for signature 'SpectrallmagingData'

smooth(x,

method = c("gaussian”, "bilateral”, "adaptive”,
”di_F_FH, "guide”’ ”pag”, "sgolayll’ Hma”), . ‘)

Arguments

X A spectral imaging dataset.

method The smoothing method to use. See filt1 for details.

Additional arguments passed to the smoothing function.

Details

The supported smoothing methods are:

* "gaussian": Gaussian smoothing using filt1_gauss.

* "bilateral": Bilateral filter using filt1_bi.

» "adaptive": Adaptive bilateral filter using filt1_adapt.
 "diff": Nonlinear diffusion smoothing using filt1_diff.
 "guide": Guided filter using filt1_guide.

* "pag": Peak-aware guided filter using filt1_pag.
 "sgolay": Savitzky-Golar filter using filt1_sg.

* "ma": Moving average filter using filt1_ma.

Value

An object of the same class with the processing step queued.

Spatial CV 47

Note

The smoothing is deferred until process() is called.

Author(s)
Kylie A. Bemis

See Also

normalize, recalibrate, reduceBaseline, peakPick, process

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelImage(preset=1, npeaks=10, dim=c(3,3))

queue smoothing
mse2 <- smooth(mse, method="gaussian", width=11)
plot(mse2, i=4)

apply smoothing
mse2 <- process(mse2)

SpatialCV Cross-validation for spectral imaging data

Description

Apply cross-validation with an existing or a user-specified modeling function over folds of a spectral
imaging dataset.

Usage

crossValidate(fit., x, y, folds = run(x), ...,
predict. = predict, keep.models = FALSE,
trainProcess = peakProcess, trainArgs = list(),
testProcess = peakProcess, testArgs = list(),
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM())

S4 method for signature 'SpatialCV'
fitted(object, type = c("response”, "class"), ...)

S4 method for signature 'SpatialCV'
image(x, i = 1L, type = c("response”, "class"),
layout = NULL, free = "", ...)

48 Spatial CV
Arguments
fit. The function used to fit the model.
X,y The data and response variable, where x is assumed to be an P x N dataset such
as a SpectrallmagingExperiment
folds A vector coercible to a factor giving the fold for each row or column of x.
Additional arguments passed to fit. and predict..
predict. The function used to predict on new data from the fitted model. The fitted model
is passed as the 1st argument and the test data is passed as the 2nd argument.
keep.models Should the models be kept and returned?
trainProcess, trainArgs
A function and arguments used for processing the training sets. The training set
is passed as the 1st argument to trainProcess.
testProcess, testArgs
A function and arguments used for processing the test sets. The test set is passed
as the Ist argument to trainProcess, and the processed training set is passed
as the 2nd argument.
verbose Should progress be printed for each iteration?
chunkopts Chunk processing options. See chunkApply for details.
BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
Passed to fit., predict., trainProcess and testProcess.
object An object inheriting from SpatialCV.
type The type of prediction, where "response” means the fitted response matrix and
"class" will be the vector of class predictions (only for classification).
i If predictions are made for multiple sets of parameters, which set of parameters
(i.e., which element of the fitted.values list) should be plotted?
layout A vector of the form c(nrow, ncol) specifying the number of rows and columns
in the facet grid.
free A string specifying the free spatial dimensions during faceting. E.g., "", "x",
Hyll, nyll’ ”yX”.
Details
This method is designed to be used with the provided classification methods, but can also be used
with user-provided functions and methods as long as they conform to certain expectations. Inter-
nally, cv_do from the matter package is used to perform the cross-validation. See ?cv_do for
details.
Value
An object of class SpatialCV derived from SpatialResults and containing accuracies for each
fold, the predictions for each fold, and (optionally) the fitted models.
Author(s)

Kylie A. Bemis

Spatial DGMM 49

See Also

cv_do, spatialShrunkenCentroids, PLS, OPLS

SpatialDGMM Spatially-aware Dirichlet Gaussian mixture model

Description

Fit a spatially-aware Gaussian mixture models to each feature. The model uses Dirichlet prior is
used to achieve spatial smoothing. The means and standard deviations of the Gaussian components
are estimated using gradient descent. Simulated annealing is used to avoid local optimia and achieve
better parameter estimates.

Usage

S4 method for signature 'ANY'

spatialDGMM(x, coord, i, r = 1, k = 2, groups = NULL,
weights = c("gaussian”, "adaptive"),
neighbors = findNeighbors(coord, r=r, groups=groups),
annealing = TRUE, compress = TRUE, byrow = FALSE,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpectrallmagingExperiment'’
spatialDGMM(x, i, r = 1, k = 2, groups = run(x),

weights = c("gaussian”, "adaptive"),

neighbors = findNeighbors(coord(x), r=r, groups=groups), ...)

S4 method for signature 'SpatialDGMM'
logLik(object, ...)

S4 method for signature 'SpatialDGMM,missing'’
plot(x, i = 1L, type = "density”,
layout = NULL, free = "", ...)

S4 method for signature 'SpatialDGMM'

image(x, i = 1L, type = "class",
layout = NULL, free = "", ...)
Arguments
X A spatial dataset in P x N matrix format.
i The rows/columns of x to segment (if not all of them).
coord The spatial coordinates of the rows/columns of x. Ignored if neighbors is pro-

vided.

50

k

groups

weights

neighbors

annealing

compress

byrow
verbose
chunkopts
BPPARAM

object

type
layout

free

Value

Spatial DGMM

The spatial maximum distance for an observation to be considered a neighbor.
Ignored if neighbors is provided.

The number of Gaussian components.

Observations belonging to the different groups will be segmented independently.
This should be set to the samples if statistic testing (via meansTest is to be
performed.)

The type of spatial weights to use for the smoothing. Gaussian weights are
weighted only by distance, while adaptive weights also consider the dissimilarity
between neighboring observations.

A factor giving which observations should be treated as spatially-independent.
Observations in the same group are assumed to have a spatial relationship.

Should simulated annealing be used?

Should the results be compressed? The results can be larger than the original
dataset, so compressing them is useful. If this option is used, then the class
probabilities are not returned, and the class assignments are compressed using
drle.

Should the rows or columns of x be segmented?

Should progress messages be printed?

Chunk processing options. See chunkApply for details.

An optional instance of BiocParallelParam. See documentation for bplapply.
Additional arguments passed to the next method.

A SpatialDGMM object.

The type of plot to display.

A vector of the form c(nrow, ncol) specifying the number of rows and columns
in the facet grid.

A string specifying the free spatial dimensions during faceting. E.g., "", "x",

non on n on n

Yo, Xy, yxo.

An object of class SpatialDGMM derived from SpatialResults, containing the fitted sgmixn object
and the spatial metadata.

Author(s)

Dan Guo and Kylie A. Bemis

References

Guo, D., Bemis, K., Rawlins, C., Agar, J., and Vitek, O. (2019.) Unsupervised segmentation of
mass spectrometric ion images characterizes morphology of tissues. Proceedings of ISMB/ECCB,
Basel, Switzerland, 2019.

spatialDists 51

Examples

set.seed(1, kind="L'Ecuyer-CMRG")

mse <- simulatelImage(preset=3, dim=c(10,10), npeaks=9,
peakheight=c(3,6,9), centroided=TRUE)

gmm <- spatialDGMM(mse, r=1, k=4, weights="adaptive")

image(gmm, i=1:9)

spatialDists Calculate spatially-smoothed distances

Description

Calculate distances between observations with smoothing based on their spatial structure.

Usage

S4 method for signature 'ANY'

spatialDists(x, y, coord, r = 1, byrow = TRUE,
metric = "euclidean”, p = 2, weights = NULL,
neighbors = findNeighbors(coord, r=r),
neighbors.weights = spatialWeights(coord, r=r),
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpectrallmagingExperiment'’
spatialDists(x, y, r =1,
neighbors = findNeighbors(x, r=r),
neighbors.weights = spatialWeights(x, r=r), ...)

S4 method for signature 'PositionDataFrame'
spatialDists(x, y, r =1,
neighbors = findNeighbors(x, r=r),

neighbors.weights = spatialWeights(x, r=r), ...)
Arguments
X A data matrix with rows or columns located at the coordinates given by coord.
y A data matrix from which to calculate distances with the observations in x.
coord The spatial coordinates of the rows/columns of x. Ignored if neighbors is pro-
vided.
r The spatial maximum distance for an observation to be considered a neighbor.
Ignored if neighbors is provided.
byrow Are the distances calculated based on the dissimilarity between the rows (TRUE)

or the columns (FALSE) of x and y.

52

metric

weights

neighbors

SpatialFastmap

Distance metric to use when finding the nearest neighbors. Supported metrics

non non

include "euclidean", "maximum", "manhattan", and "minkowski".
The power for the Minkowski distance.

A numeric vector of feature weights for the distance components if calculating
weighted distances. For example, the weighted Euclidean distance is sqrt (sum(w
* (x = y)*2)).

A list of numeric vectors giving the row or column indices of the spatial neigh-
bors for the rows or columns of x.

neighbors.weights

verbose
chunkopts
BPPARAM

Value

A list of numeric vectors giving the spatial weights corresponding to neighbors.
Should progress messages be printed?

Chunk processing options. See chunkApply for details.

An optional instance of BiocParallelParam. See documentation for bplapply.

Additional arguments passed to the next method.

A matrix of distances with rows equal to the number of observations in x and columns equal to the
number of observations in y.

Author(s)

Kylie A. Bemis

See Also

findNeighbors, spatialWeights

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelImage(preset=1, dim=c(10,10))

calculate spatially-aware distances from first 5 spectra
spatialDists(mse, spectra(mse)[,1:5]1, r=1)

SpatialFastmap

Spatially-aware FastMap projection

Description

Compute spatially-aware FastMap projection.

SpatialFastmap 53

Usage

S4 method for signature 'ANY'
spatialFastmap(x, coord, r = 1, ncomp = 3,
weights = c("gaussian”, "adaptive"),
neighbors = findNeighbors(coord, r=r),
transpose = TRUE, niter = 10L,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpectrallmagingExperiment'’
spatialFastmap(x, r = 1, ncomp = 3,

weights = c("gaussian”, "adaptive"),

neighbors = findNeighbors(x, r=r), ...)

S4 method for signature 'SpatialFastmap'
predict(object, newdata,
weights = object$weights, r = object$r,
neighbors = findNeighbors(newdata, r=r),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpatialFastmap,missing'
plot(x, type = c("scree”, "x"), ..., xlab, ylab)

S4 method for signature 'SpatialFastmap'

image(x, type = "x", ...)
Arguments

X A spatial dataset in P x N matrix format.

coord The spatial coordinates of the rows/columns of x. Ignored if neighbors is pro-
vided.

r The spatial maximum distance for an observation to be considered a neighbor.
Ignored if neighbors is provided.

ncomp The number of FastMap components.

weights The type of spatial weights to use for the smoothing. Gaussian weights are

weighted only by distance, while adaptive weights also consider the dissimilarity
between neighboring observations.

neighbors A factor giving which observations should be treated as spatially-independent.
Observations in the same group are assumed to have a spatial relationship.

transpose Should x be considered P x N?

niter The number of iterations used to calculate the pivots for each FastMap compo-
nent.

verbose Should progress messages be printed?

chunkopts Chunk processing options. See chunkApply for details.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

54 SpatialKMeans

Additional arguments passed to the next method.

object A SpatialFastmap object.
newdata A new SpectralImagingExperiment for which to calculate the scores.
type The type of plot to display.
xlab, ylab Plotting labels.
Value

An object of class SpatialFastmap derived from SpatialResults, containing the fitted fastmap
object and the spatial metadata.

Author(s)
Kylie A. Bemis

References

Alexandrov, T., & Kobarg, J. H. (2011). Efficient spatial segmentation of large imaging mass spec-
trometry datasets with spatially aware clustering. Bioinformatics, 27(13), 1230-1238. doi:10.1093/bioinformatics/btr246

Faloutsos, C., & Lin, D. (1995). FastMap: A Fast Algorithm for Indexing, Data-Mining and Visu-
alization of Traditional and Multimedia Datasets. Presented at the Proceedings of the 1995 ACM
SIGMOD international conference on Management of data.

See Also
PCA, NMF, spatialkMeans

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelImage(preset=2, npeaks=20, dim=c(10,10),
centroided=TRUE)

project to FastMap components
fm <- spatialFastmap(mse, r=1, ncomp=2, weights="adaptive")

visualize first 2 components
image (fm)

SpatialkMeans Spatially-aware K-means clustering

Description

Perform spatially-aware k-means clustering. First the data is projected to a reduced dimension space
using spatialFastmap. Then ordinary k-means clustering is applied to the projected data.

SpatialKMeans

Usage

S4 method for signature 'ANY'

spatialkMeans(x, coord, r = 1, k = 2, ncomp = max(k),
weights = c("gaussian”, "adaptive"),
neighbors = findNeighbors(coord, r=r),
transpose = TRUE, niter = 10L,
centers = TRUE, correlation = TRUE,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpectrallmagingExperiment'’

spatialkMeans(x, r = 1, k = 2, ncomp = max(k),
weights = c("gaussian”, "adaptive"),
neighbors = findNeighbors(x, r=r), ...)

S4 method for signature 'SpatialKMeans'
topFeatures(object, n = Inf, sort.by = "correlation”, ...)

S4 method for signature 'SpatialkMeans,missing'
plot(x, type = c("correlation”, "centers"), ..., xlab, ylab)

S4 method for signature 'SpatialKMeans'

55

image(x, type = "cluster”, ...)
Arguments

X A spatial dataset in P x N matrix format.

coord The spatial coordinates of the rows/columns of x. Ignored if neighbors is pro-
vided.

r The spatial maximum distance for an observation to be considered a neighbor.
Ignored if neighbors is provided.

k The number of clusters.

ncomp The number of FastMap components.

weights The type of spatial weights to use for the smoothing. Gaussian weights are

weighted only by distance, while adaptive weights also consider the dissimilarity
between neighboring observations.

neighbors A factor giving which observations should be treated as spatially-independent.
Observations in the same group are assumed to have a spatial relationship.

transpose Should x be considered P x N?

niter The number of iterations used to calculate the pivots for each FastMap compo-
nent.

centers Should the cluster centers be re-calculated on the original data?

correlation Should the correlations between features and the clusters be calculated?

verbose Should progress messages be printed?

chunkopts Chunk processing options. See chunkApply for details.

56

BPPARAM

object

n, sort.by

type
xlab, ylab

Value

SpatialKMeans

An optional instance of BiocParallelParam. See documentation for bplapply.
Additional arguments passed to the next method.

A SpatialKMeans object.

For topFeatures, the number of top features to return and how to sort them.
The type of plot to display.

Plotting labels.

An object of class SpatialkMeans derived from SpatialResults, containing the fitted kmeans
object and the spatial metadata.

Author(s)

Kylie A. Bemis

References

Alexandrov, T., & Kobarg, J. H. (2011). Efficient spatial segmentation of large imaging mass spec-
trometry datasets with spatially aware clustering. Bioinformatics, 27(13), 1230-i238. doi:10.1093/bioinformatics/btr246

Faloutsos, C., & Lin, D. (1995). FastMap: A Fast Algorithm for Indexing, Data-Mining and Visu-
alization of Traditional and Multimedia Datasets. Presented at the Proceedings of the 1995 ACM
SIGMOD international conference on Management of data.

See Also

spatialkKMeans spatialShrunkenCentroids

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulateImage(preset=3, dim=c(10,10), npeaks=20,
peakheight=c(3,6,9), centroided=TRUE)

fit spatial k-means
skm <- spatialkMeans(mse, r=1, k=4, weights="adaptive")

visualize clusters

image (skm)

SpatiaNMF 57

SpatialNMF Non-negative matrix factorization

Description

Compute nonnegative matrix factorization using alternating least squares or multiplicative updates.

Usage

S4 method for signature 'ANY'
NMF(x, ncomp = 3, method = c("als"”, "mult"),
verbose = getCardinalVerbose(), ...)

S4 method for signature 'SpectrallmagingExperiment'’
NMF(x, ncomp = 3, method = c("als", "mult"), ...)

S4 method for signature 'SpatialNMF'
predict(object, newdata, ...)

S4 method for signature 'SpatialNMF,missing'’
plot(x, type = c("activation”, "x"), ..., xlab, ylab)

S4 method for signature 'SpatialNMF'

image(x, type = "x", ...)
Arguments
X A dataset in P x N matrix format.
ncomp The number of components to calculate.
method The method to use. Alternating least squares ("als") tends to be faster and po-

tentially more accurate, but can be numerically unstable for data with high cor-
related features. Multiplicative updates ("mult") can be slower, but is more nu-
merically stable.

verbose Should progress messages be printed?

Options passed to irlba.

object A SpatialNMF object.
newdata A new SpectralImagingExperiment for which to calculate the scores.
type The type of plot to display.
xlab, ylab Plotting labels.
Value

An object of class SpatialNMF derived from SpatialResults, containing the fitted nnmf object
and the spatial metadata.

58 SpatialPCA

Author(s)
Kylie A. Bemis

See Also

nnmf_als, nnmf_mult, PCA, spatialFastmap

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulateImage(preset=2, npeaks=20, dim=c(10,10),
centroided=TRUE)

project to principal components
mf <- NMF(mse, ncomp=2)

visualize first 2 components
image(mf, superpose=FALSE, scale=TRUE)

SpatialPCA Principal components analysis

Description

Compute principal components efficiently using implicitly restarted Lanczos bi-diagonalization
(IRLBA) algorithm for approximate singular value decomposition.

Usage

S4 method for signature 'ANY'

PCA(x, ncomp = 3,
center = TRUE, scale = FALSE,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpectrallmagingExperiment'’
PCA(x, ncomp = 3,
center = TRUE, scale = FALSE, ...)

S4 method for signature 'SpatialPCA'
predict(object, newdata,
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpatialPCA,missing'
plot(x, type = c("rotation”, "scree", "x"), ..., xlab, ylab)

S4 method for signature 'SpatialPCA'
image(x, type = "x", ...)

SpatialPCA 59

Arguments
X A dataset in P x N matrix format.
ncomp The number of principal components to calculate.
center Should the data be centered?
scale Shoud the data be scaled?
verbose Should progress messages be printed?
chunkopts Chunk processing options. See chunkApply for details.
BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
Options passed to irlba.
object A SpatialPCA object.
newdata A new SpectralImagingExperiment for which to calculate the scores.
type The type of plot to display.
xlab, ylab Plotting labels.
Value

An object of class SpatialPCA derived from SpatialResults, containing the fitted prcomp_lanczos
object and the spatial metadata.

Author(s)

Kylie A. Bemis

See Also

prcomp_lanczos, NMF, spatialFastmap, irlba, svd

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulateImage(preset=2, npeaks=20, dim=c(10,10),
centroided=TRUE)

project to principal components
pc <- PCA(mse, ncomp=2)

visualize first 2 components
image(pc, superpose=FALSE, scale=TRUE)

60 SpatialPLS

SpatialPLS Fartial least squares (projection to latent structures)

Description

Compute partial least squares (also called projection to latent structures or PLS). This will also
perform discriminant analysis (PLS-DA) if the response is a factor. Orthogonal partial least squares
options (O-PLS and O-PLS-DA) is also supported; in this case, O-PLS step is a pre-processing step
to remove noise orthogonal to the response, before fitting a PLS model with a single component.

Usage

S4 method for signature 'ANY'

PLS(x, y, ncomp = 3,
method = c("nipals”, "simpls"”, "kernell”, "kernel2"),
center = TRUE, scale = FALSE, bags = NULL,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM getCardinalBPPARAM(), ...)

S4 method for signature 'SpectrallmagingExperiment'’
PLS(x, y, ncomp = 3,
method = c("nipals”, "simpls"”, "kernell”, "kernel2"),
center = TRUE, scale = FALSE, ...)

S4 method for signature 'SpatialPLS'
fitted(object, type = c("response”, "class"), ...)

S4 method for signature 'SpatialPLS'
predict(object, newdata, ncomp,
type = c("response”, "class"), simplify = TRUE, ...)

S4 method for signature 'SpatialPLS'
topFeatures(object, n = Inf, sort.by = c("vip”, "coefficients"), ...)

S4 method for signature 'SpatialPLS,missing'
plot(x, type = c("coefficients”, "vip", "scores"), ..., xlab, ylab)

S4 method for signature 'SpatialPLS'
image(x, type = c("response”, "class"), ...)

S4 method for signature 'ANY'

OPLS(x, y, ncomp = 3, retx = TRUE,
center = TRUE, scale = FALSE, bags = NULL,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpectrallmagingExperiment'’

SpatialPLS 61

OPLS(x, y, ncomp = 3, retx = FALSE,
center = TRUE, scale = FALSE, ...)

S4 method for signature 'SpatialOPLS'
coef(object, ...)

S4 method for signature 'SpatialOPLS'
residuals(object, ...)

S4 method for signature 'SpatialOPLS'
fitted(object, type = c("response”, "class"), ...)

S4 method for signature 'SpatialOPLS'
predict(object, newdata, ncomp,

type = c("response”, "class"), simplify = TRUE, ...)

S4 method for signature 'SpatialOPLS'
topFeatures(object, n = Inf, sort.by = c("vip", "coefficients"), ...)

S4 method for signature 'SpatialOPLS,missing'’
plot(x, type = c("coefficients”, "vip", "scores"), ..., xlab, ylab)

S4 method for signature 'SpatialOPLS'

image(x, type = c("response”, "class"), ...)
Arguments
X A dataset in P x N matrix format.
y The response variable.
ncomp The number of principal components to calculate.
method The method used for calculating the principal components. See pls for details.
center Should the data be centered?
scale Shoud the data be scaled?
bags Bags for multiple instance learning. If provided, then it is assumed all observa-

tions within a bag have the same label, and if a single observation is "positive"
then all observations in the bag are "positive". Multiple instance learning is
performed using mi_learn.

retx Should the (potentially large) processed data matrix be included in the result?

verbose Should progress messages be printed?

chunkopts Chunk processing options. See chunkApply for details.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
Options passed to irlba.

object A SpatialPLS or SpatialOPLS object.

newdata A new SpectralImagingExperiment for which to make predictions.

type The type of fitted values to extract or the type of predictions to make.

62 SpatialResults-class

simplify If predictions are made using multiple numbers of components, should they be
returned as a list, or simplified to an array?
n, sort.by For topFeatures, the number of top features to return and how to sort them.
xlab, ylab Plotting labels.
Value

An object of class SpatialPLS or SpatialOPLS derived from SpatialResults, containing the
fitted pls or opls model and the spatial metadata.

Author(s)

Kylie A. Bemis

References

Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of
Chemometrics, 16(3), 119-128. doi:10.1002/cem.695

See Also

PCA, spatialShrunkenCentroids,

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelmage(preset=2, npeaks=20, dim=c(10,10), centroided=TRUE)
cls <- makeFactor(circle=pData(mse)$circle, square=pData(mse)$square)

fit a PLS model with 3 components
pls <- PLS(mse, cls, ncomp=1:3)
plot(pls, type="coefficients”, annPeaks="circle")

visualize predictions
image(pls)

SpatialResults-class SpatialResults: Modeling results with spatial metadata

Description

The SpatialResults class provides a container for modeling results with spatial metadata. Most
modeling functions applied to a SpectralImagingExperiment will return a SpatialResults-
derived model object.

SpatialResults-class 63

Usage

Instance creation

SpatialResults(model, data,
featureData = if (!missing(data)) fData(data) else NULL,
pixelData = if (!missing(data)) pData(data) else NULL)

S4 method for signature 'SpatialResults,ANY'

plot(x, vy, ...,
select = NULL, groups = NULL,
superpose = TRUE, reducedDims = FALSE)

S4 method for signature 'SpatialResults'
image(x, y, ...,
select = NULL, subset = TRUE,
superpose = TRUE)

Additional methods documented below

Arguments
model The model object.
data An object (typically the original dataset) with featureData and pixelData
components.
featureData A DataFrame with feature metadata, with a row for each feature.
pixelData A PositionDataFrame with pixel metadata, with a row for each spectrum.
X, Yy The model object and results to plot. (Not typically called directly.)
Additional options passed to plotting methods.
select Select elements of the results to plot. For example, this selects a subset of matrix
columns or a subset of factor levels to plot.
subset A logical vector indicating which pixels to include in the image.
groups A vector coercible to a factor indicating which of the specified spectra should be
plotted with the same color.
superpose If multiple results are plotted, should they be superposed on top of each other,
or plotted seperately?
reducedDims Does this results component represent reduced dimensions (e.g., from PCA)?
Slots

model: The model.

featureData: A DataFrame containing feature-level metadata (e.g., a color channel, a molecular
analyte, or a mass-to-charge ratio).

pixelData: A PositionDataFrame containing spatial metadata, including each observations’s
pixel coordinates and experimental run information.

64 SpatialShrunkenCentroids

Methods

modelData(object), modelData(object) <- value: Get or set the model slot.
featureData(object), featureData(object) <- value: Get or set the featureData slot.
fData(object), fData(object) <- value: Get or set the featureData slot.

featureNames(object), featureNames (object) <- value: Get or set the feature names (i.e.,
the row names of the featureData slot).

pixelData(object), pixelData(object) <- value: Get or set the elementMetadata slot.
pData(object), pData(object) <- value: Get or set the elementMetadata slot.

pixelNames(object), pixelNames(object) <- value: Get or set the pixel names (i.e., the row
names of the elementMetadata slot).

coord(object), coord(object) <- value: Get or set the pixel coordinate columns in pixelData.

coordNames (object), coordNames(object) <- value: Get or set the names of the pixel coordi-
nate columns in pixelData.

run(object), run(object) <- value: Get or set the experimental run column from pixelData.

runNames(object), runNames(object) <- value: Get or set the experimental run levels from
pixelData.

nrun(object): Get the number of experimental runs.

Author(s)
Kylie A. Bemis

See Also

ResultslList

SpatialShrunkenCentroids
Spatially-aware shrunken centroid clustering and classification

Description

Perform spatially-aware nearest shrunken centroid clustering or classification. These methods use
statistical regularization to shrink the t-statistics of the features toward 0 so that unimportant features
are removed from the model. The dissimilarity to class centroids are spatially smoothed.

Usage

S4 method for signature 'ANY,ANY'

spatialShrunkenCentroids(x, y, coord, r =1, s = 0,
weights = c("gaussian”, "adaptive"),
neighbors = findNeighbors(coord, r=r), bags
priors = table(y), center = NULL, transpose

NULL,
TRUE,

SpatialShrunkenCentroids

verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpectrallmagingExperiment,ANY'
spatialShrunkenCentroids(x, y, r =1, s = 0,

weights = c("gaussian”, "adaptive"),

neighbors = findNeighbors(x, r=r), ...)

S4 method for signature 'ANY,missing'’
spatialShrunkenCentroids(x, coord, r =1, k =2, s =0,
weights = c("gaussian”, "adaptive"),
neighbors = findNeighbors(coord, r=r),
init = NULL, threshold = @.01, niter = 10L,
center = NULL, transpose = FALSE,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpectrallmagingExperiment,missing'
spatialShrunkenCentroids(x, r =1, k = 2, s = 0,

weights = c("gaussian”, "adaptive"),

neighbors = findNeighbors(x, r=r), ...)

S4 method for signature 'SpatialShrunkenCentroids'
fitted(object, type = c("response”, "class"), ...)

S4 method for signature 'SpatialShrunkenCentroids'
predict(object, newdata,
type = c("response”, "class"),
weights = object$weights, r = object$r,
neighbors = findNeighbors(newdata, r=r),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpatialShrunkenCentroids'
logLik(object, ...)

S4 method for signature 'SpatialShrunkenCentroids'
topFeatures(object, n = Inf, sort.by = c("statistic”, "centers"),

S4 method for signature 'SpatialShrunkenCentroids,missing'
plot(x, type = c("statistic”, "centers”), ..., xlab, ylab)

S4 method for signature 'SpatialShrunkenCentroids'

image(x, type = c("probability"”, "class"), ...)
Arguments
X A spatial dataset in P x N matrix format.

y The response variable.

66

coord

k
S

weights

neighbors

bags

priors
center
transpose
init

threshold

niter
verbose
chunkopts
BPPARAM

object
newdata
type

n, sort.by

xlab, ylab

Value

SpatialShrunkenCentroids

The spatial coordinates of the rows/columns of x. Ignored if neighbors is pro-
vided.

The spatial maximum distance for an observation to be considered a neighbor.
Ignored if neighbors is provided.

The number of classes for clustering.
The sparsity parameter.

The type of spatial weights to use for the smoothing. Gaussian weights are
weighted only by distance, while adaptive weights also consider the dissimilarity
between neighboring observations.

A factor giving which observations should be treated as spatially-independent.
Observations in the same group are assumed to have a spatial relationship.

Bags for multiple instance learning. If provided, then it is assumed all observa-
tions within a bag have the same label, and if a single observation is "positive"
then all observations in the bag are "positive". Multiple instance learning is
performed using mi_learn.

The (unnormalized) prior probabilities for each class.

The global centroid (if known).

Should x be considered P x N?

A list of initial cluster configurations. (Should resemble the output of kmeans.)

Stop iteration when the proportion of cluster assignment updates is less than this
threshold.

The maximum number of iterations.

Should progress messages be printed?

Chunk processing options. See chunkApply for details.

An optional instance of BiocParallelParam. See documentation for bplapply.
Additional arguments passed to the next method.

A SpatialShrunkenCentroids object.

A new SpectralImagingExperiment for which to make predictions.

The type of fitted values to extract or the type of predictions to make.

For topFeatures, the number of top features to return and how to sort them.

Plotting labels.

An object of class SpatialShrunkenCentroids derived from SpatialResults, containing the
fitted nscentroids object and the spatial metadata.

Author(s)

Kylie A. Bemis

spatial Weights 67

References

Bemis, K., Harry, A., Eberlin, L. S., Ferreira, C., van de Ven, S. M., Mallick, P., Stolowitz, M.,
and Vitek, O. (2016.) Probabilistic segmentation of mass spectrometry images helps select impor-
tant ions and characterize confidence in the resulting segments. Molecular & Cellular Proteomics.
doi:10.1074/mcp.0115.053918

Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2003). Class Prediction by Nearest Shrunken
Centroids, with Applications to DNA Microarrays. Statistical Science, 18, 104-117.

Alexandrov, T., & Kobarg, J. H. (2011). Efficient spatial segmentation of large imaging mass spec-
trometry datasets with spatially aware clustering. Bioinformatics, 27(13), i230-1238. doi:10.1093/bioinformatics/btr246

See Also

spatialkKMeans

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelImage(preset=3, dim=c(10,10), npeaks=20,
peakheight=c(3,6,9), centroided=TRUE)

fit spatial shrunken centroids
ssc <- spatialShrunkenCentroids(mse, r=1, k=4, s=c(0,3,6,9), weights="adaptive")

visualize classes
image(ssc, i=1:4)

visualize t-statistics
plot(ssc, i=1:4)

spatialWeights Calculate spatial weights

Description

Calculate weights for neighboring observations based on either the spatial distance between the
neighbors or the dissimilarity between the observations.

Usage

S4 method for signature 'ANY'

spatialWeights(x, coord = x, r = 1, byrow = TRUE,
neighbors = findNeighbors(coord, r=r),
weights = c("gaussian”, "adaptive"),
sd = ((2 *r) +1) / 4, matrix = FALSE,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

68 spatial Weights

S4 method for signature 'SpectrallmagingExperiment'’
spatialWeights(x, r = 1,

neighbors = findNeighbors(x, r=r),

weights = c("gaussian”, "adaptive"), ...)

S4 method for signature 'PositionDataFrame’
spatialWeights(x, r =1,
neighbors = findNeighbors(x, r=r),

weights = c("gaussian”, "adaptive"), ...)
Arguments

X Either a matrix or data frame of spatial coordinates, or a data matrix with rows
or columns located at the coordinates given by coord.

coord The spatial coordinates of the rows/columns of x. Ignored if neighbors is pro-
vided.

r The spatial maximum distance for an observation to be considered a neighbor.
Ignored if neighbors is provided.

byrow If x is a data matrix, then are the weights calculated based on the dissimilarity
between the rows (TRUE) or the columns (FALSE).

neighbors A list of numeric vectors giving the row or column indices of the spatial neigh-
bors for the rows or columns of x.

weights The type of weights to calculate. Either Gaussian weights with a constant stan-
dard deviation, or adaptive weights with a standard deviation based on the dis-
similarity between the neighboring observations.

sd The standard deviation for the Gaussian weights. Ignored with weights="adaptive".

matrix Should the weights be returned as a sparse adjacency matrix instead of a list?

verbose Should progress messages be printed?

chunkopts Chunk processing options. See chunkApply for details.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
Additional arguments passed to the next method.

Value

Either a list of weights of neighbors or a sparse adjacency matrix (sparse_mat).

Author(s)

Kylie A. Bemis

See Also

findNeighbors

SpectraArrays-class 69

Examples
set.seed(1, kind="L'Ecuyer-CMRG")

mse <- simulatelImage(preset=1, dim=c(10,10))

calculate weights based on distance
spatialWeights(pixelData(mse), r=1)

calculate weights based on spectral dissimilarity
spatialWeights(mse, r=1)

SpectraArrays-class SpectraArrays: List of spectra arrays

Description

The SpectraArrays class provides a list-like container for spectra arrays of conformable dimen-
sions.

Usage

Instance creation
SpectraArrays(arrays = SimplelList())

Additional methods documented below

Arguments

arrays A list of arrays.

Details

The SpectraArrays class is intended to be flexible and the arrays do not need to be "array-like"
(i.e., have non-NULL dim().) One dimensional arrays and lists are allowd. Every array must have
the same NROW() and NCOL ().

It supports lossless coercion to and from SimplelList.

Methods

length(object): Get the number of spectra in the object.
names(object), names(object) <- value: Get or set the names of spectra arrays in the object.
object[[i]], object[[i]] <- value: Get or set an array in the object.

object[i, j, ..., drop]: Subset as a list or array, depending on the number of dimensions of the
stored spectra arrays. The result is the same class as the original object.

rbind(...), cbind(...): Combine SpectraArrays objects by row or column.
c(...): Combine SpectraArrays objects as lists.

fetch(object, ...): Pull data arrays into shared memory.

flash(object, ...): Push data arrays to a temporary file.

70 SpectrallmagingArrays-class

Author(s)

Kylie A. Bemis

See Also

SpectralImagingData, MSImagingArrays

Examples
set.seed(1, kind="L'Ecuyer-CMRG")
x <= matrix(rlnorm(128), nrow=16, ncol=8)
y <= matrix(rlnorm(128), nrow=16, ncol=8)

s <- SpectraArrays(list(x=x, y=y))

print(s)

SpectrallmagingArrays-class
SpectrallmagingArrays: Spectral imaging data with arbitrary domain

Description

The SpectralImagingArrays class provides a list-like container for high-dimensional spectral
imaging data where every spectrum may have its own domain values. It is designed to provide
easy access to raw individual spectra, but images cannot be easily reconstructed.

The MSImagingArrays class extends SpectralImagingArrays for mass spectrometry-based imag-
ing experiments with unaligned mass features.

Usage

Instance creation
SpectralImagingArrays(spectraData = SimplelList(),
pixelData = PositionDataFrame(), metadata = list())

Additional methods documented below

Arguments
spectraData Either a list-like object with lists of individual spectra and lists of their domain
values, or a SpectraArrays instance.
pixelData A PositionDataFrame with pixel metadata, with a row for each spectrum.

metadata A list with experimental-level metadata.

SpectrallmagingData-class 71

Slots

spectraData: A SpectraArrays object storing one or more array-like data elements with con-
formable dimensions.

elementMetadata: A PositionDataFrame containing spectrum-level metadata, including each
spectrum’s pixel coordinates and experimental run information.

processing: A list containing unexecuted ProcessingStep objects.

Methods

All methods for SpectralImagingData also work on SpectralImagingArrays objects. Addi-
tional methods are documented below:

length(object): Get the number of spectra in the object.

object[i, ..., drop]: Subset as a list based on the spectra. The result is the same class as the
original object.

rbind(...), cbind(...): Combine SpectralImagingArrays objects by row or column.

Author(s)

Kylie A. Bemis

See Also

SpectralImagingData, MSImagingArrays

Examples

set.seed(1, kind="L'Ecuyer-CMRG")

x <- replicate(9, rlnorm(1@), simplify=FALSE)

t <- replicate(9, sort(runif(10)), simplify=FALSE)
coord <- expand.grid(x=1:3, y=1:3)

sa <- SpectrallmagingArrays(
spectraData=list(intensity=x, wavelength=t),

pixelData=PositionDataFrame(coord))

print(sa)

SpectrallmagingData-class
SpectrallmagingData: Abstract class for spectral imaging data

72 SpectrallmagingData-class

Description

The SpectralImagingData class is an abstract container for high-dimensional spectral imaging
data. Every spectrum is associated with spatial coordinates so that an image can be constructed
from the spectral intensities.

The SpectralImagingArrays and SpectralImagingExperiment classes directly extend this class,
where SpectralImagingArrays is primarily intended for unprocessed spectra with unaligned fea-
tures, and SpectralImagingExperiment is intended for processed spectra with aligned features.

The MSImagingArrays and MSImagingExperiment classes further extend these classes for mass
spectrometry imaging data.

Slots
spectraData: A SpectraArrays object storing one or more array-like data elements with con-
formable dimensions.

elementMetadata: A PositionDataFrame containing spectrum-level metadata, including each
spectrum’s pixel coordinates and experimental run information.

processing: A list containing unexecuted ProcessingStep objects.

Methods
spectraData(object, ...), spectraData(object, ...) <- value: Getor set the spectraData
slot.
spectraNames(object, ...), spectraNames(object, ...) <- value: Get or set the names of

the spectra in the spectraData slot.

spectra(object, i =1L, ...), spectra(object, i =1L, ...) <-value: Get or set a specific
spectra array in the spectraData slot.

pixelData(object), pixelData(object) <- value: Get or set the elementMetadata slot.
pData(object), pData(object) <- value: Get or set the elementMetadata slot.

pixelNames(object), pixelNames(object) <- value: Get or set the pixel names (i.e., the row
names of the elementMetadata slot).

spectraVariables(object, ...): Getthe names of the spectrum-level variables (i.e., the columns
of the elementMetadata slot).

coord(object), coord(object) <- value: Get or set the pixel coordinate columns in pixelData.

coordNames (object), coordNames(object) <- value: Get or set the names of the pixel coordi-
nate columns in pixelData.

run(object), run(object) <- value: Get or set the experimental run column from pixelData.

runNames(object), runNames(object) <- value: Get or set the experimental run levels from
pixelData.

nrun(object): Get the number of experimental runs.
is3D(object): Check if the number of spatial dimensions is greater than 2.

processingData(object, ...),processingData(object, ...) <- value: Getor setthe processing
slot.
fetch(object, ...): Pull spectraData into shared memory.

flash(object, ...): Push spectraData to a temporary file.

SpectrallmagingExperiment-class 73

Author(s)
Kylie A. Bemis

See Also

SpectralImagingExperiment, SpectralImagingArrays, MSImagingExperiment, MSImagingArrays

SpectrallmagingExperiment-class

SpectrallmagingExperiment: Spectral imaging data with shared do-
main

Description

The SpectrallmagingExperiment class provides a matrix-like container for high-dimensional
spectral imaging data where every spectrum shares the same domain values. It is designed to pro-
vide easy access to both the spectra (as columns) and sliced images (as rows).

The MSImagingExperiment class extends SpectralImagingExperiment for mass spectrometry-
based imaging experiments with aligned mass features.

Usage

Instance creation

SpectrallmagingExperiment(spectraData = SimplelList(),
featureData = DataFrame(), pixelData = PositionDataFrame(),
metadata = list())

Additional methods documented below

Arguments
spectraData Either a matrix-like object with number of rows equal to the number of features
and number of columns equal to the number of pixels, a list of such objects, or
a SpectraArrays instance.
featureData A DataFrame with feature metadata, with a row for each feature.
pixelData A PositionDataFrame with pixel metadata, with a row for each spectrum.
metadata A list with experimental-level metadata.
Slots

spectraData: A SpectraArrays object storing one or more array-like data elements with con-
formable dimensions.

featureData: A DataFrame containing feature-level metadata (e.g., a color channel, a molecular
analyte, or a mass-to-charge ratio).

elementMetadata: A PositionDataFrame containing spectrum-level metadata, including each
spectrum’s pixel coordinates and experimental run information.

processing: A list containing unexecuted ProcessingStep objects.

74 spectrapply

Methods

All methods for SpectralImagingData also work on SpectralImagingExperiment objects. Ad-
ditional methods are documented below:

featureData(object), featureData(object) <- value: Get or set the featureData slot.
fData(object), fData(object) <- value: Get or set the featureData slot.

featureNames(object), featureNames(object) <- value: Get or set the feature names (i.e.,
the row names of the featureData slot).

length(object): Get the number of spectra in the object.

nrow(object), ncol(object): Get the number of rows (features) or the number of columns (pix-
els) in the object.

object[i, j, ..., drop]: Subset based on the rows (featureData) and the columns (pixelData).
The result is the same class as the original object.

rbind(...), cbind(...): Combine SpectralImagingExperiment objects by row or column.

Author(s)
Kylie A. Bemis

See Also

SpectralImagingData, MSImagingExperiment

Examples

set.seed(1, kind="L'Ecuyer-CMRG")

x <= matrix(rlnorm(81), nrow=9, ncol=9)
index <- 1:9

coord <- expand.grid(x=1:3, y=1:3)

se <- SpectralImagingExperiment(
spectraData=x,
featureData=DataFrame(index=1:9),
pixelData=PositionDataFrame(coord))

print(se)

spectrapply Apply functions over spectra

Description

Apply a user-specified function over all spectra in a spectral imaging dataset.

spectrapply 75

Usage

S4 method for signature 'SpectrallmagingExperiment'’
spectrapply(object, FUN, ...,
spectra = "intensity”, index = NULL,
simplify = TRUE, outpath = NULL,
verbose = getCardinalVerbose(), chunkopts
BPPARAM = getCardinalBPPARAM())

list(),

S4 method for signature 'SpectrallmagingArrays'
spectrapply(object, FUN, ...,
spectra = "intensity”, index = NULL,
simplify = TRUE, outpath = NULL,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM())

Arguments
object A spectral imaging dataset.
FUN A function to be applied. The first argument will be the spectra elements.
Additional arguments are passed for each index component.
Options passed to chunkMapply or chunkApply.
spectra The name of the array in spectraData() to use for the spectral intensities.
index The name of the array in spectraData() (for SpectrallmagingArrays) or
column in featureData() (for SpectralImagingExperiment) to use for the
spectral locations.
simplify Should the result be simplified to an array if possible?
outpath Optional. The name of a file to write the resulting data.
verbose Should progress messages be printed?
chunkopts Chunk processing options. See chunkApply for details.
BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
Value

A list if simplify=FALSE. Otherwise, a vector or matrix, or a higher-dimensional array if the at-
tempted simplification is successful.

Author(s)

Kylie A. Bemis

See Also

summarizeFeatures, summarizePixels

76 subsetFeatures

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelImage(preset=1, npeaks=10, dim=c(10,10))

find m/z locations of peaks in each spectrum
peaks <- spectrapply(mse, index="mz",
function(x, mz) mz[matter::findpeaks(x)]1)

head(peaks[[1L]11)
head(peaks[[2L]1])

subsetFeatures Subset a spectral imaging dataset

Description

Returns a subset of the dataset that meets the conditions.

Usage

S4 method for signature 'SpectrallmagingArrays'
subset(x, subset, ...)

S4 method for signature 'SpectrallmagingExperiment'’

subset(x, select, subset, ...)
subsetFeatures(x, ...)
subsetPixels(x, ...)
Arguments
X A spectral imaging dataset.
select Logical expression to be evaluated in the object’s featureData() indicating

which rows (features) to keep.

subset Logical expression to be evaluated in the object’s pixelData() indicating which
columns (pixels) to keep.

Conditions describing rows (features) or columns (pixels) to be retained. Passed
to features() and pixels() methods to obtain the subset indices.

Value

An object of the same class as x with the appropriate subsetting applied to it.

Author(s)
Kylie A. Bemis

summarizeFeatures 77

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelImage(preset=1, npeaks=10, dim=c(10,10))

subset features to mass range 1000 - 1500
subsetFeatures(mse, 1000 < mz, mz < 1500)

select pixels to coordinates x = 1..3, y = 1..3
subsetPixels(mse, x <= 3, y <= 3)

subset both features + pixels
subset(mse, 1000 < mz & mz < 1500, x <= 3 & y <= 3)

summarizeFeatures Summarize a spectral imaging dataset

Description

Summarizes over the rows or columns of the dataset.

Usage
summarizeFeatures(x, stat = "mean”, groups = NULL,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

summarizePixels(x, stat = c(tic="sum"), groups = NULL,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpectrallmagingExperiment'’
rowStats(x, stat, ...,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM())

S4 method for signature 'SpectrallmagingExperiment'’
colStats(x, stat, ...,
verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM())

S4 method for signature 'SpectrallmagingExperiment'’
rowSums(x, na.rm = FALSE, dims =1, ...)

S4 method for signature 'SpectrallmagingExperiment'’
colSums(x, na.rm = FALSE, dims =1, ...)

S4 method for signature 'SpectrallmagingExperiment'’

78 summarizeFeatures

rowMeans(x, na.rm = FALSE, dims =1, ...)

S4 method for signature 'SpectrallmagingExperiment'’

colMeans(x, na.rm = FALSE, dims =1, ...)
Arguments
X A spectral imaging dataset.
stat The name of summary statistics to compute over the rows or columns of a ma-

trix. Allowable values include: "min", "max", "prod", "sum", "mean", "var",

"sd", "any", "all", and "nnzero".

groups A vector coercible to a factor giving groups to summarize.

na.rm If TRUE, remove NA values before summarizing.

dims Ignored.

verbose Should progress messages be printed?

chunkopts Chunk processing options. See chunkApply for details.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

Additional arguments passed to rowStats or colStats, such as the number of
chunks.

Value

For summarizeFeatures and summarizePixels, an object of the same class as x with the statistical
summaries added as columns in the featureData() or pixelData(), respectively.

For rowStats, colStats, etc., a vector, matrix, or array with the summary statistics.

Author(s)

Kylie A. Bemis

Examples

set.seed(1, kind="L'Ecuyer-CMRG")
mse <- simulatelImage(preset=1, npeaks=10, dim=c(10,10))

summarize mean spectrum
mse <- summarizeFeatures(mse, stat="mean")
plot(mse, "mean")

summarize total ion current
mse <- summarizePixels(mse, stat=c(TIC="sum"))
image(mse, "TIC")

writeMSIData 79

writeMSIData Write mass spectrometry imaging data files

Description

Write supported mass spectrometry imaging data files, including imzML and Analyze 7.5.

Usage

writeMSIData(object, file, ...)

S4 method for signature 'MSImagingExperiment_OR_Arrays'
writeImzML (object, file, bundle = TRUE,

verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'MSImagingExperiment'’
writeAnalyze(object, file,

verbose = getCardinalVerbose(), chunkopts = list(),
BPPARAM = getCardinalBPPARAM(), ...)

S4 method for signature 'SpectrallmagingExperiment'’
writeAnalyze(object, file,
verbose = getCardinalVerbose(), chunkopts = list(),

BPPARAM = getCardinalBPPARAM(), ...)
Arguments
object A spectral imaging dataset.
file The absolute or relative file path. The file extension must be included for writeMSIData.
bundle Should the ".imzML" and ".ibd" files be bundled into a new directory of the
same name?

verbose Should progress messages be printed?
chunkopts Chunk processing options. See chunkApply for details.
BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

Additional arguments passed to writeImzML or writeAnalyze.

Details

The writeImzML function supports writing both the "continuous" and "processed" formats.

Exporting the experimental metadata to cvParam tags is lossy, and not all metadata will be pre-
served. If exporting an object that was originally imported from an imzML file, only metadata that
appears in experimentData() will be preserved when writing.

80 XDataFrame-class

Datasets with multiple experimental runs will be merged into a single file. The object’s pixelData()
and featureData() will also be written to tab-delimted files if appropriate. These will be read back
in by readImzML().

The imzML files can be modified after writing (such as to add additional experimental metadata) us-
ing the Java-based imzMLValidator application: https://gitlab.com/imzML/imzMLValidator/.
Value
TRUE if the file was written successfully, with the output file paths and data objects attached as
attributes.
Author(s)

Kylie A. Bemis

References

Schramm T, Hester A, Klinkert I, Both J-P, Heeren RMA, Brunelle A, Laprevote O, Desbenoit N,
Robbe M-F, Stoeckli M, Spengler B, Rompp A (2012) imzML - A common data format for the
flexible exchange and processing of mass spectrometry imaging data. Journal of Proteomics 75
(16):5106-5110. doi:10.1016/j.jprot.2012.07.026

See Also

readMSIData

XDataFrame-class XDataFrame: Extended data frame with key columns

Description

The XDataF rame extends the DataFrame class from the S4Vectors package with support for columns
(or sets of columns) designated as keys.

Usage
XDataFrame(..., keys = list())
Arguments
Arguments passed to the DataFrame().
keys A named list of character vectors giving the names of key columns. The names

of the list become the names of the keys (which may be different from the
columns). The character vectors specify the names of columns that compose
that key.

https://gitlab.com/imzML/imzMLValidator/

XDataFrame-class 81

Details

For the most part, XDataFrame behaves identically to DataFrame, and key columns can be get or
set as usual.

The XDataFrame class is primarily intended as a way to enforce additional requirements or con-
straints on specific sets of columns in a structured way. It provides an abstracted way of manip-
ulating sets of columns that are expected to follow certain rules. The keys remain consistent and
accessible even if the columns of the data frame are renamed.

The base class currently has only minimal requirements for keys (i.e., that they are valid columns
in the data frame). Additionally, keys are checked for compatibility when combining data frames.
Uniqueness is not checked.

Subclasses can enforce additional constraints on key columns. For example, the PositionDataFrame
and MassDataFrame classes.
Methods

keys(object, i =NULL, ..., drop=TRUE), keys(object, i =NULL, ...) <-value: Getor set
the key columns. By default, this gets or sets the keys slot. Provide i to get or set specific
keys.

dropkeys(object, ...): Return a DataFrame copy of the object without the key columns.

Author(s)
Kylie A. Bemis

See Also

DataFrame, MassDataFrame, PositionDataFrame

Examples

Create an XDataFrame object
XDataFrame(id=1:10, letter=LETTERS[1:10], keys=list(index="id"))

Index

* 10
readMSIData, 34
writeMSIData, 79
* classes
MassDataFrame-class, 11
MSImagingArrays-class, 15
MSImagingExperiment-class, 16
PositionDataFrame-class, 31
ResultsList-class, 39
SpatialResults-class, 62
SpectraArrays-class, 69
SpectrallmagingArrays-class, 70
SpectrallmagingData-class, 71
SpectrallmagingExperiment-class,
73
XDataFrame-class, 80
* classif
SpatialCV, 47
SpatialPLS, 60
SpatialShrunkenCentroids, 64
* clustering
SpatialDGMM, 49
SpatialKMeans, 54
SpatialShrunkenCentroids, 64
* contrast
MeansTest, 12
* datagen
simulateSpectra, 41
* hplot
plot-image, 27
plot-spectra, 29
* htest
MeansTest, 12
* iplot
selectROI, 40
* manip
process, 32
slicelmage, 45
spectrapply, 74

82

subsetFeatures, 76

+ methods
colocalized, 6

* models
MeansTest, 12

+ multivariate
SpatialFastmap, 52
SpatialNMF, 57
SpatialPCA, 58
SpatialPLS, 60

+ package
Cardinal-package, 3

* regression
MeansTest, 12
SpatialcCV, 47

* smooth
smooth, 46

* spatial
findNeighbors, 10
SpatialDGMM, 49
spatialDists, 51
SpatialFastmap, 52
SpatialKMeans, 54
SpatialShrunkenCentroids, 64
spatialWeights, 67

* ts
bin, 4
estimateDomain, 8
normalize, 18
peakAlign, 19
peakPick, 22
peakProcess, 24
process, 32
recalibrate, 36
reduceBaseline, 38
smooth, 46

* univar
summarizeFeatures, 77

+ utilities

INDEX

estimateDomain, 8
features, 9
pixels, 26
SpatialCV, 47
[,MassDataFrame, ANY, ANY, ANY-method
(MassDataFrame-class), 11
[,PositionDataFrame, ANY,ANY,ANY-method
(PositionDataFrame-class), 31
[,SpectraArrays,ANY,ANY, ANY-method
(SpectraArrays-class), 69

[,SpectrallmagingArrays, ANY,ANY, ANY-method

(SpectrallmagingArrays-class),
70

83

$<-,SpectralImagingData-method
(SpectralImagingData-class), 71

$<-,XDataFrame-method
(XDataFrame-class), 80

addProcessing, SpectralImagingData-method

(process), 32
addShape (simulateSpectra), 41

aggregate,SpectralImagingExperiment-method

(deprecated), 7
alpha.colors (deprecated), 7
approx1, 5, 6
as_facets (reexports), 39

[,Spec:tralImagingExperiment,ANY,ANY,ANY—methoﬁs—layers(reeXports)’39

(SpectrallmagingExperiment-class),

73
[,XDataFrame, ANY,ANY,ANY-method
(XDataFrame-class), 80
[<-,SpectraArrays, ANY,ANY, ANY-method
(SpectraArrays-class), 69

[<-,SpectralImagingArrays,ANY,ANY,ANY-method

(SpectrallmagingArrays-class),
70

baselineReduction (deprecated), 7
baselineReduction<- (deprecated), 7
bin, 4
bin,MSImagingArrays-method (bin), 4
bin,MSImagingExperiment-method (bin), 4
bin,SpectrallmagingArrays-method (bin),
4
bin,SpectralImagingExperiment-method
(bin), 4

[<-,SpectralImagingExperiment, ANY,ANY, ANY-method

(SpectrallmagingExperiment-class),

73
[<-,XDataFrame, ANY,ANY, ANY-method
(XDataFrame-class), 80
[[,SpatialResults-method
(SpatialResults-class), 62
[[,SpectraArrays-method
(SpectraArrays-class), 69
[[,SpectralImagingData-method
(SpectrallmagingData-class), 71
[[<-,SpectraArrays-method
(SpectraArrays-class), 69
[[<-,SpectralImagingData-method
(SpectrallmagingData-class), 71
[[<-,XDataFrame-method
(XDataFrame-class), 80
$,SpatialResults-method
(SpatialResults-class), 62
$,SpectraArrays-method
(SpectraArrays-class), 69
$,SpectralImagingData-method
(SpectralImagingData-class), 71
$<-,SpectraArrays-method
(SpectraArrays-class), 69

binpeaks, 21

bplapply, 3,7, 8, 13, 21, 24, 33, 35, 42, 48,
50, 52, 53, 56, 59, 61, 66, 68, 75, 78
79

bw.colors (deprecated), 7

c,MSImagingArrays-method
(MSImagingArrays-class), 15

c,SpectraArrays-method
(SpectraArrays-class), 69

c,SpectralImagingArrays-method
(SpectrallmagingArrays-class),
70

Cardinal (Cardinal-package), 3

Cardinal-package, 3

cbind,MSImagingExperiment-method
(MSImagingExperiment-class), 16

cbind, SpectraArrays-method
(SpectraArrays-class), 69

cbind, SpectralImagingArrays-method
(SpectralImagingArrays-class),
70

cbind, SpectralImagingExperiment-method

(SpectrallmagingExperiment-class),

73

84

cbhind,

XDataFrame-method
(XDataFrame-class), 80

INDEX

class:SpatialShrunkenCentroids
(SpatialShrunkenCentroids), 64

centroided,MSImagingExperiment_OR_Arrays-methotlass:SpectraArrays

(MSImagingExperiment-class), 16

(SpectraArrays-class), 69

centroided<-,MSImagingExperiment_OR_Arrays-methasis: SpectralImagingArrays

(MSImagingExperiment-class), 16

chunk_colapply, 33
chunk_mapply, 33
chunkApply, 7, 8, 13, 21, 24, 33, 35, 42, 48,

50, 52, 53, 55, 59, 61, 66, 68,75, 78,
79

chunkLapply, 8
chunkMapply, 75

class:
class:
class:

class:
class:
class:

class
class

class
class

class:

class:

class
class

class:
class:
class:
class:
class:

class:
class:
class:
class:
class:
class:

ContrastTest (MeansTest), 12

Hashmat (deprecated), 7

IAnnotatedDataFrame (deprecated),
7

ImageData (deprecated), 7

iSet (deprecated), 7

MassDataFrame
(MassDataFrame-class), 11

:MeansTest (MeansTest), 12
:MIAPE-Imaging (deprecated), 7
class:
:MSImageProcess (deprecated), 7
:MSImageSet (deprecated), 7
class:

MSImageData (deprecated), 7

MSImagingArrays
(MSImagingArrays-class), 15

MSImagingExperiment
(MSImagingExperiment-class), 16

PositionDataFrame
(PositionDataFrame-class), 31

:ResultSet (deprecated), 7
:ResultslList (ResultsList-class),

39
SImageData (deprecated), 7
SImageSet (deprecated), 7
SpatialCV (SpatialCV), 47
SpatialDGMM (SpatialDGMM), 49
SpatialFastmap (SpatialFastmap),

52
SpatialKMeans (SpatialkMeans), 54
SpatialNMF (SpatialNMF), 57
SpatialOPLS (SpatialPLS), 60
SpatialPCA (SpatialPCA), 58
SpatialPLS (SpatialPLS), 60
SpatialResults

(SpatialResults-class), 62

(SpectrallmagingArrays-class),
70

class:SpectrallmagingData
(SpectralImagingData-class), 71

class:SpectralImagingExperiment
(SpectrallmagingExperiment-class),
73

class:XDataFrame (XDataFrame-class), 80

class:XDFrame (XDataFrame-class), 80

classNameForDisplay, XDFrame-method
(XDataFrame-class), 80

coef,SpatialOPLS-method (SpatialPLS), 60

coerce,DataFrame, XDataFrame-method
(XDataFrame-class), 80

coerce,DFrame,MassDataFrame-method
(MassDataFrame-class), 11

coerce,DFrame,PositionDataFrame-method
(PositionDataFrame-class), 31

coerce,list,SpectraArrays-method
(SpectraArrays-class), 69

coerce,MSImageSet,MSImagingExperiment-method
(MSImagingExperiment-class), 16

coerce,MSImagingArrays,MSImagingExperiment-method
(readMSIData), 34

coerce,MSImagingExperiment ,MSImagingArrays-method
(readMSIData), 34

coerce,SimplelList,SpectraArrays-method
(SpectraArrays-class), 69

coerce, SpectraArrays, list-method
(SpectraArrays-class), 69

coerce,SpectraArrays,SimpleList-method
(SpectraArrays-class), 69

col.map (deprecated), 7

colMeans, SpectralImagingExperiment-method
(summarizeFeatures), 77

colnames, SpectralImagingExperiment-method
(SpectrallmagingExperiment-class),
73

colnames<-,SpectralImagingExperiment-method
(SpectrallmagingExperiment-class),
73

colocalized, 6

colocalized,MSImagingExperiment-method

INDEX

(colocalized), 6
colocalized, SpatialDGMM-method
(colocalized), 6

colocalized, SpectralImagingExperiment-method

(colocalized), 6

color.map (deprecated), 7

colStats, 78

colStats, SpectralImagingExperiment-method
(summarizeFeatures), 77

colSums, SpectralImagingExperiment-method
(summarizeFeatures), 77

combine, SpectraArrays, ANY-method
(SpectraArrays-class), 69

combine, SpectralImagingArrays,ANY-method
(SpectralImagingArrays-class),
70

combine, SpectralImagingExperiment, ANY-method

(SpectralImagingExperiment-class),
73
ContrastTest (MeansTest), 12
contrastTest (MeansTest), 12
ContrastTest-class (MeansTest), 12
convertMSImagingArrays2Experiment
(readMSIData), 34
convertMSImagingExperiment2Arrays
(readMSIData), 34
coord (PositionDataFrame-class), 31
coord,PositionDataFrame-method
(PositionDataFrame-class), 31
coord, SpatialResults-method
(SpatialResults-class), 62
coord, SpectralImagingData-method
(SpectrallmagingData-class), 71
coord<- (PositionDataFrame-class), 31
coord<-,PositionDataFrame-method
(PositionDataFrame-class), 31
coord<-,SpatialResults-method
(SpatialResults-class), 62
coord<-,SpectralImagingData-method
(SpectrallmagingData-class), 71
coordNames (PositionDataFrame-class), 31
coordNames,PositionDataFrame-method
(PositionDataFrame-class), 31
coordNames, SpatialResults-method
(SpatialResults-class), 62
coordNames, SpectralImagingData-method
(SpectrallmagingData-class), 71
coordNames<- (PositionDataFrame-class),

85

31
coordNames<-,PositionDataFrame-method
(PositionDataFrame-class), 31
coordNames<-, SpatialResults-method
(SpatialResults-class), 62
coordNames<-,SpectralImagingData-method
(SpectralImagingData-class), 71
coregister (colocalized), 6
cpal (reexports), 39
cpals (reexports), 39
crossValidate (SpatialCV), 47
cv_do, 48, 49
cvApply (deprecated), 7

darkmode (deprecated), 7

DataFrame, 63, 73, 80, 81

deprecated, 7

dim, SpectraArrays-method
(SpectraArrays-class), 69

dim, SpectralImagingArrays-method
(SpectralImagingArrays-class),
70

dim,SpectralImagingExperiment-method
(SpectrallmagingExperiment-class),
73

discrete.colors (deprecated), 7

divergent.colors (deprecated), 7

downsample, 31

dpal (reexports), 39

dpals (reexports), 39

drle, 50

dropkeys (XDataFrame-class), 80

dropkeys, XDataFrame-method
(XDataFrame-class), 80

enhance, 28
estbase, 38
estbase_hull, 38
estbase_loc, 38
estbase_med, 38
estbase_snip, 38
estimateDomain, 6, 8
estimateReferenceMz, 6
estimateReferenceMz (estimateDomain), 8
estimateReferencePeaks, 23
estimateReferencePeaks
(estimateDomain), 8
estnoise_diff, 23
estnoise_filt, 23

86

estnoise_mad, 23
estnoise_quant, 23
estnoise_sd, 23

INDEX

fetch,SpectralImagingData-method
(SpectralImagingData-class), 71
filt1, 46

experimentData,MSImagingExperiment_OR_Arrays-fiethbdadapt, 46

(MSImagingExperiment-class), 16

filt1_bi, 46

experimentData<-,MSImagingExperiment_OR_Array8i AY-defhpdo

(MSImagingExperiment-class), 16

fastmap, 54

fData,SpatialResults-method
(SpatialResults-class), 62

fData, SpectralImagingExperiment-method
(SpectralImagingExperiment-class),
73

fData<-,SpatialResults,ANY-method
(SpatialResults-class), 62

fData<-,SpectralImagingExperiment, ANY-method

(SpectralImagingExperiment-class),
73
featureApply (deprecated), 7

filt1_gauss, 46

filt1_guide, 46

filt1_ma, 46

filt1_pag, 46

filt1_sg, 46

filt2, 28

findNeighbors, 10, 52, 68

findNeighbors, ANY-method
(findNeighbors), 10

findNeighbors,PositionDataFrame-method
(findNeighbors), 10

findNeighbors, SpectralImagingData-method
(findNeighbors), 10

findpeaks, 8, 22, 24

featureApply, SpectralImagingExperiment-methodfindpeaks_cwt, 23

(deprecated), 7
featureData,SpatialResults-method
(SpatialResults-class), 62

fitted,ResultsList-method
(ResultsList-class), 39
fitted, SpatialCV-method (SpatialCV), 47

featureData, SpectralImagingExperiment-method fitted,SpatialOPLS-method (SpatialPLS),

(SpectrallmagingExperiment-class),

73
featureData<-,SpatialResults,ANY-method

(SpatialResults-class), 62

featureData<-,SpectrallmagingExperiment, ANY-method

(SpectrallmagingExperiment-class),
73

featureNames, SpatialResults-method
(SpatialResults-class), 62

60
fitted,SpatialPLS-method (SpatialPLS),
60
fitted, SpatialResults-method
(SpatialResults-class), 62
fitted, SpatialShrunkenCentroids-method
(SpatialShrunkenCentroids), 64
flash,SpectraArrays-method
(SpectraArrays-class), 69

featureNames, SpectralImagingExperiment-methodflash, SpectralImagingData-method

(SpectralImagingExperiment-class),

73
featureNames<-,SpatialResults-method

(SpatialResults-class), 62

featureNames<-,SpectralImagingExperiment-method

(SpectralImagingExperiment-class),
73
features, 9
features,MSImagingExperiment-method
(features), 9
features,SpectralImagingExperiment-method
(features), 9
fetch, SpectraArrays-method
(SpectraArrays-class), 69

(SpectralImagingData-class), 71

getCardinalBPPARAM (Cardinal-package), 3
getCardinalChunksize
(Cardinal-package), 3
getCardinallLogger (Cardinal-package), 3
getCardinalNChunks (Cardinal-package), 3
getCardinalNumBlocks (deprecated), 7
getCardinalParallel (Cardinal-package),
3
getCardinalSerialize
(Cardinal-package), 3
getCardinalVerbose (Cardinal-package), 3
gradient.colors (deprecated), 7

INDEX 87

gridded (deprecated), 7 intensity,MSImagingArrays-method

gridded<- (deprecated), 7 (MSImagingArrays-class), 15
intensity,MSImagingExperiment-method

Hashmat (deprecated), 7 (MSImagingExperiment-class), 16

Hashmat-class (deprecated), 7 intensity.colors (deprecated), 7

height (deprecated), 7 intensity<-,MSImagingArrays-method

height<- (deprecated), 7 (MSImagingArrays-class), 15

intensity<-,MSImagingExperiment-method
(MSImagingExperiment-class), 16
intensityData (deprecated), 7

IAnnotatedDataFrame (deprecated), 7
IAnnotatedDataFrame-class (deprecated),

7 intensityData<- (deprecated), 7
iData (deprecated), 7 ionizationType (deprecated), 7
iData,ANY-method (deprecated), 7 irlba, 57, 59, 61
iData<- (deprecated), 7 1s3D (deprecated), 7
iData<-,ANY-method (deprecated), 7 is3D,PositionDataFrame-method
image, 28, 40, 41 (PositionDataFrame-class), 31

is3D, SpectralImagingData-method
(SpectralImagingData-class), 71

isCentroided,MSImagingExperiment_OR_Arrays-method
(MSImagingExperiment-class), 16

iSet (deprecated), 7

iSet-class (deprecated), 7

image (plot-image), 27

image ,MSImagingExperiment-method
(plot-image), 27

image,PositionDataFrame-method
(plot-image), 27

image,ResultslList-method
(ResultsList-class), 39

image, SpatialCV-method (SpatialCV), 47 jet.colors (deprecated), 7
image, SpatialDGMM-method (SpatialDGMM),
49 keys (XDataFrame-class), 80
image, SpatialFastmap-method keys, XDataFrame-method
(SpatialFastmap), 52 (XDataFrame-class), 80
image, SpatialKMeans-method keys<- (XDataFrame-class), 80
(SpatialkMeans), 54 keys<-,XDataFrame-method
image, SpatialNMF-method (SpatialNMF), 57 (XDataFrame-class), 80
image, SpatialOPLS-method (SpatialPLS), kmeans, 56
60
image,SpatialPCA-method (SpatialPCA), 58 length,SpatialResults-method
image, SpatialPLS-method (SpatialPLS), 60 (SpatialResults-class), 62
image, SpatialResults-method length, SpectraArrays-method
(SpatialResults-class), 62 (SpectraArrays-class), 69
image, SpatialShrunkenCentroids-method length,SpectralImagingArrays-method
(SpatialShrunkenCentroids), 64 (SpectralImagingArrays-class),
image, SpectralImagingExperiment-method 70
(plot-image), 27 length, SpectrallImagingExperiment-method
image3D (plot-image), 27 (SpectrallmagingExperiment-class),
image3D,MSImagingExperiment-method 73
(plot-image), 27 lightmode (deprecated), 7
ImageData (deprecated), 7 lineScanDirection (deprecated), 7
ImageData-class (deprecated), 7 Im, 13, 14
ImzMeta, 15, 17 1me, 13, 14

instrumentVendor (deprecated), 7 locator, 40

88

loglLik, SpatialDGMM-method
(SpatialDGMM), 49

loglLik, SpatialShrunkenCentroids-method
(SpatialShrunkenCentroids), 64

makeFactor (selectR0OI), 40
massAnalyzerType (deprecated), 7
MassDataFrame, 17, 32,42, 81
MassDataFrame (MassDataFrame-class), 11
MassDataFrame-class, 11
matrixApplication (deprecated), 7
matter, 35
MeansTest, 12
meansTest, 40, 50
meansTest (MeansTest), 12
meansTest,ANY-method (MeansTest), 12
meansTest, SpatialDGMM-method
(MeansTest), 12
meansTest, SpectrallmagingExperiment-method
(MeansTest), 12
MeansTest-class (MeansTest), 12
mergepeaks, 21
mi_learn, 61, 66
MIAPE-Imaging (deprecated), 7
MIAPE-Imaging-class (deprecated), 7
modelData (SpatialResults-class), 62
modelData, SpatialResults-method
(SpatialResults-class), 62
modelData<- (SpatialResults-class), 62
modelData<-,SpatialResults-method
(SpatialResults-class), 62
msiInfo (deprecated), 7
MSImageData (deprecated), 7
MSImageData-class (deprecated), 7
MSImageProcess (deprecated), 7
MSImageProcess-class (deprecated), 7
MSImageSet (deprecated), 7
MSImageSet-class (deprecated), 7
MSImagingArrays, 16, 18, 36, 70-73
MSImagingArrays
(MSImagingArrays-class), 15
MSImagingArrays-class, 15
MSImagingExperiment, 15, 16, 36,44, 72-74
MSImagingExperiment
(MSImagingExperiment-class), 16
MSImagingExperiment-class, 16
mz ,MassDataFrame-method
(MassDataFrame-class), 11

INDEX

mz,missing-method
(MSImagingExperiment-class), 16

mz ,MSImagingArrays-method
(MSImagingArrays-class), 15

mz ,MSImagingExperiment-method
(MSImagingExperiment-class), 16

mz<-,MassDataFrame-method
(MassDataFrame-class), 11

mz<-,MSImagingArrays-method
(MSImagingArrays-class), 15

mz<-,MSImagingExperiment-method
(MSImagingExperiment-class), 16

mzAlign (deprecated), 7

mzAlign,MSImagingExperiment,missing-method
(deprecated), 7

mzAlign,MSImagingExperiment, numeric-method
(deprecated), 7

mzBin (deprecated), 7

mzBin,MSImagingExperiment,missing-method
(deprecated), 7

mzBin,MSImagingExperiment,numeric-method
(deprecated), 7

mzData (deprecated), 7

mzData<- (deprecated), 7

mzFilter (deprecated), 7

mzFilter ,MSImagingExperiment-method
(deprecated), 7

names, SpatialResults-method
(SpatialResults-class), 62

names, SpectraArrays-method
(SpectraArrays-class), 69

names, SpectralImagingArrays-method
(SpectrallImagingArrays-class),
70

names, SpectralImagingExperiment-method
(SpectrallmagingExperiment-class),
73

names<-, SpectraArrays-method
(SpectraArrays-class), 69

names<-,SpectralImagingArrays-method
(SpectrallmagingArrays-class),
70

names<-,SpectralImagingExperiment-method
(SpectralImagingExperiment-class),
73

names<-,XDataFrame-method
(XDataFrame-class), 80

NMF, 54, 59

INDEX

NMF (SpatialNMF), 57

NMF , ANY-method (SpatialNMF), 57

NMF, SpectralImagingExperiment-method
(SpatialNMF), 57

nnmf, 57

nnmf_als, 58

nnmf_mult, 58

normalization (deprecated), 7

normalization<- (deprecated), 7

normalize, 18, 34, 37, 39, 47

89

peakAlign,SpectralImagingArrays-method
(peakAlign), 19

peakAlign,SpectralImagingExperiment-method
(peakAlign), 19

peakBin (deprecated), 7

peakData (deprecated), 7

peakData<- (deprecated), 7

peakFilter (deprecated), 7

peakFilter,MSImagingExperiment-method
(deprecated), 7

normalize,MSImagingExperiment_OR_Arrays-methogeakPick, /9, 21, 22, 24, 25, 34, 37, 39, 47

(normalize), 18
normalize,SpectralImagingData-method

(normalize), 18
nrun,PositionDataFrame-method

(PositionDataFrame-class), 31
nrun,SpatialResults-method

(SpatialResults-class), 62
nrun, SpectralImagingData-method

(SpectrallmagingData-class), 71
nscentroids, 66

OPLS, 49

OPLS (SpatialPLS), 60

opls, 62

OPLS,ANY-method (SpatialPLS), 60

OPLS, SpectralImagingExperiment-method
(SpatialPLS), 60

parseAnalyze, 35, 36

parseImzML, 35, 36

PCA, 54, 58, 62

PCA (SpatialPCA), 58

PCA,ANY-method (SpatialPCA), 58

PCA, SpectralImagingExperiment-method
(SpatialPCA), 58

pData, SpatialResults-method
(SpatialResults-class), 62

pData, SpectralImagingData-method
(SpectrallmagingData-class), 71

pData<-,SpatialResults,ANY-method
(SpatialResults-class), 62

pData<-,SpectralImagingData,ANY-method
(SpectrallmagingData-class), 71

peakAlign, 9, 19, 23-25, 35

peakAlign,MSImagingArrays-method
(peakAlign), 19

peakAlign,MSImagingExperiment-method
(peakAlign), 19

peakPick,MSImagingArrays-method
(peakPick), 22

peakPick,MSImagingExperiment-method
(peakPick), 22

peakPick, SpectralImagingData-method
(peakPick), 22

peakPicking (deprecated), 7

peakPicking<- (deprecated), 7

peakProcess, 9, 21, 23, 24

peakProcess,MSImagingExperiment_OR_Arrays-method

(peakProcess), 24
pixelApply (deprecated), 7
pixelApply,SpectralImagingExperiment-method
(deprecated), 7
pixelData (SpectralImagingData-class),
71
pixelData,SpatialResults-method
(SpatialResults-class), 62
pixelData,SpectralImagingData-method
(SpectralImagingData-class), 71
pixelData<-
(SpectralImagingData-class), 71
pixelData<-,SpatialResults-method
(SpatialResults-class), 62
pixelData<-,SpectralImagingData-method
(SpectralImagingData-class), 71
pixelNames (SpectralImagingData-class),
71
pixelNames, SpatialResults-method
(SpatialResults-class), 62
pixelNames, SpectralImagingData-method
(SpectralImagingData-class), 71
pixelNames<-
(SpectralImagingData-class), 71
pixelNames<-,SpatialResults-method
(SpatialResults-class), 62
pixelNames<-,SpectralImagingData-method

90

(SpectrallmagingData-class), 71
pixels, 26
pixels,SpectralImagingArrays-method

(pixels), 26
pixels,SpectralImagingData-method

(pixels), 26
pixels,SpectralImagingExperiment-method

(pixels), 26
pixelSize (deprecated), 7
plot, 31/
plot (plot-spectra), 29
plot,MeansTest,missing-method

(MeansTest), 12
plot,MSImagingArrays, formula-method

(plot-spectra), 29
plot,MSImagingArrays,missing-method

(plot-spectra), 29
plot,MSImagingArrays,numeric-method

(plot-spectra), 29

plot,MSImagingExperiment,character-method

(plot-spectra), 29
plot,MSImagingExperiment, formula-method
(plot-spectra), 29
plot,MSImagingExperiment,missing-method
(plot-spectra), 29
plot,MSImagingExperiment,numeric-method
(plot-spectra), 29
plot,ResultsList,ANY-method
(ResultsList-class), 39
plot,ResultsList,missing-method
(ResultsList-class), 39
plot,SpatialDGMM, missing-method
(SpatialDGMM), 49
plot,SpatialFastmap,missing-method
(SpatialFastmap), 52
plot,SpatialkMeans,missing-method
(SpatialkMeans), 54
plot,SpatialNMF,missing-method
(SpatialNMF), 57
plot,SpatialOPLS,missing-method
(SpatialPLS), 60
plot,SpatialPCA,missing-method
(SpatialPCA), 58
plot,SpatialPLS,missing-method
(SpatialPLS), 60
plot,SpatialResults,ANY-method
(SpatialResults-class), 62

INDEX

(SpatialShrunkenCentroids), 64

plot,SpectrallmagingArrays, formula-method

(plot-spectra), 29

plot,SpectrallmagingArrays,missing-method

(plot-spectra), 29

plot,SpectrallmagingArrays,numeric-method

(plot-spectra), 29

plot,SpectrallmagingExperiment,character-method

(plot-spectra), 29

plot,SpectrallmagingExperiment, formula-method

(plot-spectra), 29

plot,SpectralImagingExperiment,missing-method

(plot-spectra), 29

plot,SpectralImagingExperiment,numeric-method

(plot-spectra), 29

plot,XDataFrame,character-method
(plot-spectra), 29

plot,XDataFrame, formula-method
(plot-spectra), 29

plot,XDataFrame,missing-method
(plot-spectra), 29

plot-image, 27

plot-spectra, 29

plot_image, 28

plot_signal, 30, 31

PLS, 49

PLS (SpatialPLS), 60

pls, 61, 62

PLS,ANY-method (SpatialPLS), 60

PLS,SpectralImagingExperiment-method
(SpatialPLS), 60

PositionDataFrame, 11,15, 17,42, 44, 63,
70-73, 81

PositionDataFrame
(PositionDataFrame-class), 31

PositionDataFrame-class, 31

prcomp_lanczos, 59

predict,ResultsList-method
(ResultslList-class), 39

predict,SpatialFastmap-method
(SpatialFastmap), 52

predict,SpatialNMF-method (SpatialNMF),
57

predict,SpatialOPLS-method
(SpatialPLS), 60

predict,SpatialPCA-method (SpatialPCA),
58

plot,SpatialShrunkenCentroids,missing-method predict,SpatialPLS-method (SpatialPLS),

INDEX

60
predict,SpatialShrunkenCentroids-method
(SpatialShrunkenCentroids), 64
presetImageDef, 43
presetImageDef (simulateSpectra), 41
process, 19,21, 23,25, 32,37, 39,47
process,MSImagingArrays-method
(process), 32
process,MSImagingExperiment-method
(process), 32
process,SpectralImagingArrays-method
(process), 32
process,SpectralImagingExperiment-method
(process), 32
processingData, SpectralImagingData-method
(SpectrallmagingData-class), 71
processingData<-,SpectralImagingData-method
(SpectrallmagingData-class), 71
ProcessingStep, 15,17, 71-73

rbind,MSImagingExperiment-method
(MSImagingExperiment-class), 16

rbind, SpectraArrays-method
(SpectraArrays-class), 69

rbind, SpectralImagingArrays-method
(SpectrallmagingArrays-class),
70

rbind, SpectralImagingExperiment-method
(SpectralImagingExperiment-class),
73

rbind, XDataFrame-method
(XDataFrame-class), 80

readAnalyze (readMSIData), 34

readImzML, 42

readImzML (readMSIData), 34

readMSIData, 34, 80

recalibrate, 9, 19, 34, 36, 37,47

91

reset (process), 32

residuals,SpatialOPLS-method
(SpatialPLS), 60

resolution (deprecated), 7

resolution<- (deprecated), 7

resultData (deprecated), 7

resultData<- (deprecated), 7

resultNames (deprecated), 7

resultNames<- (deprecated), 7

ResultSet (deprecated), 7

ResultSet-class (deprecated), 7

ResultslList, 64

ResultsList (ResultsList-class), 39

ResultslList-class, 39

risk.colors (deprecated), 7

rowMeans, SpectralImagingExperiment-method
(summarizeFeatures), 77

rownames, SpectralImagingExperiment-method
(SpectralImagingExperiment-class),
73

rownames<-,SpectrallmagingExperiment-method
(SpectrallmagingExperiment-class),
73

rowStats, 78

rowStats, SpectralImagingExperiment-method
(summarizeFeatures), 77

rowSums, SpectralImagingExperiment-method
(summarizeFeatures), 77

run (PositionDataFrame-class), 31

run,PositionDataFrame-method
(PositionDataFrame-class), 31

run,SpatialResults-method
(SpatialResults-class), 62

run, SpectralImagingData-method
(SpectralImagingData-class), 71

run<- (PositionDataFrame-class), 31

recalibrate,MSImagingExperiment_OR_Arrays-metfda<-,PositionDataFrame-method

(recalibrate), 36
recalibrate, SpectralImagingData-method
(recalibrate), 36
reduceBaseline, 19, 34, 38, 39,47
reduceBaseline, SpectralImagingData-method
(reduceBaseline), 38
reexports, 39
rescale, /8
rescale_ref, 19
rescale_rms, /9
rescale_sum, /9

(PositionDataFrame-class), 31
run<-,SpatialResults-method
(SpatialResults-class), 62
run<-,SpectralImagingData-method
(SpectralImagingData-class), 71
runNames (PositionDataFrame-class), 31
runNames,PositionDataFrame-method
(PositionDataFrame-class), 31
runNames, SpatialResults-method
(SpatialResults-class), 62
runNames, SpectralImagingData-method

92 INDEX

(SpectralImagingData-class), 71 show, XDataFrame-method
runNames<- (PositionDataFrame-class), 31 (XDataFrame-class), 80
runNames<-,PositionDataFrame-method SImageData (deprecated), 7

(PositionDataFrame-class), 31 SImageData-class (deprecated), 7
runNames<-, SpatialResults-method SImageSet (deprecated), 7

(SpatialResults-class), 62 SImageSet-class (deprecated), 7
runNames<-, SpectralImagingData-method simple_logger, 4

(SpectrallmagingData-class), 71 SimpleList, 40, 69

simspec, 44

saveCardinallLog (Cardinal-package), 3
scanDirection (deprecated), 7
scanPattern (deprecated), 7
scanPolarity (deprecated), 7
scanType (deprecated), 7
segmentationTest, 40
segmentationTest (MeansTest), 12
selectROI, 28, 40
selectROI, SpectralImagingExperiment-method
(selectR0OI), 40
setCardinalBPPARAM (Cardinal-package), 3
setCardinalChunksize
(Cardinal-package), 3
setCardinallLogger (Cardinal-package), 3
setCardinalNChunks (Cardinal-package), 3
setCardinalNumBlocks (deprecated), 7 sparse_mat, 10, 68

setCardinalParallel (Cardinal-package), spat%alApply(deprecated),?)
3 spatialApply, SpectralImagingExperiment-method

(deprecated), 7
SpatialCV, 47
SpatialCV-class (SpatialCV), 47
SpatialDGMM, 49

simulateImage (simulateSpectra), 41

simulateSpectra, 41, 43

simulateSpectrum (deprecated), 7

slice (deprecated), 7

slicelmage, 45

smooth, 19, 34, 37, 39, 46

smooth, SpectralImagingData-method
(smooth), 46

smoothing (deprecated), 7

smoothing<- (deprecated), 7

smoothSignal (deprecated), 7

smoothSignal, SpectralImagingExperiment-method
(deprecated), 7

SnowfastParam (reexports), 39

setCardinalSerialize
(Cardinal-package), 3
setCardinalVerbose (Cardinal-package), 3

sgmixn, 50 :
show,MSImagingArrays-method spat}alDGMM,14 ’
(MSImagingArrays-class), 15 spatialDGMM (SpatialDGMM), 49
show,MSImagingExperiment-method spatialDGMM, ANY-method (SpatialDGMM), 49
(MSImagingExperiment-class), 16 spatialDGMM, SpectralImagingExperiment-method
show,ResultsList-method (SpatialDGMM), 49
(ResultsList-class), 39 SpatialDGMM-class (SpatialDGMM), 49
show, SpatialResults-method spatialDists, 51
(SpatialResults-class), 62 spatialDists,ANY-method (spatialDists),
show, SpectraArrays-method 51
(SpectraArrays-class), 69 spatialDists,PositionDataFrame-method
show, SpectralImagingArrays-method (spatialDists), 51
(SpectralImagingArrays-class), spatialDists, SpectralImagingExperiment-method
70 (spatialDists), 51
show, SpectralImagingData-method SpatialFastmap, 52
(SpectralImagingData-class), 71 spatialFastmap, 54, 58, 59
show, SpectralImagingExperiment-method spatialFastmap (SpatialFastmap), 52

(SpectrallmagingExperiment-class), spatialFastmap,ANY-method
73 (SpatialFastmap), 52

INDEX

spatialFastmap, SpectralImagingExperiment-method

(SpatialFastmap), 52
SpatialFastmap-class (SpatialFastmap),
52
SpatialKMeans, 54
spatialKMeans, 54, 56, 67
spatialkKMeans (SpatialkMeans), 54
spatialkKMeans,ANY-method
(SpatialkMeans), 54

93

(SpectralImagingData-class), 71

SpectraArrays, 15,17, 70-73

SpectraArrays (SpectraArrays-class), 69

SpectraArrays-class, 69

spectraData, SpectralImagingData-method
(SpectralImagingData-class), 71

spectraData<-,SpectralImagingData-method
(SpectralImagingData-class), 71

SpectrallmagingArrays, 16,72, 73

spatialKkMeans, SpectralImagingExperiment-methodpectrallmagingArrays

(SpatialkMeans), 54
SpatialkMeans-class (SpatialkMeans), 54
SpatialNMF, 57
SpatialNMF-class (SpatialNMF), 57
SpatialOPLS (SpatialPLS), 60
SpatialOPLS-class (SpatialPLS), 60
SpatialPCA, 58
SpatialPCA-class (SpatialPCA), 58
SpatialPLS, 60
SpatialPLS-class (SpatialPLS), 60
SpatialResults, 40
SpatialResults (SpatialResults-class),

62
SpatialResults-class, 62
SpatialShrunkenCentroids, 64
spatialShrunkenCentroids, 49, 56, 62
spatialShrunkenCentroids

(SpatialShrunkenCentroids), 64
spatialShrunkenCentroids, ANY,ANY-method

(SpatialShrunkenCentroids), 64
spatialShrunkenCentroids, ANY,missing-method

(SpatialShrunkenCentroids), 64

spatialShrunkenCentroids,SpectralImagingExperiment,AN%ﬁgﬁﬁnpq

(SpatialShrunkenCentroids), 64

(SpectrallmagingArrays-class),
70
SpectrallmagingArrays-class, 70
SpectrallmagingData, 16, 17,70, 71, 74
SpectrallmagingData
(SpectralImagingData-class), 71
SpectrallmagingData-class, 71
SpectrallmagingExperiment, 17, 18, 62, 72,
73
SpectrallmagingExperiment
(SpectrallmagingExperiment-class),
73
SpectralImagingExperiment-class, 73
spectraNames, SpectralImagingData-method
(SpectralImagingData-class), 71
spectraNames<-,SpectralImagingData-method
(SpectralImagingData-class), 71
spectrapply, 74
spectrapply, SpectralImagingArrays-method
(spectrapply), 74
spectrapply, SpectralImagingExperiment-method
(spectrapply), 74
spectraVariables, SpectralImagingData-method
allmagingData-class), 71
spectrumRepresentation (deprecated), 7

spatialShrunkenCentroids,SpectralImagingExpergggg{rﬂﬁ§§&pgggﬁ{gggon<_(deprecated)’7

(SpatialShrunkenCentroids), 64
SpatialShrunkenCentroids-class
(SpatialShrunkenCentroids), 64
spatialWeights, 11, 52, 67
spatialWeights, ANY-method
(spatialWeights), 67
spatialWeights,PositionDataFrame-method
(spatialWeights), 67

subset,SpectralImagingArrays-method
(subsetFeatures), 76

subset,SpectralImagingExperiment-method
(subsetFeatures), 76

subsetFeatures, 76

subsetPixels (subsetFeatures), 76

summarizeFeatures, 9, 75, 77

summarizePixels, 75

spatialWeights, SpectralImagingExperiment-methggmmarizePixels (summarizeFeatures), 77

(spatialWeights), 67
spectra,SpectralImagingData-method

(SpectrallmagingData-class), 71
spectra<-,SpectralImagingData-method

svd, 59

topFeatures (SpatialShrunkenCentroids),
64

94 INDEX

topFeatures,ContrastTest-method
(MeansTest), 12

topFeatures,MeansTest-method
(MeansTest), 12

topFeatures,ResultsList-method
(ResultsList-class), 39

topFeatures, SpatialkKMeans-method
(SpatialkMeans), 54

topFeatures, SpatialOPLS-method
(SpatialPLS), 60

topFeatures, SpatialPLS-method
(SpatialPLS), 60

topFeatures, SpatialShrunkenCentroids-method
(SpatialShrunkenCentroids), 64

vizi_engine (Cardinal-package), 3
vizi_par (Cardinal-package), 3
vizi_style (Cardinal-package), 3
vm_used, SpectraArrays-method
(SpectraArrays-class), 69

warpl, 37

warp1_cow, 37

warpl_dtw, 37

warp1_loc, 37

writeAnalyze, 79

writeAnalyze (writeMSIData), 79

writeAnalyze,MSImagingExperiment-method
(writeMSIData), 79

writeAnalyze,SpectralImagingExperiment-method
(writeMSIData), 79

writeImzML, 79

writeImzML (writeMSIData), 79

writeImzML,MSImagingExperiment_OR_Arrays-method
(writeMSIData), 79

writeMSIData, 36, 79

XDataFrame, /1, 32

XDataFrame (XDataFrame-class), 80
XDataFrame-class, 80

XDFrame (XDataFrame-class), 80
XDFrame-class (XDataFrame-class), 80

	Cardinal-package
	bin
	colocalized
	deprecated
	estimateDomain
	features
	findNeighbors
	MassDataFrame-class
	MeansTest
	MSImagingArrays-class
	MSImagingExperiment-class
	normalize
	peakAlign
	peakPick
	peakProcess
	pixels
	plot-image
	plot-spectra
	PositionDataFrame-class
	process
	readMSIData
	recalibrate
	reduceBaseline
	reexports
	ResultsList-class
	selectROI
	simulateSpectra
	sliceImage
	smooth
	SpatialCV
	SpatialDGMM
	spatialDists
	SpatialFastmap
	SpatialKMeans
	SpatialNMF
	SpatialPCA
	SpatialPLS
	SpatialResults-class
	SpatialShrunkenCentroids
	spatialWeights
	SpectraArrays-class
	SpectralImagingArrays-class
	SpectralImagingData-class
	SpectralImagingExperiment-class
	spectrapply
	subsetFeatures
	summarizeFeatures
	writeMSIData
	XDataFrame-class
	Index

