
Package ‘SparseArray’
February 7, 2026

Title High-performance sparse data representation and manipulation in
R

Description The SparseArray package provides array-like containers for
efficient in-memory representation of multidimensional sparse data in
R (arrays and matrices). The package defines the SparseArray virtual
class and two concrete subclasses: COO_SparseArray and SVT_SparseArray.
Each subclass uses its own internal representation of the nonzero
multidimensional data: the ``COO layout'' and the ``SVT layout'',
respectively. SVT_SparseArray objects mimic as much as possible the
behavior of ordinary matrix and array objects in base R. In particular,
they suppport most of the ``standard matrix and array API'' defined in
base R and in the matrixStats package from CRAN.

biocViews Infrastructure, DataRepresentation

URL https://bioconductor.org/packages/SparseArray

BugReports https://github.com/Bioconductor/SparseArray/issues

Version 1.11.10

License Artistic-2.0

Encoding UTF-8

Depends R (>= 4.3.0), methods, Matrix, BiocGenerics (>= 0.43.1),
MatrixGenerics (>= 1.11.1), S4Vectors (>= 0.43.2), S4Arrays (>=
1.11.1)

Imports utils, stats, matrixStats, IRanges, XVector

LinkingTo S4Vectors, IRanges, XVector

Suggests HDF5Array, ExperimentHub, testthat, knitr, rmarkdown,
BiocStyle

VignetteBuilder knitr

Collate utils.R options.R OPBufTree.R thread-control.R
sparseMatrix-utils.R is_nonzero.R SparseArray-class.R
COO_SparseArray-class.R SVT_SparseArray-class.R
extract_sparse_array.R read_block_as_sparse.R
SparseArray-dim-tuning.R SparseArray-aperm.R

1

https://bioconductor.org/packages/SparseArray
https://github.com/Bioconductor/SparseArray/issues

2 Contents

SparseArray-subsetting.R SparseArray-subassignment.R
SparseArray-abind.R SparseArray-summarization.R
SparseArray-Arith-methods.R SparseArray-Compare-methods.R
SparseArray-Logic-methods.R SparseArray-Math-methods.R
SparseArray-Complex-methods.R SparseArray-misc-methods.R
SparseArray-matrixStats.R rowsum-methods.R SparseMatrix-mult.R
randomSparseArray.R readSparseCSV.R is_nonna.R NaArray-class.R
NaArray-aperm.R NaArray-subsetting.R NaArray-subassignment.R
NaArray-abind.R NaArray-summarization.R NaArray-Arith-methods.R
NaArray-Compare-methods.R NaArray-Logic-methods.R
NaArray-Math-methods.R NaArray-misc-methods.R
NaArray-matrixStats.R zzz.R

git_url https://git.bioconductor.org/packages/SparseArray

git_branch devel

git_last_commit fa5a507

git_last_commit_date 2025-12-15

Repository Bioconductor 3.23

Date/Publication 2026-02-06

Author Hervé Pagès [aut, cre] (ORCID: <https://orcid.org/0009-0002-8272-4522>),
Vince Carey [fnd] (ORCID: <https://orcid.org/0000-0003-4046-0063>),
Rafael A. Irizarry [fnd] (ORCID:

<https://orcid.org/0000-0002-3944-4309>),
Jacques Serizay [ctb] (ORCID: <https://orcid.org/0000-0002-4295-0624>)

Maintainer Hervé Pagès <hpages.on.github@gmail.com>

Contents
COO_SparseArray-class . 3
extract_sparse_array . 6
is_nonna . 8
is_nonzero . 10
NaArray . 13
NaArray-abind . 15
NaArray-aperm . 16
NaArray-Arith-methods . 17
NaArray-Compare-methods . 18
NaArray-Logic-methods . 20
NaArray-Math-methods . 21
NaArray-matrixStats . 22
NaArray-misc-methods . 24
NaArray-subassignment . 26
NaArray-subsetting . 26
NaArray-summarization . 28
randomSparseArray . 29
readSparseCSV . 32

https://orcid.org/0009-0002-8272-4522
https://orcid.org/0000-0003-4046-0063
https://orcid.org/0000-0002-3944-4309
https://orcid.org/0000-0002-4295-0624

COO_SparseArray-class 3

read_block_as_sparse . 34
rowsum-methods . 35
SparseArray . 36
SparseArray-abind . 40
SparseArray-aperm . 42
SparseArray-Arith-methods . 42
SparseArray-Compare-methods . 44
SparseArray-Complex-methods . 46
SparseArray-dim-tuning . 46
SparseArray-Logic-methods . 46
SparseArray-Math-methods . 47
SparseArray-matrixStats . 48
SparseArray-misc-methods . 52
SparseArray-subassignment . 54
SparseArray-subsetting . 55
SparseArray-summarization . 57
SparseMatrix-mult . 58
sparseMatrix-utils . 59
SVT_SparseArray-class . 59
thread-control . 63

Index 65

COO_SparseArray-class COO_SparseArray objects

Description

The COO_SparseArray class is a container for efficient in-memory representation of multidimen-
sional sparse arrays. It uses the COO layout to represent the nonzero data internally.

A COO_SparseMatrix object is a COO_SparseArray object of 2 dimensions.

IMPORTANT NOTE: COO_SparseArray and COO_SparseMatrix objects are now superseded by
the new and more efficient SVT_SparseArray and SVT_SparseMatrix objects.

Usage

Constructor function:
COO_SparseArray(dim, nzcoo=NULL, nzdata=NULL, dimnames=NULL, check=TRUE)

Getters (in addition to dim(), length(), and dimnames()):
nzcoo(x)
nzdata(x)

4 COO_SparseArray-class

Arguments

dim The dimensions (supplied as an integer vector) of the COO_SparseArray or
COO_SparseMatrix object to construct.

nzcoo A matrix containing the array coordinates of the nonzero elements.
This must be an integer matrix of array coordinates like one returned by base::arrayInd
or S4Arrays::Lindex2Mindex, that is, a matrix with length(dim) columns
and where each row is an n-tuple representing the coordinates of an array ele-
ment.

nzdata A vector (atomic or list) of length nrow(nzcoo) containing the nonzero ele-
ments.

dimnames The dimnames of the object to construct. Must be NULL or a list of length the
number of dimensions. Each list element must be either NULL or a character
vector along the corresponding dimension.

check Should the object be validated upon construction?

x A COO_SparseArray or COO_SparseMatrix object.

Value

• For COO_SparseArray(): A COO_SparseArray or COO_SparseMatrix object.

• For nzcoo(): A matrix with one column per dimension containing the array coordinates of
the nonzero elements.

• For nzdata(): A vector parallel to nzcoo(x) (i.e. with one element per row in nzcoo(x))
containing the nonzero elements.

See Also

• The new SVT_SparseArray class for a replacement of of the COO_SparseArray class.

• The SparseArray class for the virtual parent class of COO_SparseArray and SVT_SparseArray.

• dgCMatrix-class and lgCMatrix-class in the Matrix package, for the de facto standard for
sparse matrix representations in the R ecosystem.

• base::arrayInd in the base package.

• S4Arrays::Lindex2Mindex in the S4Arrays package for an improved (faster) version of
base::arrayInd.

• Ordinary array objects in base R.

Examples

EXAMPLE 1

dim1 <- 5:3
nzcoo1 <- Lindex2Mindex(sample(60, 8), 5:3)
nzdata1 <- 11.11 * seq_len(nrow(nzcoo1))
coo1 <- COO_SparseArray(dim1, nzcoo1, nzdata1)
coo1

COO_SparseArray-class 5

nzcoo(coo1)
nzdata(coo1)
type(coo1)
sparsity(coo1)

as.array(coo1) # back to a dense representation

#as.matrix(coo1) # error!

EXAMPLE 2

m2 <- matrix(c(5:-2, rep.int(c(0L, 99L), 11)), ncol=6)
coo2 <- as(m2, "COO_SparseArray")
class(coo2)
dim(coo2)
length(coo2)
nzcoo(coo2)
nzdata(coo2)
type(coo2)
sparsity(coo2)

stopifnot(identical(as.matrix(coo2), m2))

t(coo2)
stopifnot(identical(as.matrix(t(coo2)), t(as.matrix(coo2))))

COERCION FROM/TO dg[C|R]Matrix OR lg[C|R]Matrix OBJECTS

dg[C|R]Matrix and lg[C|R]Matrix objects are defined in the Matrix
package.

dgCMatrix/dgRMatrix:

M2C <- as(coo2, "dgCMatrix")
stopifnot(identical(M2C, as(m2, "dgCMatrix")))

coo2C <- as(M2C, "COO_SparseArray")
'coo2C' is the same as 'coo2' except that 'nzdata(coo2C)' has
type "double" instead of "integer":
stopifnot(all.equal(coo2, coo2C))
typeof(nzdata(coo2C)) # double
typeof(nzdata(coo2)) # integer

M2R <- as(coo2, "dgRMatrix")
stopifnot(identical(M2R, as(m2, "dgRMatrix")))
coo2R <- as(M2R, "COO_SparseArray")
stopifnot(all.equal(as.matrix(coo2), as.matrix(coo2R)))

lgCMatrix/lgRMatrix:

6 extract_sparse_array

m3 <- m2 == 99 # logical matrix
coo3 <- as(m3, "COO_SparseArray")
class(coo3)
type(coo3)

M3C <- as(coo3, "lgCMatrix")
stopifnot(identical(M3C, as(m3, "lgCMatrix")))
coo3C <- as(M3C, "COO_SparseArray")
identical(as.matrix(coo3), as.matrix(coo3C))

M3R <- as(coo3, "lgRMatrix")
#stopifnot(identical(M3R, as(m3, "lgRMatrix")))
coo3R <- as(M3R, "COO_SparseArray")
identical(as.matrix(coo3), as.matrix(coo3R))

A BIG COO_SparseArray OBJECT

nzcoo4 <- cbind(sample(25000, 600000, replace=TRUE),

sample(195000, 600000, replace=TRUE))
nzdata4 <- runif(600000)
coo4 <- COO_SparseArray(c(25000, 195000), nzcoo4, nzdata4)
coo4
sparsity(coo4)

extract_sparse_array extract_sparse_array

Description

extract_sparse_array() is an internal generic function that is the workhorse behind the default
read_block_as_sparse() method. It is not intended to be used directly by the end user.

It is similar to the extract_array() internal generic function defined in the S4Arrays package,
with the major difference that, in the case of extract_sparse_array(), the extracted array data is
returned as a SparseArray object instead of an ordinay array.

Usage

extract_sparse_array(x, index)

S4 method for signature 'ANY'
extract_sparse_array(x, index)

Arguments

x An array-like object for which is_sparse(x) is TRUE.

extract_sparse_array 7

index An unnamed list of integer vectors, one per dimension in x. Each vector is called
a subscript and can only contain positive integers that are valid 1-based indices
along the corresponding dimension in x.
Empty or missing subscripts are allowed. They must be represented by list ele-
ments set to integer(0) or NULL, respectively.
The subscripts cannot contain NAs or non-positive values.
Individual subscripts are NOT allowed to contain duplicated indices. This is an
important difference with extract_array.

Details

extract_sparse_array() should always be called on an array-like object x for which is_sparse(x)
is TRUE. Also it should never be called with duplicated indices in the individual list elements of the
index argument.

For maximum efficiency, extract_sparse_array() methods should:

1. NOT check that is_sparse(x) is TRUE.

2. NOT check that the individual list elements in index contain no duplicated indices.

3. NOT try to do anything with the dimnames on x.

4. always operate natively on the sparse representation of the data in x, that is, they should never
expand it into a dense representation (e.g. with as.array()).

Like for extract_array(), extract_sparse_array() methods need to support empty or missing
subscripts. For example, if x is an M x N matrix-like object for which is_sparse(x) is TRUE,
then extract_sparse_array(x, list(NULL, integer(0))) must return an M x 0 SparseArray
derivative, and extract_sparse_array(x, list(integer(0), integer(0))) a 0 x 0 SparseAr-
ray derivative.

Value

A SparseArray derivative (COO_SparseArray or SVT_SparseArray) of the same type() as x. For
example, if x is an object representing an M x N sparse matrix of complex numbers (i.e. type(x)
== "complex"), then extract_sparse_array(x, list(NULL, 2L)) must return the 2nd column
in x as an M x 1 SparseArray derivative of type() "complex".

See Also

• is_sparse in the S4Arrays package to check whether an object uses a sparse representation
of the data or not.

• SparseArray objects.

• S4Arrays::type in the S4Arrays package to get the type of the elements of an array-like
object.

• read_block_as_sparse to read array blocks as SparseArray objects.

• extract_array in the S4Arrays package.

• dgCMatrix-class in the Matrix package.

8 is_nonna

Examples

extract_sparse_array
showMethods("extract_sparse_array")

--- On a dgCMatrix object ---

m <- matrix(0L, nrow=6, ncol=4)
m[c(1:2, 8, 10, 15:17, 24)] <- (1:8)*10L
dgcm <- as(m, "dgCMatrix")
dgcm

extract_sparse_array(dgcm, list(3:6, NULL))
extract_sparse_array(dgcm, list(3:6, 2L))
extract_sparse_array(dgcm, list(3:6, integer(0)))

--- On a SparseArray object ---

a <- array(0L, dim=5:3, dimnames=list(letters[1:5], NULL, LETTERS[1:3]))
a[c(1:2, 8, 10, 15:17, 20, 24, 40, 56:60)] <- (1:15)*10L
svt <- as(a, "SparseArray")
svt

extract_sparse_array(svt, list(NULL, 4:2, 1L))
extract_sparse_array(svt, list(NULL, 4:2, 2:3))
extract_sparse_array(svt, list(NULL, 4:2, integer(0)))

is_nonna is_nonna() and the nna*() functions

Description

A set of functions for direct manipulation of the non-NA elements of an array-like object.

Note that, for all these functions, a non-NA element is an element for which is.na() is FALSE or
is.nan() is TRUE.

Usage

is_nonna(x)

nnacount(x)
nnawhich(x, arr.ind=FALSE)
nnavals(x)
nnavals(x) <- value

Arguments

x Typically (but not necessarily) an array-like object that is non-NA sparse, like
an NaArray object.

is_nonna 9

However, x can also be an ordinary matrix or array, or any matrix-like or array-
like object.

arr.ind If arr.ind=FALSE (the default), the indices of the non-NA array elements are
returned in a numeric vector (a.k.a. L-index). Otherwise, they’re returned in an
ordinary matrix (a.k.a. M-index).
See ?Lindex in the S4Arrays package for more information about L-index and
M-index, and how to convert from one to the other.
Note that using arr.ind=TRUE won’t work if nnacount(x) is >= .Machine$integer.max
(= 2^31), because, in that case, the returned M-index would need to be a matrix
with more rows than what is supported by base R.

value A vector, typically of length nnacount(x) (or 1) and type type(x).

Details

nnacount(x) and nnawhich(x) are equivalent to, but typically more efficient than, sum(is_nonna(x))
and which(is_nonna(x)), respectively.

nnavals(x) is equivalent to, but typically more efficient than, x[nnawhich(x)] (or x[is_nonna(x)]).

nnavals(x) <- value replaces the values of the non-NA array elements in x with the supplied
values. It’s equivalent to, but typically more efficient than, x[nnawhich(x)] <- value.

Note that nnavals(x) <- nnavals(x) is guaranteed to be a no-op.

Value

is_nonna(): An array-like object of type() "logical" and same dimensions as the input object.

nnacount(): The number of non-NA array elements in x.

nnawhich(): The indices of the non-NA array elements in x, either as an L-index (if arr.ind is
FALSE) or as an M-index (if arr.ind is TRUE). Note that the indices are returned sorted in strictly
ascending order.

nnavals(): A vector of the same type() as x and containing the values of the non-NA array
elements in x. Note that the returned vector is guaranteed to be parallel to nnawhich(x).

See Also

• is_nonzero for is_nonzero() and nz*() functions nzcount(), nzwhich(), etc...

• NaArray objects.

• Ordinary array objects in base R.

• base::which in base R.

Examples

m <- rbind(c(NA, 0, 3.25, NaN), c(NA, NaN, NA, 1))
is_nonna(m) # the NaN values are considered non-NA elements

a <- array(NA_integer_, dim=c(5, 12, 2))
a[sample(length(a), 20)] <- (-9):10

10 is_nonzero

is_nonna(a)

Get the number of non-NA array elements in 'a':
nnacount(a)

nnawhich() returns the indices of the non-NA array elements in 'a'.
Either as a "L-index" i.e. an integer (or numeric) vector of
length 'nnacount(a)' containing "linear indices":
nnaidx <- nnawhich(a)
length(nnaidx)
head(nnaidx)

Or as an "M-index" i.e. an integer matrix with 'nnacount(a)' rows
and one column per dimension where the rows represent "array indices"
(a.k.a. "array coordinates"):
Mnnaidx <- nnawhich(a, arr.ind=TRUE)
dim(Mnnaidx)

Each row in the matrix is an n-tuple representing the "array
coordinates" of a non-NA element in 'a':
head(Mnnaidx)
tail(Mnnaidx)

Extract the values of the non-NA array elements in 'a' and return
them in a vector "parallel" to 'nnawhich(a)':
a_nnavals <- nnavals(a) # equivalent to 'a[nnawhich(a)]'
length(a_nnavals)
head(a_nnavals)

nnavals(a) <- 10 ^ nnavals(a)
a

Sanity checks:
stopifnot(

identical(as.matrix(is_nonna(NaArray(m))), is_nonna(m)),
identical(nnaidx, which(!is.na(a))),
identical(Mnnaidx, which(!is.na(a), arr.ind=TRUE, useNames=FALSE)),
identical(nnavals(a), a[nnaidx]),
identical(nnavals(a), a[Mnnaidx]),
identical(`nnavals<-`(a, nnavals(a)), a)

)

is_nonzero is_nonzero() and the nz*() functions

Description

A set of functions for direct manipulation of the nonzero elements of an array-like object.

is_nonzero 11

Usage

is_nonzero(x)

nzcount(x)
nzwhich(x, arr.ind=FALSE)
nzvals(x)
nzvals(x) <- value

sparsity(x)

Arguments

x Typically (but not necessarily) an array-like object that is sparse, like a SparseAr-
ray derivative, or a dg[C|R]Matrix or lg[C|R]Matrix object from the Matrix
package.
However, x can also be an ordinary matrix or array, or any matrix-like or array-
like object.

arr.ind If arr.ind=FALSE (the default), the indices of the nonzero array elements are
returned in a numeric vector (a.k.a. L-index). Otherwise, they’re returned in an
ordinary matrix (a.k.a. M-index).
See ?Lindex in the S4Arrays package for more information about L-index and
M-index, and how to convert from one to the other.
Note that using arr.ind=TRUE won’t work if nzcount(x) is >= .Machine$integer.max
(= 2^31), because, in that case, the returned M-index would need to be a matrix
with more rows than what is supported by base R.

value A vector, typically of length nzcount(x) (or 1) and type type(x).

Details

nzcount(x) and nzwhich(x) are equivalent to, but typically more efficient than, sum(is_nonzero(x))
and which(is_nonzero(x)), respectively.

nzvals(x) is equivalent to, but typically more efficient than, x[nzwhich(x)] (or x[is_nonzero(x)]).

nzvals(x) <- value replaces the values of the nonzero array elements in x with the supplied values.
It’s equivalent to, but typically more efficient than, x[nzwhich(x)] <- value.

Note that nzvals(x) <- nzvals(x) is guaranteed to be a no-op.

Value

is_nonzero(): An array-like object of type() "logical" and same dimensions as the input ob-
ject.

nzcount(): The number of nonzero array elements in x.

nzwhich(): The indices of the nonzero array elements in x, either as an L-index (if arr.ind is
FALSE) or as an M-index (if arr.ind is TRUE). Note that the indices are returned sorted in strictly
ascending order.

nzvals(): A vector of the same type() as x and containing the values of the nonzero array ele-
ments in x. Note that the returned vector is guaranteed to be parallel to nzwhich(x).

12 is_nonzero

sparsity(x): The ratio between the number of zero-valued elements in array-like object x and
its total number of elements (length(x) or prod(dim(x))). More precisely, sparsity(x) is 1 -
nzcount(x)/length(x).

See Also

• is_nonna for is_nonna() and nna*() functions nnacount(), nnawhich(), etc...

• SparseArray objects.

• dgCMatrix-class, lgCMatrix-class, and ngCMatrix-class in the Matrix package.

• Ordinary array objects in base R.

• base::which in base R.

Examples

a <- array(rpois(120, lambda=0.3), dim=c(5, 12, 2))

is_nonzero(a)

Get the number of nonzero array elements in 'a':
nzcount(a)

nzwhich() returns the indices of the nonzero array elements in 'a'.
Either as a "L-index" i.e. an integer (or numeric) vector of
length 'nzcount(a)' containing "linear indices":
nzidx <- nzwhich(a)
length(nzidx)
head(nzidx)

Or as an "M-index" i.e. an integer matrix with 'nzcount(a)' rows
and one column per dimension where the rows represent "array indices"
(a.k.a. "array coordinates"):
Mnzidx <- nzwhich(a, arr.ind=TRUE)
dim(Mnzidx)

Each row in the matrix is an n-tuple representing the "array
coordinates" of a nonzero element in 'a':
head(Mnzidx)
tail(Mnzidx)

Extract the values of the nonzero array elements in 'a' and return
them in a vector "parallel" to 'nzwhich(a)':
a_nzvals <- nzvals(a) # equivalent to 'a[nzwhich(a)]'
length(a_nzvals)
head(a_nzvals)

nzvals(a) <- log1p(nzvals(a))
a

Sanity checks:
stopifnot(

identical(nzidx, which(a != 0)),

NaArray 13

identical(Mnzidx, which(a != 0, arr.ind=TRUE, useNames=FALSE)),
identical(nzvals(a), a[nzidx]),
identical(nzvals(a), a[Mnzidx]),
identical(`nzvals<-`(a, nzvals(a)), a)

)

NaArray NaArray objects

Description

EXPERIMENTAL!!!

Like SVT_SparseArray objects but the background value is NA instead of zero.

Usage

Constructor function:
NaArray(x, dim=NULL, dimnames=NULL, type=NA)

Arguments

x If dim is NULL (the default) then x must be an ordinary matrix or array, or a dgC-
Matrix/lgCMatrix object, or any matrix-like or array-like object that supports
coercion to NaArray.
If dim is provided then x can either be missing, a vector (atomic or list), or
an array-like object. If missing, then an all-NA NaArray object will be con-
structed. Otherwise x will be used to fill the returned object (length(x) must
be <= prod(dim)). Note that if x is an array-like object then its dimensions are
ignored i.e. it’s treated as a vector.

dim NULL or the dimensions (supplied as an integer vector) of the NaArray or NaMa-
trix object to construct. If NULL (the default) then the returned object will have
the dimensions of matrix-like or array-like object x.

dimnames The dimnames of the object to construct. Must be NULL or a list of length the
number of dimensions. Each list element must be either NULL or a character
vector along the corresponding dimension. If both dim and dimnames are NULL
(the default) then the returned object will have the dimnames of matrix-like or
array-like object x.

type A single string specifying the requested type of the object.
By default the NaArray object returned by the constructor function will have the
same type() as x. However the user can use the type argument to request a
different type. Note that doing:

naa <- NaArray(x, type=type)

is equivalent to doing:

naa <- NaArray(x)
type(naa) <- type

14 NaArray

but the former is more convenient and will generally be more efficient.
The supported types for NaArray objects are "integer", "logical", "double",
"complex", and "character".

Details

NaArray is a concrete subclass of the Array virtual class (the latter is defined in the S4Arrays
package). This makes NaArray objects Array derivatives.

Like with SVT_SparseArray objects, the non-NA data in an NaArray object is stored in a Sparse
Vector Tree. See ?SVT_SparseArray for more information.

Most of the matrix and array standard API defined in base R should work on NaArray objects,
including dim(), length(), dimnames(), `dimnames<-`(), [, drop(), `[<-` (subassignment),
t(), rbind(), cbind(), etc...

NaArray objects also support type(), `type<-`(), is_nonna(), nnacount(), nnawhich(), nnavals(),
`nnavals<-`(), arbind(), and acbind().

Value

An NaArray or NaMatrix object.

The type() of the input object is preserved, except if a different one was requested via the type
argument.

See Also

• The SVT_SparseArray class.

• is_nonna for is_nonna() and nna*() functions nnacount(), nnawhich(), etc...

• NaArray_aperm for permuting the dimensions of an NaArray object (e.g. transposition).

• NaArray_subsetting for subsetting an NaArray object.

• NaArray_subassignment for NaArray subassignment.

• NaArray_abind for combining 2D or multidimensional NaArray objects.

• NaArray_summarization for NaArray summarization methods.

• NaArray_Arith, NaArray_Compare, and NaArray_Logic, for operations from the Arith, Compare,
and Arith groups on NaArray objects.

• NaArray_Math for operations from the Math and Math2 groups on NaArray objects.

• NaArray_misc for miscellaneous operations on an NaArray object.

• NaArray_matrixStats for col/row summarization methods for NaArray objects.

• Ordinary array objects in base R.

Examples

Display details of class definition & known subclasses

showClass("NaArray")

NaArray-abind 15

The NaArray() constructor

naa1 <- NaArray(dim=5:3) # all-NA object
naa1

naa2 <- NaArray(dim=c(35000, 2e6), type="integer") # all-NA object
naa2

Add some non-NA values to 'naa2':
naa2[cbind(1:99, 2:100)] <- 1L
naa2[cbind(1:100, 1:100)] <- 0L
naa2[cbind(2:100, 1:99)] <- -1L
naa2

The dimnames can be specified at construction time, or
added/modified later:
naa3 <- NaArray(c(NA, NA, 1L, NA, 0:7, rep(NA, 4), 12:14, NA),

dim=4:5, dimnames=list(letters[1:4], LETTERS[1:5]))
naa3

colnames(naa3) <- LETTERS[22:26]
naa3

Sanity checks:
stopifnot(

is(naa1, "NaArray"),
identical(dim(naa1), 5:3),
identical(as.array(naa1), array(dim=5:3)),
is(naa2, "NaMatrix"),
all.equal(dim(naa2), c(35000, 2e6)),
identical(nnacount(naa2), 298L),
is(naa3, "NaMatrix"),
identical(dim(naa3), 4:5),
identical(nnacount(naa3), 12L)

)

NaArray-abind Combine multidimensional NaArray objects

Description

EXPERIMENTAL!!!

Like ordinary matrices and arrays in base R, NaMatrix objects can be combined by rows or columns,
with rbind() or cbind(), and multidimensional NaArray objects can be bound along any dimen-
sion with abind().

Note that arbind() can also be used to combine the objects along their first dimension, and
acbind() can be used to combine them along their second dimension.

16 NaArray-aperm

See Also

• cbind in base R.

• abind in the S4Arrays package.

• NaArray objects.

• Ordinary array objects in base R.

Examples

COMING SOON...

NaArray-aperm NaArray transposition

Description

EXPERIMENTAL!!!

Transpose an NaArray object by permuting its dimensions.

Value

COMING SOON...

See Also

• aperm() in base R.

• NaArray objects.

• Ordinary array objects in base R.

Examples

COMING SOON...

NaArray-Arith-methods 17

NaArray-Arith-methods ’Arith’ operations on NaArray objects

Description

EXPERIMENTAL!!!

NaArray objects support all operations from the Arith group. See ?S4groupGeneric in the meth-
ods package for more information about the Arith group generic.

Note that NaArray of type() "complex" don’t support Arith operations at the moment.

Details

Three forms of ’Arith’ operations involving NaArray objects are supported:

1. Between an NaArray object naa and an atomic vector y:

naa op y
y op naa

2. Between two NaArray objects naa1 and naa2 of same dimensions (a.k.a. conformable arrays):

naa1 op naa2

3. Between an NaArray object naa and an SVT_SparseArray object svt of same dimensions
(a.k.a. conformable arrays):

naa op svt
svt op naa

Value

An NaArray object of the same dimensions as the input object(s).

See Also

• S4groupGeneric in the methods package.

• NaArray objects.

• SVT_SparseArray objects.

• Ordinary array objects in base R.

Examples

nam1 <- NaArray(dim=c(15, 6), type="integer")
nam1[cbind(1:15, 2)] <- 100:114
nam1[cbind(1:15, 5)] <- -(114:100)
nam1

nam1 * -0.01

18 NaArray-Compare-methods

nam1 * 10 # result is of type "double"
nam1 * 10L # result is of type "integer"

nam1 * c(10, 5, 0.1) # right vector recycled along 1st dimension

nam1 / 10L

nam1 ^ 2
nam1 ^ (2:6)

nam1 %% 5L
nam1 %/% 5L

nam2 <- NaArray(dim=dim(nam1), type="double")
nam2[c(2, 6, 12:17, 22:33, 55, 59:62, 90)] <- runif(26)
nam2

nam2 + nam1
nam2 - nam1
nam2 * nam1
nam2 / nam1
nam2 ^ nam1
nam2 %% nam1
nam2 %/% nam1

Sanity checks:
m1 <- as.matrix(nam1)
m2 <- as.matrix(nam2)
stopifnot(

identical(as.matrix(nam1 * -0.01), m1 * -0.01),
identical(as.matrix(nam1 * 10), m1 * 10),
identical(as.matrix(nam1 * 10L), m1 * 10L),
identical(as.matrix(nam1 / 10L), m1 / 10L),
identical(as.matrix(nam1 ^ 3.5), m1 ^ 3.5),
identical(as.matrix(nam1 %% 5L), m1 %% 5L),
identical(as.matrix(nam1 %/% 5L), m1 %/% 5L),
identical(as.matrix(nam2 + nam1), m2 + m1),
identical(as.matrix(nam2 - nam1), m2 - m1),
identical(as.matrix(nam2 * nam1), m2 * m1),
identical(as.matrix(nam2 / nam1), m2 / m1),
all.equal(as.matrix(nam2 ^ nam1), m2 ^ m1),
identical(as.matrix(nam2 %% nam1), m2 %% m1),
identical(as.matrix(nam2 %/% nam1), m2 %/% m1)

)

NaArray-Compare-methods

’Compare’ operations on NaArray objects

NaArray-Compare-methods 19

Description

EXPERIMENTAL!!!

NaArray objects support all operations from the Compare group. See ?S4groupGeneric in the
methods package for more information about the Compare group generic.

Details

Three forms of ’Compare’ operations involving NaArray objects are supported:

1. Between an NaArray object naa and a single value y:

naa op y
y op naa

2. Between two NaArray objects naa1 and naa2 of same dimensions (a.k.a. conformable arrays):

naa1 op naa2

3. Between an NaArray object naa and an SVT_SparseArray object svt of same dimensions
(a.k.a. conformable arrays):

naa op svt
svt op naa

Value

An NaArray object of type() "logical" and same dimensions as the input object(s).

See Also

• S4groupGeneric in the methods package.

• NaArray objects.

• SVT_SparseArray objects.

• Ordinary array objects in base R.

Examples

nam1 <- NaArray(dim=c(15, 6), type="double")
nam1[c(2, 6, 12:17, 22:33, 55, 59:62, 90)] <- runif(26)
nam1

nam1 >= 0.2
nam1 != 0

nam2 <- NaArray(dim=dim(nam1), type="integer")
nam2[cbind(1:15, 2)] <- 100:114
nam2[cbind(1:15, 5)] <- -(114:100)
nam2

nam1 < nam2

Sanity checks:

20 NaArray-Logic-methods

m1 <- as.matrix(nam1)
m2 <- as.matrix(nam2)
stopifnot(

identical(as.matrix(nam1 >= 0.2), m1 >= 0.2),
identical(as.matrix(nam1 != 0), m1 != 0),
identical(as.matrix(nam1 < nam2), m1 < m2)

)

NaArray-Logic-methods ’Logic’ operations on NaArray objects

Description

EXPERIMENTAL!!!

NaArray objects support operations from the Logic group (i.e. & and |), as well as logical negation
(!). See ?S4groupGeneric in the methods package for more information about the Logic group
generic.

Note that in base R, Logic operations support input of type() "logical", "integer", "double",
or "complex". However, the corresponding methods for NaArray objects only support objects of
type() "logical" for now.

Details

Three forms of ’Logic’ operations involving NaArray objects are supported:

1. Between an NaArray object naa and a single logical value y:

naa op y
y op naa

2. Between two NaArray objects naa1 and naa2 of same dimensions (a.k.a. conformable arrays):

naa1 op naa2

3. Between an NaArray object naa and an SVT_SparseArray object svt of same dimensions
(a.k.a. conformable arrays):

naa op svt
svt op naa

Note that, in this case, | returns an NaArray object but & returns an SVT_SparseArray object.

Value

An NaArray object of type() "logical" and same dimensions as the input object(s), except
when & is used between an NaArray object and an SVT_SparseArray object in which case an
SVT_SparseArray object is returned.

NaArray-Math-methods 21

See Also

• S4groupGeneric in the methods package.

• NaArray objects.

• SVT_SparseArray objects.

• Ordinary array objects in base R.

Examples

nam1 <- NaArray(dim=c(15, 6))
nam1[cbind(1:15, 2)] <- c(TRUE, FALSE, NA)
nam1[cbind(1:15, 5)] <- c(TRUE, NA, NA, FALSE, TRUE)
nam1

!nam1
nam1 & NA # replaces all TRUE's with NA's
nam1 | NA # replaces all FALSE's with NA's

nam2 <- NaArray(dim=dim(nam1))
nam2[c(2, 6, 12:17, 22:33, 55, 59:62, 90)] <- c(TRUE, NA)
nam2

nam1 & nam2
nam1 | nam2

Sanity checks:
m1 <- as.matrix(nam1)
m2 <- as.matrix(nam2)
stopifnot(

identical(as.matrix(!nam1), !m1),
identical(as.matrix(nam1 & NA), m1 & NA),
identical(as.matrix(nam1 | NA), m1 | NA),
identical(as.matrix(nam1 & nam2), m1 & m2),
identical(as.matrix(nam1 | nam2), m1 | m2)

)

NaArray-Math-methods ’Math’ and ’Math2’ methods for NaArray objects

Description

EXPERIMENTAL!!!

NaArray objects support all operations from the Math and Math2 groups with a few exceptions. See
?S4groupGeneric in the methods package for more information about the Math and Math2 group
generics.

Note that Math and Math2 operations only support NaArray objects of type() "double" at the
moment. NaArray objects of type() "integer" are not supported yet.

22 NaArray-matrixStats

Value

A NaArray derivative of the same dimensions as the input object.

See Also

• S4groupGeneric in the methods package.

• NaArray objects.

• Ordinary array objects in base R.

Examples

nam <- NaArray(dim=c(15, 6))
nam[c(2, 6, 12:17, 22:33, 55, 59:62, 90)] <-

c(runif(22)*1e4, Inf, -Inf, NA, NaN)

log(nam)
exp(nam)
cos(nam)
lgamma(nam)

Sanity checks:
m <- as.matrix(nam)
stopifnot(

suppressWarnings(identical(as.matrix(log(nam)), log(m))),
identical(as.matrix(exp(nam)), exp(m)),
suppressWarnings(identical(as.matrix(cos(nam)), cos(m))),
suppressWarnings(identical(as.matrix(lgamma(nam)), lgamma(m)))

)

NaArray-matrixStats NaArray col/row summarization

Description

EXPERIMENTAL!!!

The SparseArray package provides memory-efficient col/row summarization methods (a.k.a. ma-
trixStats methods) for NaArray objects, like colSums(), rowSums(), colMeans(), rowMeans(),
etc...

Note that these are S4 generic functions defined in the MatrixGenerics package, with methods
for ordinary matrices defined in the matrixStats package. This man page documents the methods
defined for NaArray objects.

IMPORTANT NOTE: This is WORK-IN-PROGRESS! All the col*() methods listed below are
supported. However, among the row*() methods, only rowAnyNAs(), rowMins(), rowMaxs(),
rowRanges(), rowSums(), and rowSums2() are supported on NaArray objects at the moment.

NaArray-matrixStats 23

Usage

N.B.: Showing ONLY the col*() methods (usage of row*() methods is
the same):

S4 method for signature 'NaArray'
colAnyNAs(x, rows=NULL, cols=NULL, dims=1, ..., useNames=NA)

S4 method for signature 'NaArray'
colAnys(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

S4 method for signature 'NaArray'
colAlls(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

S4 method for signature 'NaArray'
colMins(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

S4 method for signature 'NaArray'
colMaxs(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

S4 method for signature 'NaArray'
colRanges(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

S4 method for signature 'NaArray'
colSums(x, na.rm=FALSE, dims=1)

S4 method for signature 'NaArray'
colProds(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

S4 method for signature 'NaArray'
colMeans(x, na.rm=FALSE, dims=1)

S4 method for signature 'NaArray'
colSums2(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

S4 method for signature 'NaArray'
colMeans2(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

S4 method for signature 'NaArray'
colVars(x, rows=NULL, cols=NULL, na.rm=FALSE, center=NULL, dims=1,

..., useNames=NA)

S4 method for signature 'NaArray'
colSds(x, rows=NULL, cols=NULL, na.rm=FALSE, center=NULL, dims=1,

..., useNames=NA)

Arguments

x An NaMatrix or NaArray object.

24 NaArray-misc-methods

rows, cols, ... Not supported.
na.rm, useNames, center

See man pages of the corresponding generics in the MatrixGenerics package
(e.g. ?MatrixGenerics::colVars) for a description of these arguments.
Note that, unlike the methods for ordinary matrices defined in the matrixStats
package, the center argument of the colVars(), rowVars(), colSds(), and
rowSds() methods for SparseArray objects can only be a single value (or a
NULL). In particular, if x has more than one column, then center cannot be a
vector with one value per column in x.

dims See ?base::colSums for a description of this argument.

Details

These methods are typically used with na.rm=TRUE when called on an NaMatrix or NaArray object.

All these methods operate natively on the NaArray internal representation, for maximum efficiency.

Note that more col/row summarization methods might be added in the future.

Value

See man pages of the corresponding generics in the MatrixGenerics package (e.g. ?MatrixGenerics::colRanges)
for the value returned by these methods.

Note

Most col*() methods for NaArray objects are multithreaded. See set_SparseArray_nthread for
how to control the number of threads.

See Also

• NaArray objects.

• The man pages of the various generic functions defined in the MatrixGenerics package e.g.
MatrixGenerics::colVars etc...

Examples

COMING SOON...

NaArray-misc-methods Miscellaneous operations on a NaArray object

Description

This man page documents various base array operations that are supported by NaArray derivatives,
and that didn’t belong to any of the groups of operations documented in the other man pages of the
SparseArray package.

NaArray-misc-methods 25

Usage

--- unary isometric array transformations ---

S4 method for signature 'NaArray'
is.nan(x)

S4 method for signature 'NaArray'
is.infinite(x)

--- N-ary isometric array transformations ---

COMING SOON...

Arguments

x An NaArray object.

Details

More operations will be added in the future.

Value

is.nan() and is.infinite() return a SparseArray object of type() "logical" and same dimen-
sions as the input object.

See Also

• base::is.nan and base::is.infinite in base R.

• NaArray objects.

• SparseArray objects.

• Ordinary array objects in base R.

Examples

a <- array(c(NA, 2.77, NaN, Inf, NA, -Inf), dim=5:3)
naa <- NaArray(a) # NaArray object
naa

is.nan(naa) # SparseArray object of type "logical"
is.infinite(naa) # SparseArray object of type "logical"

Sanity checks:
res <- is.nan(naa)
stopifnot(is(res, "SparseArray"), type(res) == "logical",

identical(as.array(res), is.nan(a)))
res <- is.infinite(naa)
stopifnot(is(res, "SparseArray"), type(res) == "logical",

identical(as.array(res), is.infinite(a)))

26 NaArray-subsetting

NaArray-subassignment NaArray subassignment

Description

Like ordinary arrays in base R, NaArray objects support subassignment via the [<- operator.

See Also

• [<- in base R.

• NaArray objects.

• Ordinary array objects in base R.

Examples

a <- array(NA, dim=5:3)
a[c(1:2, 8, 10, 15:17, 20, 24, 40, 56:60)] <- 0.01 * (1:15)
naa <- NaArray(a)
naa

naa[, 1:2, 3] <- - naa[, 1:2 ,1]

naa[5:3, c(4,2,4), 1:2] <- c(0, NA, 0)

Sanity checks:
a[, 1:2, 3] <- -a[, 1:2 ,1]
a[5:3, c(4,2,4), 1:2] <- c(0, NA, 0)
stopifnot(identical(as.array(naa), a), identical(naa, NaArray(a)))

NaArray-subsetting Subsetting an NaArray object

Description

EXPERIMENTAL!!!

Like ordinary arrays in base R, NaArray objects support subsetting via the single bracket operator
([).

See Also

• drop in base R to drop the ineffective dimensions of an array or array-like object.

• Lindex2Mindex in the S4Arrays package for how to convert an L-index to an M-index and
vice-versa.

• NaArray objects.

• [and ordinary array objects in base R.

NaArray-subsetting 27

Examples

naa <- NaArray(dim=5:3)
naa[c(1:2, 8, 10, 15:17, 20, 24, 40, 56:60)] <- (1:15)*10L

N-dimensional subsetting

naa[5:3, c(4,2,4), 2:3]
naa[, c(4,2,4), 2:3]
naa[, c(4,2,4), -1]
naa[, c(4,2,4), 1]

naa2 <- naa[, c(4,2,4), 1, drop=FALSE]
naa2

Ineffective dimensions can always be dropped as a separate step:
drop(naa2)

naa[, c(4,2,4), integer(0)]

dimnames(naa) <- list(letters[1:5], NULL, LETTERS[1:3])

naa[c("d", "a"), c(4,2,4), "C"]

naa2 <- naa["e", c(4,2,4), , drop=FALSE]
naa2

drop(naa2)

1D-style subsetting (a.k.a. linear subsetting)

Using a numeric vector (L-index):
naa[c(60, 24, 21, 56)]

Using a matrix subscript (M-index):
m <- rbind(c(5, 4, 3),

c(4, 1, 2),
c(1, 1, 2),
c(1, 4, 3))

naa[m]

See '?Lindex2Mindex' in the S4Arrays package for how to convert an
L-index to an M-index and vice-versa.

Sanity checks

a <- as.array(naa)
naa2 <- naa[5:3, c(4,2,4), 2:3]
a2 <- a [5:3, c(4,2,4), 2:3]

28 NaArray-summarization

stopifnot(identical(as.array(naa2), a2), identical(naa2, NaArray(a2)))
naa2 <- naa[, c(4,2,4), 2:3]
a2 <- a [, c(4,2,4), 2:3]
stopifnot(identical(as.array(naa2), a2), identical(naa2, NaArray(a2)))
naa2 <- naa[, c(4,2,4), -1]
a2 <- a [, c(4,2,4), -1]
stopifnot(identical(as.array(naa2), a2), identical(naa2, NaArray(a2)))
naa2 <- naa[, c(4,2,4), 1]
a2 <- a [, c(4,2,4), 1]
stopifnot(identical(as.array(naa2), a2), identical(naa2, NaArray(a2)))
naa2 <- naa[, c(4,2,4), 1, drop=FALSE]
a2 <- a [, c(4,2,4), 1, drop=FALSE]
stopifnot(identical(as.array(naa2), a2), identical(naa2, NaArray(a2)))
naa2 <- drop(naa2)
a2 <- drop(a2)
stopifnot(identical(as.array(naa2), a2), identical(naa2, NaArray(a2)))
naa2 <- naa[, c(4,2,4), integer(0)]
a2 <- a [, c(4,2,4), integer(0)]
stopifnot(identical(as.array(naa2), a2),

identical(unname(naa2), unname(NaArray(a2))))
naa2 <- naa[c("d", "a"), c(4,2,4), "C"]
a2 <- a [c("d", "a"), c(4,2,4), "C"]
stopifnot(identical(as.array(naa2), a2), identical(naa2, NaArray(a2)))
naa2 <- naa["e", c(4,2,4), , drop=FALSE]
a2 <- a ["e", c(4,2,4), , drop=FALSE]
stopifnot(identical(as.array(naa2), a2), identical(naa2, NaArray(a2)))
naa2 <- drop(naa2)
a2 <- drop(a2)
stopifnot(identical(as.array(naa2), a2), identical(naa2, NaArray(a2)))
stopifnot(identical(naa[c(60, 24, 21, 56)], naa[m]))

NaArray-summarization NaArray summarization methods

Description

EXPERIMENTAL!!!

The SparseArray package provides memory-efficient summarization methods for NaArray ob-
jects. The following methods are supported at the moment: anyNA(), any(), all(), min(), max(),
range(), sum(), prod(), mean(), var(), sd().

More might be added in the future.

Note that these are S4 generic functions defined in base R and in the BiocGenerics package, with
default methods defined in base R. This man page documents the methods defined for NaArray
objects.

Details

All these methods operate natively on the NaArray representation, for maximum efficiency.

randomSparseArray 29

Value

See man pages of the corresponding default methods in the base package (e.g. ?base::range,
?base::mean, etc...) for the value returned by these methods.

See Also

• NaArray objects.

• The man pages of the various default methods defined in the base package e.g. base::range,
base::mean, base::anyNA, etc...

Examples

naa <- NaArray(dim=c(4, 5, 2))
naa[c(1:2, 8, 10, 15:17, 24:26, 28, 40)] <- (1:12)*10L
naa

anyNA(naa)

range(naa, na.rm=TRUE)

sum(naa, na.rm=TRUE)

sd(naa, na.rm=TRUE)

Sanity checks:
a0 <- as.array(naa)
stopifnot(

identical(anyNA(naa), anyNA(a0)),
identical(range(naa), range(a0)),
identical(range(naa, na.rm=TRUE), range(a0, na.rm=TRUE)),
identical(sum(naa), sum(a0)),
identical(sum(naa, na.rm=TRUE), sum(a0, na.rm=TRUE)),
all.equal(sd(naa, na.rm=TRUE), sd(a0, na.rm=TRUE))

)

randomSparseArray Random SparseArray object

Description

randomSparseArray() and poissonSparseArray() can be used to generate a random SparseAr-
ray object efficiently.

Usage

randomSparseArray(dim, density=0.05, dimnames=NULL)
poissonSparseArray(dim, lambda=-log(0.95), density=NA, dimnames=NULL)

30 randomSparseArray

Convenience wrappers for the 2D case:
randomSparseMatrix(nrow, ncol, density=0.05, dimnames=NULL)
poissonSparseMatrix(nrow, ncol, lambda=-log(0.95), density=NA,

dimnames=NULL)

Arguments

dim The dimensions (specified as an integer vector) of the SparseArray object to
generate.

density The desired density (specified as a number >= 0 and <= 1) of the SparseAr-
ray object to generate, that is, the ratio between its number of nonzero ele-
ments and its total number of elements. This is nzcount(x)/length(x) or
1 - sparsity(x).
Note that for poissonSparseArray() and poissonSparseMatrix() density
must be < 1 and the actual density of the returned object won’t be exactly as
requested but will typically be very close.

dimnames The dimnames to put on the object to generate. Must be NULL or a list of length
the number of dimensions. Each list element must be either NULL or a character
vector along the corresponding dimension.

lambda The mean of the Poisson distribution. Passed internally to the calls to rpois().
Only one of lambda and density can be specified.
When density is requested, rpois() is called internally with lambda set to
-log(1 - density). This is expected to generate Poisson data with the re-
quested density.
Finally note that the default value for lambda corresponds to a requested density
of 0.05.

nrow, ncol Number of rows and columns of the SparseMatrix object to generate.

Details

randomSparseArray() mimics the rsparsematrix() function from the Matrix package but re-
turns a SparseArray object instead of a dgCMatrix object.

poissonSparseArray() populates a SparseArray object with Poisson data i.e. it’s equivalent to:

a <- array(rpois(prod(dim), lambda), dim)
as(a, "SparseArray")

but is faster and more memory efficient because intermediate dense array a is never generated.

Value

A SparseArray derivative (of class SVT_SparseArray or SVT_SparseMatrix) with the requested
dimensions and density.

The type of the returned object is "double" for randomSparseArray() and randomSparseMatrix(),
and "integer" for poissonSparseArray() and poissonSparseMatrix().

randomSparseArray 31

Note

Unlike with Matrix::rsparsematrix() there’s no limit on the number of nonzero elements that
can be contained in the returned SparseArray object.

For example Matrix::rsparsematrix(3e5, 2e4, density=0.5) will fail with an error but randomSparseMatrix(3e5,
2e4, density=0.5) should work (even though it will take some time and the memory footprint of
the resulting object will be about 18 Gb).

See Also

• The Matrix::rsparsematrix function in the Matrix package.

• The stats::rpois function in the stats package.

• SVT_SparseArray objects.

Examples

randomSparseArray() / randomSparseMatrix()

set.seed(123)
dgcm1 <- rsparsematrix(2500, 950, density=0.1)
set.seed(123)
svt1 <- randomSparseMatrix(2500, 950, density=0.1)
svt1
type(svt1) # "double"

stopifnot(identical(as(svt1, "dgCMatrix"), dgcm1))

poissonSparseArray() / poissonSparseMatrix()

svt2 <- poissonSparseMatrix(2500, 950, density=0.1)
svt2
type(svt2) # "integer"
1 - sparsity(svt2) # very close to the requested density

set.seed(123)
svt3 <- poissonSparseArray(c(600, 1700, 80), lambda=0.01)
set.seed(123)
a3 <- array(rpois(length(svt3), lambda=0.01), dim(svt3))
stopifnot(identical(svt3, SparseArray(a3)))

The memory footprint of 'svt3' is 10x smaller than that of 'a3':
object.size(svt3)
object.size(a3)
as.double(object.size(a3) / object.size(svt3))

32 readSparseCSV

readSparseCSV Read/write a sparse matrix from/to a CSV file

Description

Read/write a sparse matrix from/to a CSV (comma-separated values) file.

Usage

writeSparseCSV(x, filepath, sep=",", transpose=FALSE, write.zeros=FALSE,
chunknrow=250)

readSparseCSV(filepath, sep=",", transpose=FALSE)

Arguments

x A matrix-like object, typically sparse. IMPORTANT: The object must have
rownames and colnames! These will be written to the file.
Another requirement is that the object must be subsettable. More precisely: it
must support 2D-style subsetting of the kind x[i,] and x[, j] where i and j
are integer vectors of valid row and column indices.

filepath The path (as a single string) to the file where to write the matrix-like object or
to read it from. Compressed files are supported.
If "", writeSparseCSV() will write the data to the standard output connection.
Note that filepath can also be a connection.

sep The field separator character. Values on each line of the file are separated by this
character.

transpose TRUE or FALSE. By default, rows in the matrix-like object correspond to lines
in the CSV file. Set transpose to TRUE to transpose the matrix-like object on-
the-fly, that is, to have its columns written to or read from the lines in the CSV
file.
Note that using transpose=TRUE is semantically equivalent to calling t() on the
object before writing it or after reading it, but it will tend to be more efficient.
Also it will work even if x does not support t() (not all matrix-like objects are
guaranteed to be transposable).

write.zeros TRUE or FALSE. By default, the zero values in x are not written to the file. Set
write.zeros to TRUE to write them.

chunknrow writeSparseCSV() uses a block-processing strategy to try to speed up things.
By default blocks of 250 rows (or columns if transpose=TRUE) are used. In our
experience trying to increase this (e.g. to 500 or more) will generally not pro-
duce significant benefits while it will increase memory usage, so use carefully.

Value

writeSparseCSV returns an invisible NULL.

readSparseCSV returns a SparseMatrix object of class SVT_SparseMatrix.

readSparseCSV 33

See Also

• SparseArray objects.

• dgCMatrix-class in the Matrix package.

Examples

writeSparseCSV()

Prepare toy matrix 'm0':
rownames0 <- LETTERS[1:6]
colnames0 <- letters[1:4]
m0 <- matrix(0L, nrow=length(rownames0), ncol=length(colnames0),

dimnames=list(rownames0, colnames0))
m0[c(1:2, 8, 10, 15:17, 24)] <- (1:8)*10L
m0

writeSparseCSV():
writeSparseCSV(m0, filepath="", sep="\t")
writeSparseCSV(m0, filepath="", sep="\t", write.zeros=TRUE)
writeSparseCSV(m0, filepath="", sep="\t", transpose=TRUE)

Note that writeSparseCSV() will automatically (and silently) coerce
non-integer values to integer by passing them thru as.integer().

Example where type(x) is "double":
m1 <- m0 * runif(length(m0))
m1
type(m1)
writeSparseCSV(m1, filepath="", sep="\t")

Example where type(x) is "logical":
writeSparseCSV(m0 != 0, filepath="", sep="\t")

Example where type(x) is "raw":
m2 <- m0
type(m2) <- "raw"
m2
writeSparseCSV(m2, filepath="", sep="\t")

readSparseCSV()

csv_file <- tempfile()
writeSparseCSV(m0, csv_file)

svt1 <- readSparseCSV(csv_file)
svt1

svt2 <- readSparseCSV(csv_file, transpose=TRUE)

34 read_block_as_sparse

svt2

If you need the sparse data as a dgCMatrix object, just coerce the
returned object:
as(svt1, "dgCMatrix")
as(svt2, "dgCMatrix")

Sanity checks:
stopifnot(identical(m0, as.matrix(svt1)))
stopifnot(identical(t(m0), as.matrix(svt2)))

read_block_as_sparse read_block_as_sparse

Description

read_block_as_sparse() is an internal generic function used by S4Arrays::read_block() when
is_sparse(x) is TRUE.

Usage

read_block_as_sparse(x, viewport)

S4 method for signature 'ANY'
read_block_as_sparse(x, viewport)

Arguments

x An array-like object for which is_sparse(x) is TRUE.

viewport An ArrayViewport object compatible with x, that is, such that refdim(viewport)
is identical to dim(x).

Details

Like read_block_as_dense() in the S4Arrays package, read_block_as_sparse() is not meant
to be called directly by the end user. The end user should always call the higher-level user-facing
read_block() function instead. See ?read_block in the S4Arrays package for more information.

Also, like extract_sparse_array(), read_block_as_sparse() should always be called on an
array-like object x for which is_sparse(x) is TRUE.

For maximum efficiency, read_block_as_sparse() methods should:

1. NOT check that is_sparse(x) is TRUE.

2. NOT try to do anything with the dimnames on x (read_block() takes care of that).

3. always operate natively on the sparse representation of the data in x, that is, they should never
expand it into a dense representation (e.g. with as.array()).

rowsum-methods 35

Value

A block of data as a SparseArray derivative (COO_SparseArray or SVT_SparseArray) of the same
type() as x.

See Also

• read_block in the S4Arrays package for the higher-level user-facing function for reading
array blocks.

• ArrayGrid in the S4Arrays package for ArrayGrid and ArrayViewport objects.

• is_sparse in the S4Arrays package to check whether an object uses a sparse representation
of the data or not.

• SparseArray objects.

• S4Arrays::type in the S4Arrays package to get the type of the elements of an array-like
object.

• extract_sparse_array for the workhorse behind the default read_block_as_sparse()
method.

• dgCMatrix-class in the Matrix package.

rowsum-methods rowsum() methods for sparse matrices

Description

The SparseArray package provides memory-efficient rowsum() and colsum() methods for Sparse-
Matrix and dsparseMatrix derivatives.

Usage

S4 method for signature 'SparseMatrix'
rowsum(x, group, reorder=TRUE, ...)

S4 method for signature 'dsparseMatrix'
rowsum(x, group, reorder=TRUE, ...)

S4 method for signature 'SparseMatrix'
colsum(x, group, reorder=TRUE, ...)

S4 method for signature 'dsparseMatrix'
colsum(x, group, reorder=TRUE, ...)

36 SparseArray

Arguments

x A SparseMatrix derivative (e.g. SVT_SparseMatrix or COO_SparseMatrix ob-
ject), or dsparseMatrix derivative (e.g. dgCMatrix or dgTMatrix object).

group, reorder See ?base::rowsum for a description of these arguments.

... Like the default S3 rowsum() method defined in the base package, the methods
documented in this man page support additional argument na.rm, set to FALSE
by default. If TRUE, missing values (NA or NaN) are omitted from the calculations.

Value

An ordinary matrix, like the default rowsum() method. See ?base::rowsum for how the matrix
returned by the default rowsum() method is obtained.

See Also

• rowsum in base R.

• S4Arrays::rowsum in the S4Arrays package for the rowsum() and colsum() S4 generic
functions.

• SparseMatrix objects.

• dgCMatrix-class in the Matrix package.

Examples

svt0 <- randomSparseMatrix(7e5, 100, density=0.15)
dgcm0 <- as(svt0, "dgCMatrix")
m0 <- as.matrix(svt0)

group <- sample(10, nrow(m0), replace=TRUE)

Calling rowsum() on the sparse representations is usually faster
than on the dense representation:
rs1 <- rowsum(m0, group)
rs2 <- rowsum(svt0, group) # about 3x faster
rs3 <- rowsum(dgcm0, group) # also about 3x faster

Sanity checks:
stopifnot(identical(rs1, rs2), identical(rs1, rs3))

SparseArray SparseArray objects

SparseArray 37

Description

The SparseArray package defines the SparseArray virtual class whose purpose is to be extended
by other S4 classes that aim at representing in-memory multidimensional sparse arrays.

It has currently two concrete subclasses, COO_SparseArray and SVT_SparseArray, both also de-
fined in this package. Each subclass uses its own internal representation for the nonzero multidi-
mensional data, the COO layout for COO_SparseArray, and the SVT layout for SVT_SparseArray.
The two layouts are described in the COO_SparseArray and SVT_SparseArray man pages, respec-
tively.

Finally, the package also defines the SparseMatrix virtual class, as a subclass of the SparseArray
class, for the specific 2D case.

Usage

Constructor function:
SparseArray(x, type=NA)

Arguments

x An ordinary matrix or array, or a dg[C|R]Matrix object, or an lg[C|R]Matrix ob-
ject, or any matrix-like or array-like object that supports coercion to SVT_SparseArray.

type A single string specifying the requested type of the object.
By default, the SparseArray object returned by the constructor function has the
same type() as x. However the user can use the type argument to request a
different type. Note that doing:

sa <- SparseArray(x, type=type)

is equivalent to doing:

sa <- SparseArray(x)
type(sa) <- type

but the former is more convenient and will generally be more efficient.
Supported types are all R atomic types plus "list".

Details

The SparseArray class extends the Array virtual class defined in the S4Arrays package. Here is the
full SparseArray sub-hierarchy as defined in the SparseArray package (virtual classes are marked
with an asterisk):

: Array class : Array*
: hierarchy : ^

|
- - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - -
: SparseArray : SparseArray*
: sub-hierarchy : ^ ^ ^

| | |
COO_SparseArray | SVT_SparseArray

38 SparseArray

^ | ^
- - - - - - - - - - - - | - - - - | - - - - | - - - - - - - - - -
: SparseMatrix : | SparseMatrix* |
: sub-sub-hierarchy : | ^ ^ |

| | | |
COO_SparseMatrix SVT_SparseMatrix

Any object that belongs to a class that extends SparseArray e.g. (a SVT_SparseArray or SVT_SparseMatrix
object) is called a SparseArray derivative.

Most of the matrix and array standard API defined in base R should work on SparseArray deriva-
tives, including dim(), length(), dimnames(), `dimnames<-`(), [, drop(), `[<-` (subassign-
ment), t(), rbind(), cbind(), etc...

SparseArray derivatives also support type(), `type<-`(), is_sparse(), is_nonzero(), nzcount(),
nzwhich(), nzvals(), `nzvals<-`(), sparsity(), arbind(), and acbind().

Value

A SparseArray derivative, that is a SVT_SparseArray, COO_SparseArray, SVT_SparseMatrix, or
COO_SparseMatrix object.

The type() of the input object is preserved, except if a different one was requested via the type
argument.

What is considered a zero depends on the type():

• "logical" zero is FALSE;

• "integer" zero is 0L;

• "double" zero is 0;

• "complex" zero is 0+0i;

• "raw" zero is raw(1);

• "character" zero is "" (empty string);

• "list" zero is NULL.

See Also

• The COO_SparseArray and SVT_SparseArray classes.

• is_nonzero for is_nonzero() and nz*() functions nzcount(), nzwhich(), etc...

• SparseArray_aperm for permuting the dimensions of a SparseArray object (e.g. transposition).

• SparseArray_subsetting for subsetting a SparseArray object.

• SparseArray_subassignment for SparseArray subassignment.

• SparseArray_abind for combining 2D or multidimensional SparseArray objects.

• SparseArray_summarization for SparseArray summarization methods.

• SparseArray_Arith, SparseArray_Compare, and SparseArray_Logic, for operations from the
Arith, Compare, and Logic groups on SparseArray objects.

• SparseArray_Math for operations from the Math and Math2 groups on SparseArray objects.

SparseArray 39

• SparseArray_Complex for operations from the Complex group on SparseArray objects.

• SparseArray_misc for miscellaneous operations on a SparseArray object.

• SparseArray_matrixStats for col/row summarization methods for SparseArray objects.

• rowsum_methods for rowsum() methods for sparse matrices.

• SparseMatrix_mult for SparseMatrix multiplication and cross-product.

• randomSparseArray to generate a random SparseArray object.

• readSparseCSV to read/write a sparse matrix from/to a CSV (comma-separated values) file.

• dgCMatrix-class, dgRMatrix-class, and lgCMatrix-class in the Matrix package, for the de
facto standard for sparse matrix representations in the R ecosystem.

• is_sparse in the S4Arrays package.

• The Array class defined in the S4Arrays package.

• Ordinary array objects in base R.

• base::which in base R.

Examples

Display details of class definition & known subclasses

showClass("SparseArray")

The SparseArray() constructor

a <- array(rpois(9e6, lambda=0.3), dim=c(500, 3000, 6))
SparseArray(a) # an SVT_SparseArray object

m <- matrix(rpois(9e6, lambda=0.3), ncol=500)
SparseArray(m) # an SVT_SparseMatrix object

dgc <- sparseMatrix(i=c(4:1, 2:4, 9:12, 11:9), j=c(1:7, 1:7),
x=runif(14), dims=c(12, 7))

class(dgc)
SparseArray(dgc) # an SVT_SparseMatrix object

dgr <- as(dgc, "RsparseMatrix")
class(dgr)
SparseArray(dgr) # a COO_SparseMatrix object

nzcount(), nzwhich(), nzvals(), `nzvals<-`()

x <- SparseArray(a)

Get the number of nonzero array elements in 'x':
nzcount(x)

40 SparseArray-abind

nzwhich() returns the indices of the nonzero array elements in 'x'.
Either as an integer (or numeric) vector of length 'nzcount(x)'
containing "linear indices":
nzidx <- nzwhich(x)
length(nzidx)
head(nzidx)

Or as an integer matrix with 'nzcount(x)' rows and one column per
dimension where the rows represent "array indices" (a.k.a. "array
coordinates"):
Mnzidx <- nzwhich(x, arr.ind=TRUE)
dim(Mnzidx)

Each row in the matrix is an n-tuple representing the "array
coordinates" of a nonzero element in 'x':
head(Mnzidx)
tail(Mnzidx)

Extract the values of the nonzero array elements in 'x' and return
them in a vector "parallel" to 'nzwhich(x)':
x_nzvals <- nzvals(x) # equivalent to 'x[nzwhich(x)]'
length(x_nzvals)
head(x_nzvals)

nzvals(x) <- log1p(nzvals(x))
x

Sanity checks:
stopifnot(identical(nzidx, which(a != 0)))
stopifnot(identical(Mnzidx, which(a != 0, arr.ind=TRUE, useNames=FALSE)))
stopifnot(identical(x_nzvals, a[nzidx]))
stopifnot(identical(x_nzvals, a[Mnzidx]))
stopifnot(identical(`nzvals<-`(x, nzvals(x)), x))

SparseArray-abind Combine multidimensional SparseArray objects

Description

Like ordinary matrices and arrays in base R, SparseMatrix derivatives can be combined by rows or
columns, with rbind() or cbind(), and multidimensional SparseArray derivatives can be bound
along any dimension with abind().

Note that arbind() can also be used to combine the objects along their first dimension, and
acbind() can be used to combine them along their second dimension.

See Also

• cbind in base R.

SparseArray-abind 41

• abind in the S4Arrays package.

• SparseArray objects.

• Ordinary array objects in base R.

Examples

COMBINING SparseMatrix OBJECTS

m1a <- matrix(1:15, nrow=3, ncol=5,
dimnames=list(NULL, paste0("M1y", 1:5)))

m1b <- matrix(101:135, nrow=7, ncol=5,
dimnames=list(paste0("M2x", 1:7), paste0("M2y", 1:5)))

sm1a <- SparseArray(m1a)
sm1b <- SparseArray(m1b)

rbind(sm1a, sm1b)

COMBINING SparseArray OBJECTS WITH 3 DIMENSIONS

a2a <- array(1:105, dim=c(5, 7, 3),
dimnames=list(NULL, paste0("A1y", 1:7), NULL))

a2b <- array(1001:1105, dim=c(5, 7, 3),
dimnames=list(paste0("A2x", 1:5), paste0("A2y", 1:7), NULL))

sa2a <- SparseArray(a2a)
sa2b <- SparseArray(a2b)

abind(sa2a, sa2b) # same as 'abind(sa2a, sa2b, along=3)'
abind(sa2a, sa2b, rev.along=0) # same as 'abind(sa2a, sa2b, along=4)'

a3a <- array(1:60, dim=c(3, 5, 4),
dimnames=list(NULL, paste0("A1y", 1:5), NULL))

a3b <- array(101:240, dim=c(7, 5, 4),
dimnames=list(paste0("A2x", 1:7), paste0("A2y", 1:5), NULL))

sa3a <- SparseArray(a3a)
sa3b <- SparseArray(a3b)

arbind(sa3a, sa3b) # same as 'abind(sa3a, sa3b, along=1)'

Sanity checks

sm1 <- rbind(sm1a, sm1b)
m1 <- rbind(m1a, m1b)
stopifnot(identical(as.array(sm1), m1), identical(sm1, SparseArray(m1)))

sa2 <- abind(sa2a, sa2b)
stopifnot(identical(sa2, abind(sa2a, sa2b, along=3)))

42 SparseArray-Arith-methods

a2 <- abind(a2a, a2b, along=3)
stopifnot(identical(as.array(sa2), a2), identical(sa2, SparseArray(a2)))

sa2 <- abind(sa2a, sa2b, rev.along=0)
stopifnot(identical(sa2, abind(sa2a, sa2b, along=4)))
a2 <- abind(a2a, a2b, along=4)
stopifnot(identical(as.array(sa2), a2), identical(sa2, SparseArray(a2)))

sa3 <- arbind(sa3a, sa3b)
a3 <- arbind(a3a, a3b)
stopifnot(identical(as.array(sa3), a3), identical(sa3, SparseArray(a3)))

SparseArray-aperm SparseArray transposition

Description

EXPERIMENTAL!!!

Transpose a SparseArray object by permuting its dimensions.

Value

COMING SOON...

See Also

• aperm() in base R.
• SparseArray objects.
• Ordinary array objects in base R.

Examples

COMING SOON...

SparseArray-Arith-methods

’Arith’ operations on SparseArray objects

Description

SparseArray derivatives support operations from the Arith group, with some restrictions. See
?S4groupGeneric in the methods package for more information about the Arith group generic.

IMPORTANT NOTES:

• Only SVT_SparseArray objects are supported at the moment. Support for COO_SparseArray
objects might be added in the future.

• SVT_SparseArray of type() "complex" don’t support Arith operations at the moment.

SparseArray-Arith-methods 43

Details

Two forms of ’Arith’ operations are supported:

1. Between an SVT_SparseArray object svt and an atomic vector y:

svt op y
y op svt

The Arith operations that support this form are: *, /, ^, %%,%/%. Note that, except for * (for
which both svt * y and y * svt are supported), atomic vector y must be on the right e.g. svt
^ 3.

2. Between two SVT_SparseArray objects svt1 and svt2 of same dimensions (a.k.a. con-
formable arrays):

svt1 op svt2

The Arith operations that support this form are: +, -, *.

Value

A SparseArray derivative of the same dimensions as the input object(s).

See Also

• S4groupGeneric in the methods package.

• SparseArray objects.

• Ordinary array objects in base R.

Examples

Basic examples

svt1 <- SVT_SparseArray(dim=c(15, 6), type="integer")
svt1[cbind(1:15, 2)] <- 100:114
svt1[cbind(1:15, 5)] <- -(114:100)
svt1

svt1 * -0.01

svt1 * 10 # result is of type "double"
svt1 * 10L # result is of type "integer"

svt1 * c(10, 5, 0.1) # right vector recycled along 1st dimension

svt1 / 10L

svt1 ^ 2
svt1 ^ (2:6)

svt1 %% 5L

44 SparseArray-Compare-methods

svt1 %/% 5L

svt2 <- SVT_SparseArray(dim=dim(svt1), type="double")
svt2[c(2, 6, 12:17, 22:33, 55, 59:62, 90)] <- runif(26)
svt2

svt1 + svt2
svt1 - svt2
svt1 * svt2

svt2 * (0.1 * svt1 - svt2 ^ 2) + svt1 / sum(svt2)

Sanity checks:
m1 <- as.matrix(svt1)
m2 <- as.matrix(svt2)
stopifnot(

identical(as.matrix(svt1 * -0.01), m1 * -0.01),
identical(as.matrix(svt1 * 10), m1 * 10),
identical(as.matrix(svt1 * 10L), m1 * 10L),
identical(as.matrix(svt1 / 10L), m1 / 10L),
identical(as.matrix(svt1 ^ 3.5), m1 ^ 3.5),
identical(as.matrix(svt1 %% 5L), m1 %% 5L),
identical(as.matrix(svt1 %/% 5L), m1 %/% 5L),
identical(as.matrix(svt1 + svt2), m1 + m2),
identical(as.matrix(svt1 - svt2), m1 - m2),
identical(as.matrix(svt1 * svt2), m1 * m2),
all.equal(as.matrix(svt2 * (0.1 * svt1 - svt2 ^ 2) + svt1 / sum(svt2)),

m2 * (0.1 * m1 - m2 ^ 2) + m1 / sum(m2))
)

An example combining operations from the 'Arith', 'Compare',
and 'Logic' groups

m3 <- matrix(0L, nrow=15, ncol=6)
m3[c(2, 6, 12:17, 22:33, 55, 59:62, 90)] <- 101:126
svt3 <- SparseArray(m3)

Can be 5x or 10x faster than with a dgCMatrix object on a big
SVT_SparseMatrix object!
svt4 <- (svt3^1.5 + svt3) %% 100 - 0.2 * svt3 > 0
svt4

Sanity check:
m4 <- (m3^1.5 + m3) %% 100 - 0.2 * m3 > 0
stopifnot(identical(as.matrix(svt4), m4))

SparseArray-Compare-methods

’Compare’ operations on SparseArray objects

SparseArray-Compare-methods 45

Description

SparseArray derivatives support operations from the Compare group, with some restrictions. See
?S4groupGeneric in the methods package for more information about the Compare group generic.

IMPORTANT NOTE: Only SVT_SparseArray objects are supported at the moment. Support for
COO_SparseArray objects might be added in the future.

Details

Two forms of ’Compare’ operations are supported:

1. Between an SVT_SparseArray object svt and a single value y:

svt op y
y op svt

All operations from the Compare group support this form, with single value y either on the left
or the right. However, there are some operation-dependent restrictions on the value of y.

2. Between two SVT_SparseArray objects svt1 and svt2 of same dimensions (a.k.a. con-
formable arrays):

svt1 op svt2

The Compare operations that support this form are: !=, <, >.

Value

A SparseArray derivative of type() "logical" and same dimensions as the input object(s).

See Also

• S4groupGeneric in the methods package.

• SparseArray objects.

• Ordinary array objects in base R.

Examples

svt1 <- SVT_SparseArray(dim=c(15, 6), type="double")
svt1[c(2, 6, 12:17, 22:33, 55, 59:62, 90)] <- runif(26)
svt1

svt1 >= 0.2
svt1 != 0

Sanity checks:
m1 <- as.matrix(svt1)
stopifnot(

identical(as.matrix(svt1 >= 0.2), m1 >= 0.2),
identical(as.matrix(svt1 != 0), m1 != 0)

)

46 SparseArray-Logic-methods

SparseArray-Complex-methods

’Complex’ methods for SparseArray objects

Description

WORK-IN-PROGRESS

Value

COMING SOON...

See Also

• S4groupGeneric in the methods package.
• SparseArray objects.
• Ordinary array objects in base R.

Examples

COMING SOON...

SparseArray-dim-tuning

Internal "dim tuning" utilities for SparseArray objects

Description

Internal "dim tuning" utilities for SparseArray objects not meant to be used directly by the end user.

SparseArray-Logic-methods

’Logic’ operations on SparseArray objects

Description

SparseArray derivatives support operations from the Logic group (i.e. & and |), with some restric-
tions. See ?S4groupGeneric in the methods package for more information about the Logic group
generic.

IMPORTANT NOTES:

• Only SVT_SparseArray objects are supported at the moment. Support for COO_SparseArray
objects might be added in the future.

• In base R, Logic operations support input of type() "logical", "integer", "double", or
"complex". However, the corresponding methods for SVT_SparseArray objects only support
objects of type() "logical" for now.

SparseArray-Math-methods 47

Value

A SparseArray derivative of type() "logical" and same dimensions as the input object(s).

See Also

• S4groupGeneric in the methods package.

• SparseArray objects.

• Ordinary array objects in base R.

Examples

svt1 <- svt2 <- SVT_SparseArray(dim=c(15, 6))
svt1[cbind(1:15, 2)] <- c(TRUE, FALSE, NA)
svt1[cbind(1:15, 5)] <- c(TRUE, NA, NA, FALSE, TRUE)
svt2[c(2, 6, 12:17, 22:33, 55, 59:62, 90)] <- c(TRUE, NA)

svt1 & svt2
svt1 | svt2

Sanity checks:
m1 <- as.matrix(svt1)
m2 <- as.matrix(svt2)
stopifnot(

identical(as.matrix(svt1 & svt2), m1 & m2),
identical(as.matrix(svt1 | svt2), m1 | m2)

)

SparseArray-Math-methods

’Math’ and ’Math2’ methods for SparseArray objects

Description

SparseArray derivatives support a subset of operations from the Math and Math2 groups. See
?S4groupGeneric in the methods package for more information about the Math and Math2 group
generics.

IMPORTANT NOTES:

• Only operations from these groups that preserve sparsity are supported. For example, sqrt(),
trunc(), log1p(), and sin() are supported, but cumsum(), log(), cos(), or gamma() are
not.

• Only SVT_SparseArray objects are supported at the moment. Support for COO_SparseArray
objects might be added in the future.

• Math and Math2 operations only support SVT_SparseArray objects of type() "double" at
the moment.

48 SparseArray-matrixStats

Value

A SparseArray derivative of the same dimensions as the input object.

See Also

• S4groupGeneric in the methods package.

• SparseArray objects.

• Ordinary array objects in base R.

Examples

m <- matrix(0, nrow=15, ncol=6)
m[c(2, 6, 12:17, 22:33, 55, 59:62, 90)] <-

c(runif(22)*1e4, Inf, -Inf, NA, NaN)
svt <- SparseArray(m)

svt2 <- trunc(sqrt(svt))
svt2

Sanity check:
m2 <- suppressWarnings(trunc(sqrt(m)))
stopifnot(identical(as.matrix(svt2), m2))

SparseArray-matrixStats

SparseArray col/row summarization

Description

The SparseArray package provides memory-efficient col/row summarization methods (a.k.a. ma-
trixStats methods) for SparseArray objects, like colSums(), rowSums(), colMedians(), rowMedians(),
colVars(), rowVars(), etc...

Note that these are S4 generic functions defined in the MatrixGenerics package, with methods
for ordinary matrices defined in the matrixStats package. This man page documents the methods
defined for SparseArray objects.

Usage

N.B.: Showing ONLY the col*() methods (usage of row*() methods is
the same):

S4 method for signature 'SparseArray'
colAnyNAs(x, rows=NULL, cols=NULL, dims=1, ..., useNames=NA)

S4 method for signature 'SparseArray'
colAnys(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

SparseArray-matrixStats 49

S4 method for signature 'SparseArray'
colAlls(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

S4 method for signature 'SparseArray'
colMins(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

S4 method for signature 'SparseArray'
colMaxs(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

S4 method for signature 'SparseArray'
colRanges(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

S4 method for signature 'SparseArray'
colSums(x, na.rm=FALSE, dims=1)

S4 method for signature 'SparseArray'
colProds(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

S4 method for signature 'SparseArray'
colMeans(x, na.rm=FALSE, dims=1)

S4 method for signature 'SparseArray'
colSums2(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

S4 method for signature 'SparseArray'
colMeans2(x, rows=NULL, cols=NULL, na.rm=FALSE, dims=1, ..., useNames=NA)

S4 method for signature 'SparseArray'
colVars(x, rows=NULL, cols=NULL, na.rm=FALSE, center=NULL, dims=1,

..., useNames=NA)

S4 method for signature 'SparseArray'
colSds(x, rows=NULL, cols=NULL, na.rm=FALSE, center=NULL, dims=1,

..., useNames=NA)

S4 method for signature 'SparseArray'
colMedians(x, rows=NULL, cols=NULL, na.rm=FALSE, ..., useNames=NA)

Arguments

x A SparseMatrix or SparseArray object.
Note that the colMedians() and rowMedians() methods only support 2D ob-
jects (i.e. SparseMatrix objects) at the moment.

rows, cols, ... Not supported.
na.rm, useNames, center

See man pages of the corresponding generics in the MatrixGenerics package
(e.g. ?MatrixGenerics::colVars) for a description of these arguments.
Note that, unlike the methods for ordinary matrices defined in the matrixStats

50 SparseArray-matrixStats

package, the center argument of the colVars(), rowVars(), colSds(), and
rowSds() methods for SparseArray objects can only be a single value (or a
NULL). In particular, if x has more than one column, then center cannot be a
vector with one value per column in x.

dims See ?base::colSums for a description of this argument. Note that all the meth-
ods above support it, except colMedians() and rowMedians().

Details

All these methods operate natively on the SVT_SparseArray internal representation, for maximum
efficiency.

Note that more col/row summarization methods might be added in the future.

Value

See man pages of the corresponding generics in the MatrixGenerics package (e.g. ?MatrixGenerics::colRanges)
for the value returned by these methods.

Note

Most col*() methods for SparseArray objects are multithreaded. See set_SparseArray_nthread
for how to control the number of threads.

See Also

• SparseArray objects.

• The man pages of the various generic functions defined in the MatrixGenerics package e.g.
MatrixGenerics::colVars etc...

Examples

2D CASE

m0 <- matrix(0L, nrow=6, ncol=4, dimnames=list(letters[1:6], LETTERS[1:4]))
m0[c(1:2, 8, 10, 15:17, 24)] <- (1:8)*10L
m0["e", "B"] <- NA
svt0 <- SparseArray(m0)
svt0

colSums(svt0)
colSums(svt0, na.rm=TRUE)

rowSums(svt0)
rowSums(svt0, na.rm=TRUE)

colMeans(svt0)
colMeans(svt0, na.rm=TRUE)

colRanges(svt0)

SparseArray-matrixStats 51

colRanges(svt0, useNames=FALSE)
colRanges(svt0, na.rm=TRUE)
colRanges(svt0, na.rm=TRUE, useNames=FALSE)

colVars(svt0)
colVars(svt0, useNames=FALSE)

Sanity checks:
stopifnot(

identical(colSums(svt0), colSums(m0)),
identical(colSums(svt0, na.rm=TRUE), colSums(m0, na.rm=TRUE)),
identical(rowSums(svt0), rowSums(m0)),
identical(rowSums(svt0, na.rm=TRUE), rowSums(m0, na.rm=TRUE)),
identical(colMeans(svt0), colMeans(m0)),
identical(colMeans(svt0, na.rm=TRUE), colMeans(m0, na.rm=TRUE)),
identical(colRanges(svt0), colRanges(m0, useNames=TRUE)),
identical(colRanges(svt0, useNames=FALSE), colRanges(m0, useNames=FALSE)),
identical(colRanges(svt0, na.rm=TRUE),

colRanges(m0, na.rm=TRUE, useNames=TRUE)),
identical(colVars(svt0), colVars(m0, useNames=TRUE)),
identical(colVars(svt0, na.rm=TRUE),

colVars(m0, na.rm=TRUE, useNames=TRUE))
)

3D CASE (AND ARBITRARY NUMBER OF DIMENSIONS)

set.seed(2009)
svt <- 6L * (poissonSparseArray(5:3, density=0.35) -

poissonSparseArray(5:3, density=0.35))
dimnames(svt) <- list(NULL, letters[1:4], LETTERS[1:3])

cs1 <- colSums(svt)
cs1 # cs1[j , k] is equal to sum(svt[, j, k])

cs2 <- colSums(svt, dims=2)
cs2 # cv2[k] is equal to sum(svt[, , k])

cv1 <- colVars(svt)
cv1 # cv1[j , k] is equal to var(svt[, j, k])

cv2 <- colVars(svt, dims=2)
cv2 # cv2[k] is equal to var(svt[, , k])

Sanity checks:
k_idx <- setNames(seq_len(dim(svt)[3]), dimnames(svt)[[3]])
j_idx <- setNames(seq_len(dim(svt)[2]), dimnames(svt)[[2]])
cv1b <- sapply(k_idx, function(k)

sapply(j_idx, function(j) var(svt[, j, k, drop=FALSE])))
cv2b <- sapply(k_idx, function(k) var(svt[, , k]))
stopifnot(

identical(colSums(svt), colSums(as.array(svt))),
identical(colSums(svt, dims=2), colSums(as.array(svt), dims=2)),

52 SparseArray-misc-methods

identical(cv1, cv1b),
identical(cv2, cv2b)

)

SparseArray-misc-methods

Miscellaneous operations on a SparseArray object

Description

This man page documents various base array operations that are supported by SparseArray deriva-
tives, and that didn’t belong to any of the groups of operations documented in the other man pages
of the SparseArray package.

Usage

--- unary isometric array transformations ---

S4 method for signature 'COO_SparseArray'
is.na(x)
S4 method for signature 'SVT_SparseArray'
is.na(x)

S4 method for signature 'COO_SparseArray'
is.nan(x)
S4 method for signature 'SVT_SparseArray'
is.nan(x)

S4 method for signature 'COO_SparseArray'
is.infinite(x)
S4 method for signature 'SVT_SparseArray'
is.infinite(x)

S4 method for signature 'COO_SparseArray'
tolower(x)

S4 method for signature 'COO_SparseArray'
toupper(x)

S4 method for signature 'COO_SparseArray'
nchar(x, type="chars", allowNA=FALSE, keepNA=NA)

--- N-ary isometric array transformations ---

S4 method for signature 'SparseArray'
pmin(..., na.rm=FALSE)
S4 method for signature 'SparseArray'
pmax(..., na.rm=FALSE)

SparseArray-misc-methods 53

Arguments

x A SparseArray derivative.
type, allowNA, keepNA

See ?base::nchar for a description of these arguments.

... SparseArray derivatives.

na.rm See ?base::pmin for a description of this argument.

Details

More operations will be added in the future.

Value

See man pages of the corresponding base functions (e.g. ?base::is.na, ?base::nchar, ?base::pmin,
etc...) for the value returned by these methods.

Note that, like the base functions, the methods documented in this man page are endomorphisms
i.e. they return an array-like object of the same class as the input.

See Also

• base::is.na and base::is.infinite in base R.

• base::tolower in base R.

• base::nchar in base R.

• base::pmin in base R.

• SparseArray objects.

• Ordinary array objects in base R.

Examples

a <- array(c(0, 2.77, NA, 0, NaN, -Inf), dim=5:3)
svt <- SparseArray(a) # SVT_SparseArray object
class(svt)

is.na(svt) # SVT_SparseArray object of type "logical"
is.nan(svt) # SVT_SparseArray object of type "logical"
is.infinite(svt) # SVT_SparseArray object of type "logical"

svt1 <- poissonSparseMatrix(500, 20, density=0.2)
svt2 <- poissonSparseMatrix(500, 20, density=0.25) * 0.77
pmin(svt1, svt2)
pmax(svt1, svt2)

Sanity checks:
res <- is.na(svt)
stopifnot(is(res, "SVT_SparseArray"), type(res) == "logical",

identical(as.array(res), is.na(a)))
res <- is.nan(svt)
stopifnot(is(res, "SVT_SparseArray"), type(res) == "logical",

54 SparseArray-subassignment

identical(as.array(res), is.nan(a)))
res <- is.infinite(svt)
stopifnot(is(res, "SVT_SparseArray"), type(res) == "logical",

identical(as.array(res), is.infinite(a)))
res <- pmin(svt1, svt2)
stopifnot(is(res, "SVT_SparseArray"),

identical(as.array(res), pmin(as.array(svt1), as.array(svt2))))
res <- pmax(svt1, svt2)
stopifnot(is(res, "SVT_SparseArray"),

identical(as.array(res), pmax(as.array(svt1), as.array(svt2))))

SparseArray-subassignment

SparseArray subassignment

Description

Like ordinary arrays in base R, SparseArray derivatives support subassignment via the [<- operator.

See Also

• [<- in base R.

• SparseArray objects.

• Ordinary array objects in base R.

Examples

a <- array(0L, dim=5:3)
a[c(1:2, 8, 10, 15:17, 20, 24, 40, 56:60)] <- (1:15)*10L
svt <- SparseArray(a)
svt

svt[, 1:2, 3] <- - svt[, 1:2 ,1]

svt[5:3, c(4,2,4), 1:2] <- 999L

Sanity checks:
a[, 1:2, 3] <- -a[, 1:2 ,1]
a[5:3, c(4,2,4), 1:2] <- 999L
stopifnot(identical(as.array(svt), a), identical(svt, SparseArray(a)))

SparseArray-subsetting 55

SparseArray-subsetting

Subsetting a SparseArray object

Description

Like ordinary arrays in base R, SparseArray derivatives support subsetting via the single bracket
operator ([).

See Also

• drop in base R to drop the ineffective dimensions of an array or array-like object.

• Lindex2Mindex in the S4Arrays package for how to convert an L-index to an M-index and
vice-versa.

• SparseArray objects.

• [and ordinary array objects in base R.

Examples

a <- array(0L, dim=5:3)
a[c(1:2, 8, 10, 15:17, 20, 24, 40, 56:60)] <- (1:15)*10L
svt <- SparseArray(a)
svt

N-dimensional subsetting

svt[5:3, c(4,2,4), 2:3]
svt[, c(4,2,4), 2:3]
svt[, c(4,2,4), -1]
svt[, c(4,2,4), 1]

svt2 <- svt[, c(4,2,4), 1, drop=FALSE]
svt2

Ineffective dimensions can always be dropped as a separate step:
drop(svt2)

svt[, c(4,2,4), integer(0)]

dimnames(a) <- list(letters[1:5], NULL, LETTERS[1:3])
svt <- SparseArray(a)

svt[c("d", "a"), c(4,2,4), "C"]

svt2 <- svt["e", c(4,2,4), , drop=FALSE]
svt2

56 SparseArray-subsetting

drop(svt2)

1D-style subsetting (a.k.a. linear subsetting)

Using a numeric vector (L-index):
svt[c(60, 24, 21, 56)]

Using a matrix subscript (M-index):
m <- rbind(c(5, 4, 3),

c(4, 1, 2),
c(1, 1, 2),
c(1, 4, 3))

svt[m]

See '?Lindex2Mindex' in the S4Arrays package for how to convert an
L-index to an M-index and vice-versa.

Sanity checks

svt2 <- svt[5:3, c(4,2,4), 2:3]
a2 <- a [5:3, c(4,2,4), 2:3]
stopifnot(identical(as.array(svt2), a2), identical(svt2, SparseArray(a2)))
svt2 <- svt[, c(4,2,4), 2:3]
a2 <- a [, c(4,2,4), 2:3]
stopifnot(identical(as.array(svt2), a2), identical(svt2, SparseArray(a2)))
svt2 <- svt[, c(4,2,4), -1]
a2 <- a [, c(4,2,4), -1]
stopifnot(identical(as.array(svt2), a2), identical(svt2, SparseArray(a2)))
svt2 <- svt[, c(4,2,4), 1]
a2 <- a [, c(4,2,4), 1]
stopifnot(identical(as.array(svt2), a2), identical(svt2, SparseArray(a2)))
svt2 <- svt[, c(4,2,4), 1, drop=FALSE]
a2 <- a [, c(4,2,4), 1, drop=FALSE]
stopifnot(identical(as.array(svt2), a2), identical(svt2, SparseArray(a2)))
svt2 <- drop(svt2)
a2 <- drop(a2)
stopifnot(identical(as.array(svt2), a2), identical(svt2, SparseArray(a2)))
svt2 <- svt[, c(4,2,4), integer(0)]
a2 <- a [, c(4,2,4), integer(0)]
stopifnot(identical(as.array(svt2), a2),

identical(unname(svt2), unname(SparseArray(a2))))
svt2 <- svt[c("d", "a"), c(4,2,4), "C"]
a2 <- a [c("d", "a"), c(4,2,4), "C"]
stopifnot(identical(as.array(svt2), a2), identical(svt2, SparseArray(a2)))
svt2 <- svt["e", c(4,2,4), , drop=FALSE]
a2 <- a ["e", c(4,2,4), , drop=FALSE]
stopifnot(identical(as.array(svt2), a2), identical(svt2, SparseArray(a2)))
svt2 <- drop(svt2)
a2 <- drop(a2)
stopifnot(identical(as.array(svt2), a2), identical(svt2, SparseArray(a2)))

SparseArray-summarization 57

stopifnot(identical(svt[c(60, 24, 21, 56)], svt[m]))

SparseArray-summarization

SparseArray summarization methods

Description

The SparseArray package provides memory-efficient summarization methods for SparseArray ob-
jects. The following methods are supported at the moment: anyNA(), any(), all(), min(), max(),
range(), sum(), prod(), mean(), var(), sd().

More might be added in the future.

Note that these are S4 generic functions defined in base R and in the BiocGenerics package, with
default methods defined in base R. This man page documents the methods defined for SparseArray
objects.

Details

All these methods operate natively on the COO_SparseArray or SVT_SparseArray representation,
for maximum efficiency.

Value

See man pages of the corresponding default methods in the base package (e.g. ?base::range,
?base::mean, etc...) for the value returned by these methods.

See Also

• SparseArray objects.

• The man pages of the various default methods defined in the base package e.g. base::range,
base::mean, base::anyNA, etc...

Examples

svt0 <- SVT_SparseArray(dim=c(4, 5, 2))
svt0[c(1:2, 8, 10, 15:17, 24:26, 28, 40)] <- (1:12)*10L
svt0[4, 3, 1] <- NA
svt0

anyNA(svt0)

range(svt0)

range(svt0, na.rm=TRUE)

sum(svt0, na.rm=TRUE)

sd(svt0, na.rm=TRUE)

58 SparseMatrix-mult

Sanity checks:
a0 <- as.array(svt0)
stopifnot(

identical(anyNA(svt0), anyNA(a0)),
identical(range(svt0), range(a0)),
identical(range(svt0, na.rm=TRUE), range(a0, na.rm=TRUE)),
identical(sum(svt0), sum(a0)),
identical(sum(svt0, na.rm=TRUE), sum(a0, na.rm=TRUE)),
all.equal(sd(svt0, na.rm=TRUE), sd(a0, na.rm=TRUE))

)

SparseMatrix-mult SparseMatrix multiplication and cross-product

Description

Like ordinary matrices in base R, SparseMatrix derivatives can be multiplied with the %*% operator.
They also support crossprod() and tcrossprod().

Value

The %*%, crossprod() and tcrossprod() methods for SparseMatrix objects always return an
ordinary matrix of type() "double".

Note

Matrix multiplication and cross-product of SparseMatrix derivatives are multithreaded. See set_SparseArray_nthread
for how to control the number of threads.

See Also

• %*% and crossprod in base R.

• SparseMatrix objects.

• S4Arrays::type in the S4Arrays package to get the type of the elements of an array-like
object.

• Ordinary matrix objects in base R.

Examples

m1 <- matrix(0L, nrow=15, ncol=6)
m1[c(2, 6, 12:17, 22:33, 55, 59:62, 90)] <- 101:126
svt1 <- as(m1, "SVT_SparseMatrix")

set.seed(333)
svt2 <- poissonSparseMatrix(nrow=6, ncol=7, density=0.2)

svt1 %*% svt2

sparseMatrix-utils 59

m1 %*% svt2

Unary crossprod() and tcrossprod():
crossprod(svt1) # same as t(svt1) %*% svt1
tcrossprod(svt1) # same as svt1 %*% t(svt1)

Binary crossprod() and tcrossprod():
crossprod(svt1[1:6,], svt2) # same as t(svt1[1:6,]) %*% svt2
tcrossprod(svt1, t(svt2)) # same as svt1 %*% svt2

Sanity checks:
m12 <- m1 %*% as.matrix(svt2)
stopifnot(

identical(svt1 %*% svt2, m12),
identical(m1 %*% svt2, m12),
identical(crossprod(svt1), t(svt1) %*% svt1),
identical(tcrossprod(svt1), svt1 %*% t(svt1)),
identical(crossprod(svt1[1:6,], svt2), t(svt1[1:6,]) %*% svt2),
identical(tcrossprod(svt1, t(svt2)), m12)

)

sparseMatrix-utils Internal utilities to handle sparseMatrix derivatives

Description

The SparseArray package defines some utilities to handle sparseMatrix derivatives (e.g. dgCMa-
trix and lgCMatrix objects) from the Matrix package. These are for internal use only.

See Also

• dgCMatrix-class in the Matrix package.

SVT_SparseArray-class SVT_SparseArray objects

Description

The SVT_SparseArray class is a new container for efficient in-memory representation of multidi-
mensional sparse arrays. It uses the SVT layout to represent the nonzero multidimensional data
internally.

An SVT_SparseMatrix object is an SVT_SparseArray object of 2 dimensions.

Note that SVT_SparseArray and SVT_SparseMatrix objects replace the older and less efficient
COO_SparseArray and COO_SparseMatrix objects.

60 SVT_SparseArray-class

Usage

Constructor function:
SVT_SparseArray(x, dim=NULL, dimnames=NULL, type=NA)

Arguments

x If dim is NULL (the default) then x must be an ordinary matrix or array, or a dgC-
Matrix/lgCMatrix object, or any matrix-like or array-like object that supports
coercion to SVT_SparseArray.
If dim is provided then x can either be missing, a vector (atomic or list), or
an array-like object. If missing, then an allzero SVT_SparseArray object will
be constructed. Otherwise x will be used to fill the returned object (length(x)
must be <= prod(dim)). Note that if x is an array-like object then its dimensions
are ignored i.e. it’s treated as a vector.

dim NULL or the dimensions (supplied as an integer vector) of the SVT_SparseArray
or SVT_SparseMatrix object to construct. If NULL (the default) then the returned
object will have the dimensions of matrix-like or array-like object x.

dimnames The dimnames of the object to construct. Must be NULL or a list of length the
number of dimensions. Each list element must be either NULL or a character
vector along the corresponding dimension. If both dim and dimnames are NULL
(the default) then the returned object will have the dimnames of matrix-like or
array-like object x.

type A single string specifying the requested type of the object.
Normally, the SVT_SparseArray object returned by the constructor function has
the same type() as x but the user can use the type argument to request a differ-
ent type. Note that doing:

svt <- SVT_SparseArray(x, type=type)

is equivalent to doing:

svt <- SVT_SparseArray(x)
type(svt) <- type

but the former is more convenient and will generally be more efficient.
Supported types are all R atomic types plus "list".

Details

SVT_SparseArray is a concrete subclass of the SparseArray virtual class. This makes SVT_SparseArray
objects SparseArray derivatives.

The nonzero data in a SVT_SparseArray object is stored in a Sparse Vector Tree. We’ll refer to
this internal data representation as the SVT layout. See the "SVT layout" section below for more
information.

The SVT layout is similar to the CSC layout (compressed, sparse, column-oriented format) used
by CsparseMatrix derivatives from the Matrix package, like dgCMatrix or lgCMatrix objects, but
with the following improvements:

• The SVT layout supports sparse arrays of arbitrary dimensions.

SVT_SparseArray-class 61

• With the SVT layout, the sparse data can be of any type. Whereas CsparseMatrix derivatives
only support sparse data of type "double" or "logical" at the moment.

• The SVT layout imposes no limit on the number of nonzero elements that can be stored. With
dgCMatrix/lgCMatrix objects, this number must be < 2^31.

• Overall, the SVT layout allows more efficient operations on SVT_SparseArray objects.

Value

An SVT_SparseArray or SVT_SparseMatrix object.

SVT layout

An SVT (Sparse Vector Tree) is a tree of depth N - 1 where N is the number of dimensions of the
sparse array.

The leaves in the tree can only be of two kinds: NULL or leaf vector. Leaves that are leaf vectors
can only be found at the deepest level in the tree (i.e. at depth N - 1). All leaves found at a lower
depth must be NULLs.

A leaf vector represents a sparse vector along the first dimension (a.k.a. innermost or fastest mov-
ing dimension) of the sparse array. It contains a collection of offset/value pairs sorted by strictly
ascending offset. More precisely, a leaf vector is represented by an ordinary list of 2 parallel dense
vectors:

1. nzvals: a vector (atomic or list) of nonzero values (zeros are not allowed);

2. nzoffs: an integer vector of offsets (i.e. 0-based positions).

The 1st vector determines the type of the leaf vector i.e. "double", "integer", "logical", etc...
All the leaf vectors in the SVT must have the same type as the sparse array.

It’s useful to realize that a leaf vector simply represents a 1D SVT.

In SparseArray 1.5.4 a new type of leaf vector was introduced called lacunar leaf. A lacunar leaf is
a non-empty leaf vector where the nzvals component is set to NULL. In this case the nonzero values
are implicit: they’re all considered to be equal to one.

Examples:

• An SVT_SparseArray object with 1 dimension has its nonzero data stored in an SVT of depth
0. Such SVT is represented by a single leaf vector.

• An SVT_SparseArray object with 2 dimensions has its nonzero data stored in an SVT of depth
1. Such SVT is represented by a list of length the extend of the 2nd dimension (number of
columns). Each list element is an SVT of depth 0 (as described above), or a NULL if the
corresponding column is empty (i.e. has no nonzero data).
For example, the nonzero data of an 8-column sparse matrix will be stored in an SVT that
looks like this:

.------------------list-of-length-8-----------------.
/ / / | | \ \ \
| | | | | | | |
leaf leaf NULL leaf leaf leaf leaf NULL

vector vector vector vector vector vector

62 SVT_SparseArray-class

The NULL leaves represent the empty columns (i.e. the columns with no nonzero elements).

• An SVT_SparseArray object with 3 dimensions has its nonzero data stored in an SVT of
depth 2. Such SVT is represented by a list of length the extend of the 3rd dimension. Each list
element must be an SVT of depth 1 (as described above) that stores the nonzero data of the
corresponding 2D slice, or a NULL if the 2D slice is empty (i.e. has no nonzero data).

• And so on...

See Also

• The SparseArray class for the virtual parent class of COO_SparseArray and SVT_SparseArray.

• dgCMatrix-class and lgCMatrix-class in the Matrix package, for the de facto standard for
sparse matrix representations in the R ecosystem.

• CsparseMatrix-class for the parent class of all the classes in the Matrix package that use the
"CSC layout" (dgCMatrix, lgCMatrix, etc...)

• The Matrix::rsparsematrix function in the Matrix package.

• Ordinary array objects in base R.

Examples

BASIC CONSTRUCTION

SVT_SparseArray(dim=5:3) # allzero object

SVT_SparseArray(dim=c(35000, 2e6), type="raw") # allzero object

Use a dgCMatrix object to fill the SVT_SparseArray object to construct:
x <- rsparsematrix(10, 16, density=0.1) # random dgCMatrix object
SVT_SparseArray(x, dim=c(8, 5, 4))

svt1 <- SVT_SparseArray(dim=c(12, 5, 2)) # allzero object
svt1[cbind(11, 2:5, 2)] <- 22:25
svt1

svt2 <- SVT_SparseArray(dim=c(6, 4), type="integer",
dimnames=list(letters[1:6], LETTERS[1:4]))

svt2[c(1:2, 8, 10, 15:17, 24)] <- (1:8)*10L
svt2

CSC (Compressed Sparse Column) LAYOUT VS SVT LAYOUT

dgCMatrix objects from the Matrix package use the CSC layout:
dgcm2 <- as(svt2, "dgCMatrix")
dgcm2@x # nonzero values
dgcm2@i # row indices of the nonzero values
dgcm2@p # breakpoints (0 followed by one breakpoint per column)

str(svt2)

thread-control 63

m3 <- matrix(rpois(54e6, lambda=0.4), ncol=1200)

Note that 'SparseArray(m3)' can also be used for this:
svt3 <- SVT_SparseArray(m3)
svt3

dgcm3 <- as(m3, "dgCMatrix")

Compare type and memory footprint:
type(svt3)
object.size(svt3)
type(dgcm3)
object.size(dgcm3)

Transpose:
system.time(svt <- t(t(svt3)))
system.time(dgcm <- t(t(dgcm3)))
identical(svt, svt3)
identical(dgcm, dgcm3)

rbind():
m4 <- matrix(rpois(45e6, lambda=0.4), ncol=1200)
svt4 <- SVT_SparseArray(m4)
dgcm4 <- as(m4, "dgCMatrix")

system.time(rbind(svt3, svt4))
system.time(rbind(dgcm3, dgcm4))

thread-control Number of threads used by SparseArray operations

Description

Use get_SparseArray_nthread or set_SparseArray_nthread to get or set the number of threads
to use by the multithreaded operations implemented in the SparseArray package.

Usage

get_SparseArray_nthread()
set_SparseArray_nthread(nthread=NULL)

Arguments

nthread The number of threads to use by multithreaded operations implemented in the
SparseArray package.
On systems where OpenMP is available, this must be NULL or an integer value
>= 1. When NULL (the default), a "reasonable" value will be used that never
exceeds one third of the number of logical cpus available on the machine.
On systems where OpenMP is not available, the supplied nthread is ignored
and set_SparseArray_nthread() is a no-op.

64 thread-control

Details

Multithreaded operations in the SparseArray package are implemented in C with OpenMP (https:
//www.openmp.org/).

Note that OpenMP is not available on all systems. On systems where it’s available, get_SparseArray_nthread()
is guaranteed to return a value >= 1. On systems where it’s not available (e.g. macOS), get_SparseArray_nthread()
returns 0 and set_SparseArray_nthread() is a no-op.

IMPORTANT: The portable way to disable multithreading is by calling set_SparseArray_nthread(1),
NOT set_SparseArray_nthread(0) (the latter returns an error on systems where OpenMP is
available).

Value

get_SparseArray_nthread() returns an integer value >= 1 on systems where OpenMP is avail-
able, and 0 on systems where it’s not.

set_SparseArray_nthread() returns the previous nthread value, that is, the value returned by
get_SparseArray_nthread() before the call to set_SparseArray_nthread(). Note that the
value is returned invisibly.

See Also

• SparseArray_matrixStats for SparseArray col/row summarization methods.

• SparseMatrix_mult for SparseMatrix multiplication and cross-product.

• SparseArray objects.

Examples

get_SparseArray_nthread()

if (get_SparseArray_nthread() != 0) { # multithreading is available
svt1 <- poissonSparseMatrix(77000L, 15000L, density=0.01)

'user' time is typically N x 'elapsed' time where N is roughly the
number of threads that was effectively used:
system.time(cv1 <- colVars(svt1))

svt2 <- poissonSparseMatrix(77000L, 300L, density=0.3) * 0.77
system.time(cp12 <- crossprod(svt1, svt2))

prev_nthread <- set_SparseArray_nthread(1) # disable multithreading
system.time(cv1 <- colVars(svt1))
system.time(cp12 <- crossprod(svt1, svt2))

Restore previous 'nthread' value:
set_SparseArray_nthread(prev_nthread)

}

https://www.openmp.org/
https://www.openmp.org/

Index

!,NaArray-method
(NaArray-Logic-methods), 20

!,SparseArray-method
(SparseArray-Logic-methods), 46

∗ algebra
NaArray-Arith-methods, 17
NaArray-Compare-methods, 18
NaArray-Logic-methods, 20
NaArray-matrixStats, 22
NaArray-summarization, 28
rowsum-methods, 35
SparseArray-Arith-methods, 42
SparseArray-Compare-methods, 44
SparseArray-Logic-methods, 46
SparseArray-matrixStats, 48
SparseArray-summarization, 57

∗ arith
NaArray-Arith-methods, 17
NaArray-Math-methods, 21
NaArray-matrixStats, 22
NaArray-summarization, 28
rowsum-methods, 35
SparseArray-Arith-methods, 42
SparseArray-Math-methods, 47
SparseArray-matrixStats, 48
SparseArray-summarization, 57

∗ array
extract_sparse_array, 6
is_nonna, 8
is_nonzero, 10
NaArray-abind, 15
NaArray-aperm, 16
NaArray-Arith-methods, 17
NaArray-Compare-methods, 18
NaArray-Logic-methods, 20
NaArray-Math-methods, 21
NaArray-matrixStats, 22
NaArray-misc-methods, 24
NaArray-subassignment, 26

NaArray-subsetting, 26
NaArray-summarization, 28
read_block_as_sparse, 34
rowsum-methods, 35
SparseArray-abind, 40
SparseArray-aperm, 42
SparseArray-Arith-methods, 42
SparseArray-Compare-methods, 44
SparseArray-Complex-methods, 46
SparseArray-Logic-methods, 46
SparseArray-Math-methods, 47
SparseArray-matrixStats, 48
SparseArray-misc-methods, 52
SparseArray-subassignment, 54
SparseArray-subsetting, 55
SparseArray-summarization, 57
SparseMatrix-mult, 58
sparseMatrix-utils, 59

∗ classes
COO_SparseArray-class, 3
NaArray, 13
SparseArray, 36
SVT_SparseArray-class, 59

∗ complex
SparseArray-Complex-methods, 46

∗ internal
extract_sparse_array, 6
read_block_as_sparse, 34
SparseArray-dim-tuning, 46
sparseMatrix-utils, 59

∗ manip
NaArray-abind, 15
SparseArray-abind, 40

∗ methods
COO_SparseArray-class, 3
extract_sparse_array, 6
is_nonna, 8
is_nonzero, 10
NaArray, 13

65

66 INDEX

NaArray-abind, 15
NaArray-aperm, 16
NaArray-Arith-methods, 17
NaArray-Compare-methods, 18
NaArray-Logic-methods, 20
NaArray-Math-methods, 21
NaArray-matrixStats, 22
NaArray-misc-methods, 24
NaArray-subassignment, 26
NaArray-subsetting, 26
NaArray-summarization, 28
read_block_as_sparse, 34
rowsum-methods, 35
SparseArray, 36
SparseArray-abind, 40
SparseArray-aperm, 42
SparseArray-Arith-methods, 42
SparseArray-Compare-methods, 44
SparseArray-Complex-methods, 46
SparseArray-Logic-methods, 46
SparseArray-Math-methods, 47
SparseArray-matrixStats, 48
SparseArray-misc-methods, 52
SparseArray-subassignment, 54
SparseArray-subsetting, 55
SparseArray-summarization, 57
SparseMatrix-mult, 58
sparseMatrix-utils, 59
SVT_SparseArray-class, 59

∗ utilities
randomSparseArray, 29
readSparseCSV, 32
thread-control, 63

+,NaArray,missing-method
(NaArray-Arith-methods), 17

+,SparseArray,missing-method
(SparseArray-Arith-methods), 42

-,NaArray,missing-method
(NaArray-Arith-methods), 17

-,SparseArray,missing-method
(SparseArray-Arith-methods), 42

[, 26, 55
%*% (SparseMatrix-mult), 58
%*%,ANY,SparseMatrix-method

(SparseMatrix-mult), 58
%*%,SparseMatrix,ANY-method

(SparseMatrix-mult), 58
%*%,SparseMatrix,SparseMatrix-method

(SparseMatrix-mult), 58
%*%,SparseMatrix,matrix-method

(SparseMatrix-mult), 58
%*%,matrix,SparseMatrix-method

(SparseMatrix-mult), 58
%*%, 58

abind, 16, 41
abind,NaArray-method (NaArray-abind), 15
abind,SparseArray-method

(SparseArray-abind), 40
anyNA, 29, 57
anyNA,NaArray-method

(NaArray-summarization), 28
anyNA,SparseArray-method

(SparseArray-summarization), 57
aperm, 16, 42
aperm,COO_SparseArray-method

(SparseArray-aperm), 42
aperm,NaArray-method (NaArray-aperm), 16
aperm,SVT_SparseArray-method

(SparseArray-aperm), 42
aperm.COO_SparseArray

(SparseArray-aperm), 42
aperm.NaArray (NaArray-aperm), 16
aperm.SVT_SparseArray

(SparseArray-aperm), 42
Arith,array,NaArray-method

(NaArray-Arith-methods), 17
Arith,array,SVT_SparseArray-method

(SparseArray-Arith-methods), 42
Arith,NaArray,array-method

(NaArray-Arith-methods), 17
Arith,NaArray,NaArray-method

(NaArray-Arith-methods), 17
Arith,NaArray,SVT_SparseArray-method

(NaArray-Arith-methods), 17
Arith,NaArray,vector-method

(NaArray-Arith-methods), 17
Arith,SVT_SparseArray,array-method

(SparseArray-Arith-methods), 42
Arith,SVT_SparseArray,NaArray-method

(NaArray-Arith-methods), 17
Arith,SVT_SparseArray,SVT_SparseArray-method

(SparseArray-Arith-methods), 42
Arith,SVT_SparseArray,vector-method

(SparseArray-Arith-methods), 42
Arith,vector,NaArray-method

(NaArray-Arith-methods), 17

INDEX 67

Arith,vector,SVT_SparseArray-method
(SparseArray-Arith-methods), 42

Array, 14, 37, 39
array, 4, 9, 12, 14, 16, 17, 19, 21, 22, 25, 26,

39, 41–43, 45–48, 53–55, 62
ArrayGrid, 35
arrayInd, 4
ArrayViewport, 34
as.array,COO_SparseArray-method

(COO_SparseArray-class), 3
as.array,NaArray-method (NaArray), 13
as.array,SVT_SparseArray-method

(SVT_SparseArray-class), 59
as.array.COO_SparseArray

(COO_SparseArray-class), 3
as.array.NaArray (NaArray), 13
as.array.SVT_SparseArray

(SVT_SparseArray-class), 59

bindROWS,NaArray-method
(NaArray-abind), 15

bindROWS,SparseArray-method
(SparseArray-abind), 40

cbind, 16, 40
cbind,NaArray-method (NaArray-abind), 15
cbind,SparseArray-method

(SparseArray-abind), 40
class:COO_SparseArray

(COO_SparseArray-class), 3
class:COO_SparseMatrix

(COO_SparseArray-class), 3
class:NaArray (NaArray), 13
class:NaMatrix (NaArray), 13
class:NULL_OR_list

(SVT_SparseArray-class), 59
class:SparseArray (SparseArray), 36
class:SparseMatrix (SparseArray), 36
class:SVT_SparseArray

(SVT_SparseArray-class), 59
class:SVT_SparseMatrix

(SVT_SparseArray-class), 59
coerce,ANY,COO_SparseArray-method

(COO_SparseArray-class), 3
coerce,ANY,COO_SparseMatrix-method

(COO_SparseArray-class), 3
coerce,ANY,SparseArray-method

(SVT_SparseArray-class), 59

coerce,ANY,SparseMatrix-method
(SVT_SparseArray-class), 59

coerce,ANY,SVT_SparseArray-method
(SVT_SparseArray-class), 59

coerce,ANY,SVT_SparseMatrix-method
(SVT_SparseArray-class), 59

coerce,Array,CsparseMatrix-method
(sparseMatrix-utils), 59

coerce,Array,dgCMatrix-method
(sparseMatrix-utils), 59

coerce,Array,dgRMatrix-method
(sparseMatrix-utils), 59

coerce,Array,lgCMatrix-method
(sparseMatrix-utils), 59

coerce,Array,lgRMatrix-method
(sparseMatrix-utils), 59

coerce,array,NaArray-method (NaArray),
13

coerce,Array,ngCMatrix-method
(sparseMatrix-utils), 59

coerce,Array,ngRMatrix-method
(sparseMatrix-utils), 59

coerce,Array,RsparseMatrix-method
(sparseMatrix-utils), 59

coerce,array,SparseArray-method
(SVT_SparseArray-class), 59

coerce,Array,sparseMatrix-method
(sparseMatrix-utils), 59

coerce,array,SVT_SparseArray-method
(SVT_SparseArray-class), 59

coerce,Array,TsparseMatrix-method
(sparseMatrix-utils), 59

coerce,COO_SparseArray,COO_SparseMatrix-method
(COO_SparseArray-class), 3

coerce,COO_SparseArray,SVT_SparseArray-method
(SVT_SparseArray-class), 59

coerce,COO_SparseMatrix,COO_SparseArray-method
(COO_SparseArray-class), 3

coerce,COO_SparseMatrix,dgCMatrix-method
(COO_SparseArray-class), 3

coerce,COO_SparseMatrix,dgRMatrix-method
(COO_SparseArray-class), 3

coerce,COO_SparseMatrix,dgTMatrix-method
(COO_SparseArray-class), 3

coerce,COO_SparseMatrix,lgCMatrix-method
(COO_SparseArray-class), 3

coerce,COO_SparseMatrix,lgRMatrix-method
(COO_SparseArray-class), 3

68 INDEX

coerce,COO_SparseMatrix,lgTMatrix-method
(COO_SparseArray-class), 3

coerce,COO_SparseMatrix,ngCMatrix-method
(COO_SparseArray-class), 3

coerce,COO_SparseMatrix,ngRMatrix-method
(COO_SparseArray-class), 3

coerce,COO_SparseMatrix,ngTMatrix-method
(COO_SparseArray-class), 3

coerce,COO_SparseMatrix,SparseArray-method
(COO_SparseArray-class), 3

coerce,COO_SparseMatrix,sparseMatrix-method
(COO_SparseArray-class), 3

coerce,COO_SparseMatrix,SVT_SparseMatrix-method
(SVT_SparseArray-class), 59

coerce,CsparseMatrix,ngCMatrix-method
(sparseMatrix-utils), 59

coerce,CsparseMatrix,SVT_SparseMatrix-method
(SVT_SparseArray-class), 59

coerce,dgCMatrix,COO_SparseMatrix-method
(COO_SparseArray-class), 3

coerce,dgCMatrix,ngCMatrix-method
(sparseMatrix-utils), 59

coerce,dgRMatrix,COO_SparseMatrix-method
(COO_SparseArray-class), 3

coerce,lgCMatrix,COO_SparseMatrix-method
(COO_SparseArray-class), 3

coerce,lgRMatrix,COO_SparseMatrix-method
(COO_SparseArray-class), 3

coerce,Matrix,COO_SparseArray-method
(COO_SparseArray-class), 3

coerce,matrix,dgRMatrix-method
(sparseMatrix-utils), 59

coerce,matrix,lgCMatrix-method
(sparseMatrix-utils), 59

coerce,matrix,lgRMatrix-method
(sparseMatrix-utils), 59

coerce,matrix,NaMatrix-method
(NaArray), 13

coerce,matrix,ngCMatrix-method
(sparseMatrix-utils), 59

coerce,matrix,ngRMatrix-method
(sparseMatrix-utils), 59

coerce,Matrix,SparseArray-method
(SVT_SparseArray-class), 59

coerce,matrix,SparseMatrix-method
(SVT_SparseArray-class), 59

coerce,matrix,SVT_SparseMatrix-method
(SVT_SparseArray-class), 59

coerce,NaArray,NaMatrix-method
(NaArray), 13

coerce,NaMatrix,NaArray-method
(NaArray), 13

coerce,ngCMatrix,COO_SparseMatrix-method
(COO_SparseArray-class), 3

coerce,ngRMatrix,COO_SparseMatrix-method
(COO_SparseArray-class), 3

coerce,RsparseMatrix,ngRMatrix-method
(sparseMatrix-utils), 59

coerce,RsparseMatrix,SparseMatrix-method
(COO_SparseArray-class), 3

coerce,sparseMatrix,SparseMatrix-method
(SVT_SparseArray-class), 59

coerce,SVT_SparseArray,COO_SparseArray-method
(SVT_SparseArray-class), 59

coerce,SVT_SparseArray,SVT_SparseMatrix-method
(SVT_SparseArray-class), 59

coerce,SVT_SparseMatrix,COO_SparseMatrix-method
(SVT_SparseArray-class), 59

coerce,SVT_SparseMatrix,dgCMatrix-method
(SVT_SparseArray-class), 59

coerce,SVT_SparseMatrix,dgTMatrix-method
(SVT_SparseArray-class), 59

coerce,SVT_SparseMatrix,lgCMatrix-method
(SVT_SparseArray-class), 59

coerce,SVT_SparseMatrix,lgTMatrix-method
(SVT_SparseArray-class), 59

coerce,SVT_SparseMatrix,ngCMatrix-method
(SVT_SparseArray-class), 59

coerce,SVT_SparseMatrix,ngTMatrix-method
(SVT_SparseArray-class), 59

coerce,SVT_SparseMatrix,SparseArray-method
(SVT_SparseArray-class), 59

coerce,SVT_SparseMatrix,SVT_SparseArray-method
(SVT_SparseArray-class), 59

coerce,TsparseMatrix,COO_SparseMatrix-method
(COO_SparseArray-class), 3

coerce,TsparseMatrix,ngTMatrix-method
(sparseMatrix-utils), 59

coerce,TsparseMatrix,SVT_SparseMatrix-method
(SVT_SparseArray-class), 59

colAlls (SparseArray-matrixStats), 48
colAlls,NaArray-method

(NaArray-matrixStats), 22
colAlls,SparseArray-method

(SparseArray-matrixStats), 48
colAnyNAs (SparseArray-matrixStats), 48

INDEX 69

colAnyNAs,NaArray-method
(NaArray-matrixStats), 22

colAnyNAs,SparseArray-method
(SparseArray-matrixStats), 48

colAnys (SparseArray-matrixStats), 48
colAnys,NaArray-method

(NaArray-matrixStats), 22
colAnys,SparseArray-method

(SparseArray-matrixStats), 48
colMaxs (SparseArray-matrixStats), 48
colMaxs,NaArray-method

(NaArray-matrixStats), 22
colMaxs,SparseArray-method

(SparseArray-matrixStats), 48
colMeans (SparseArray-matrixStats), 48
colMeans,NaArray-method

(NaArray-matrixStats), 22
colMeans,SparseArray-method

(SparseArray-matrixStats), 48
colMeans2 (SparseArray-matrixStats), 48
colMeans2,NaArray-method

(NaArray-matrixStats), 22
colMeans2,SparseArray-method

(SparseArray-matrixStats), 48
colMedians (SparseArray-matrixStats), 48
colMedians,SparseArray-method

(SparseArray-matrixStats), 48
colMins (SparseArray-matrixStats), 48
colMins,NaArray-method

(NaArray-matrixStats), 22
colMins,SparseArray-method

(SparseArray-matrixStats), 48
colProds (SparseArray-matrixStats), 48
colProds,NaArray-method

(NaArray-matrixStats), 22
colProds,SparseArray-method

(SparseArray-matrixStats), 48
colRanges, 24, 50
colRanges (SparseArray-matrixStats), 48
colRanges,NaArray-method

(NaArray-matrixStats), 22
colRanges,SparseArray-method

(SparseArray-matrixStats), 48
colSds (SparseArray-matrixStats), 48
colSds,NaArray-method

(NaArray-matrixStats), 22
colSds,SparseArray-method

(SparseArray-matrixStats), 48

colsum, 35
colsum (rowsum-methods), 35
colsum,dsparseMatrix-method

(rowsum-methods), 35
colsum,SparseMatrix-method

(rowsum-methods), 35
colSums, 24, 50
colSums (SparseArray-matrixStats), 48
colSums,NaArray-method

(NaArray-matrixStats), 22
colSums,SparseArray-method

(SparseArray-matrixStats), 48
colSums2 (SparseArray-matrixStats), 48
colSums2,NaArray-method

(NaArray-matrixStats), 22
colSums2,SparseArray-method

(SparseArray-matrixStats), 48
colVars, 24, 49, 50
colVars (SparseArray-matrixStats), 48
colVars,NaArray-method

(NaArray-matrixStats), 22
colVars,SparseArray-method

(SparseArray-matrixStats), 48
Compare,array,NaArray-method

(NaArray-Compare-methods), 18
Compare,array,SVT_SparseArray-method

(SparseArray-Compare-methods),
44

Compare,NaArray,array-method
(NaArray-Compare-methods), 18

Compare,NaArray,NaArray-method
(NaArray-Compare-methods), 18

Compare,NaArray,SVT_SparseArray-method
(NaArray-Compare-methods), 18

Compare,NaArray,vector-method
(NaArray-Compare-methods), 18

Compare,SVT_SparseArray,array-method
(SparseArray-Compare-methods),
44

Compare,SVT_SparseArray,NaArray-method
(NaArray-Compare-methods), 18

Compare,SVT_SparseArray,SVT_SparseArray-method
(SparseArray-Compare-methods),
44

Compare,SVT_SparseArray,vector-method
(SparseArray-Compare-methods),
44

Compare,vector,NaArray-method

70 INDEX

(NaArray-Compare-methods), 18
Compare,vector,SVT_SparseArray-method

(SparseArray-Compare-methods),
44

Complex,SVT_SparseArray-method
(SparseArray-Complex-methods),
46

COO_SparseArray, 7, 35, 37, 38, 42, 45–47,
57, 59

COO_SparseArray
(COO_SparseArray-class), 3

COO_SparseArray-class, 3
COO_SparseMatrix, 36, 38
COO_SparseMatrix

(COO_SparseArray-class), 3
COO_SparseMatrix-class

(COO_SparseArray-class), 3
crossprod, 58
crossprod (SparseMatrix-mult), 58
crossprod,ANY,SparseMatrix-method

(SparseMatrix-mult), 58
crossprod,matrix,SparseMatrix-method

(SparseMatrix-mult), 58
crossprod,SparseMatrix,ANY-method

(SparseMatrix-mult), 58
crossprod,SparseMatrix,matrix-method

(SparseMatrix-mult), 58
crossprod,SparseMatrix,missing-method

(SparseMatrix-mult), 58
crossprod,SparseMatrix,SparseMatrix-method

(SparseMatrix-mult), 58
CsparseMatrix-class, 62

dgCMatrix, 36
dgCMatrix-class, 4, 7, 12, 33, 35, 36, 39, 59,

62
dgRMatrix-class, 39
dgTMatrix, 36
dim,NaArray-method (NaArray), 13
dim,SparseArray-method (SparseArray), 36
dimnames,NaArray-method (NaArray), 13
dimnames,SparseArray-method

(SparseArray), 36
dimnames<-,NaArray,ANY-method

(NaArray), 13
dimnames<-,SparseArray,ANY-method

(SparseArray), 36
drop, 26, 55
dsparseMatrix, 35, 36

extract_array, 6, 7
extract_array,COO_SparseArray-method

(SparseArray-subsetting), 55
extract_array,NaArray-method

(NaArray-subsetting), 26
extract_array,SVT_SparseArray-method

(SparseArray-subsetting), 55
extract_na_array (NaArray-subsetting),

26
extract_na_array,NaArray-method

(NaArray-subsetting), 26
extract_sparse_array, 6, 34, 35
extract_sparse_array,ANY-method

(extract_sparse_array), 6
extract_sparse_array,COO_SparseArray-method

(SparseArray-subsetting), 55
extract_sparse_array,SVT_SparseArray-method

(SparseArray-subsetting), 55

get_SparseArray_nthread
(thread-control), 63

is.infinite, 25, 53
is.infinite (SparseArray-misc-methods),

52
is.infinite,COO_SparseArray-method

(SparseArray-misc-methods), 52
is.infinite,NaArray-method

(NaArray-misc-methods), 24
is.infinite,SVT_SparseArray-method

(SparseArray-misc-methods), 52
is.na, 53
is.na (SparseArray-misc-methods), 52
is.na,COO_SparseArray-method

(SparseArray-misc-methods), 52
is.na,NaArray-method

(NaArray-misc-methods), 24
is.na,SVT_SparseArray-method

(SparseArray-misc-methods), 52
is.nan, 25
is.nan (SparseArray-misc-methods), 52
is.nan,COO_SparseArray-method

(SparseArray-misc-methods), 52
is.nan,NaArray-method

(NaArray-misc-methods), 24
is.nan,SVT_SparseArray-method

(SparseArray-misc-methods), 52
is_nonna, 8, 12, 14
is_nonna,ANY-method (is_nonna), 8

INDEX 71

is_nonna,NaArray-method (NaArray), 13
is_nonzero, 9, 10, 38
is_nonzero,ANY-method (is_nonzero), 10
is_nonzero,COO_SparseArray-method

(COO_SparseArray-class), 3
is_nonzero,sparseMatrix-method

(is_nonzero), 10
is_nonzero,SVT_SparseArray-method

(SVT_SparseArray-class), 59
is_sparse, 6, 7, 34, 35, 39
is_sparse,SparseArray-method

(SparseArray), 36

lgCMatrix-class, 4, 12, 39, 62
Lindex, 9, 11
Lindex2Mindex, 4, 26, 55
Logic,array,NaArray-method

(NaArray-Logic-methods), 20
Logic,array,SVT_SparseArray-method

(SparseArray-Logic-methods), 46
Logic,NaArray,array-method

(NaArray-Logic-methods), 20
Logic,NaArray,NaArray-method

(NaArray-Logic-methods), 20
Logic,NaArray,SVT_SparseArray-method

(NaArray-Logic-methods), 20
Logic,NaArray,vector-method

(NaArray-Logic-methods), 20
Logic,SVT_SparseArray,array-method

(SparseArray-Logic-methods), 46
Logic,SVT_SparseArray,NaArray-method

(NaArray-Logic-methods), 20
Logic,SVT_SparseArray,SVT_SparseArray-method

(SparseArray-Logic-methods), 46
Logic,SVT_SparseArray,vector-method

(SparseArray-Logic-methods), 46
Logic,vector,NaArray-method

(NaArray-Logic-methods), 20
Logic,vector,SVT_SparseArray-method

(SparseArray-Logic-methods), 46

Math,NaArray-method
(NaArray-Math-methods), 21

Math,SVT_SparseArray-method
(SparseArray-Math-methods), 47

Math2,NaArray-method
(NaArray-Math-methods), 21

Math2,SVT_SparseArray-method
(SparseArray-Math-methods), 47

matrix, 58
mean, 29, 57
mean,NaArray-method

(NaArray-summarization), 28
mean,SparseArray-method

(SparseArray-summarization), 57
mean.NaArray (NaArray-summarization), 28
mean.SparseArray

(SparseArray-summarization), 57

NaArray, 8, 9, 13, 15–17, 19–26, 28, 29
NaArray-abind, 15
NaArray-aperm, 16
NaArray-Arith (NaArray-Arith-methods),

17
NaArray-arith (NaArray-Arith-methods),

17
NaArray-Arith-methods, 17
NaArray-arith-methods

(NaArray-Arith-methods), 17
NaArray-class (NaArray), 13
NaArray-combine (NaArray-abind), 15
NaArray-Compare

(NaArray-Compare-methods), 18
NaArray-compare

(NaArray-Compare-methods), 18
NaArray-Compare-methods, 18
NaArray-compare-methods

(NaArray-Compare-methods), 18
NaArray-Logic (NaArray-Logic-methods),

20
NaArray-logic (NaArray-Logic-methods),

20
NaArray-Logic-methods, 20
NaArray-logic-methods

(NaArray-Logic-methods), 20
NaArray-Math (NaArray-Math-methods), 21
NaArray-math (NaArray-Math-methods), 21
NaArray-Math-methods, 21
NaArray-math-methods

(NaArray-Math-methods), 21
NaArray-Math2 (NaArray-Math-methods), 21
NaArray-math2 (NaArray-Math-methods), 21
NaArray-Math2-methods

(NaArray-Math-methods), 21
NaArray-math2-methods

(NaArray-Math-methods), 21
NaArray-matrixStats, 22
NaArray-misc (NaArray-misc-methods), 24

72 INDEX

NaArray-misc-methods, 24
NaArray-subassignment, 26
NaArray-subsetting, 26
NaArray-summarization, 28
NaArray-transposition (NaArray-aperm),

16
NaArray_abind, 14
NaArray_abind (NaArray-abind), 15
NaArray_aperm, 14
NaArray_aperm (NaArray-aperm), 16
NaArray_Arith, 14
NaArray_Arith (NaArray-Arith-methods),

17
NaArray_arith (NaArray-Arith-methods),

17
NaArray_Arith-methods

(NaArray-Arith-methods), 17
NaArray_arith-methods

(NaArray-Arith-methods), 17
NaArray_combine (NaArray-abind), 15
NaArray_Compare, 14
NaArray_Compare

(NaArray-Compare-methods), 18
NaArray_compare

(NaArray-Compare-methods), 18
NaArray_Compare-methods

(NaArray-Compare-methods), 18
NaArray_compare-methods

(NaArray-Compare-methods), 18
NaArray_Logic, 14
NaArray_Logic (NaArray-Logic-methods),

20
NaArray_logic (NaArray-Logic-methods),

20
NaArray_Logic-methods

(NaArray-Logic-methods), 20
NaArray_logic-methods

(NaArray-Logic-methods), 20
NaArray_Math, 14
NaArray_Math (NaArray-Math-methods), 21
NaArray_math (NaArray-Math-methods), 21
NaArray_Math2 (NaArray-Math-methods), 21
NaArray_math2 (NaArray-Math-methods), 21
NaArray_Math2_methods

(NaArray-Math-methods), 21
NaArray_math2_methods

(NaArray-Math-methods), 21
NaArray_Math_methods

(NaArray-Math-methods), 21
NaArray_math_methods

(NaArray-Math-methods), 21
NaArray_matrixStats, 14
NaArray_matrixStats

(NaArray-matrixStats), 22
NaArray_misc, 14
NaArray_misc (NaArray-misc-methods), 24
NaArray_misc_methods

(NaArray-misc-methods), 24
NaArray_subassignment, 14
NaArray_subassignment

(NaArray-subassignment), 26
NaArray_subsetting, 14
NaArray_subsetting

(NaArray-subsetting), 26
NaArray_summarization, 14
NaArray_summarization

(NaArray-summarization), 28
NaArray_transposition (NaArray-aperm),

16
NaMatrix, 15, 23, 24
NaMatrix (NaArray), 13
NaMatrix-class (NaArray), 13
nchar, 53
nchar (SparseArray-misc-methods), 52
nchar,COO_SparseArray-method

(SparseArray-misc-methods), 52
ngCMatrix-class, 12
nnacount (is_nonna), 8
nnacount,ANY-method (is_nonna), 8
nnacount,NaArray-method (NaArray), 13
nnavals (is_nonna), 8
nnavals,ANY-method (is_nonna), 8
nnavals,NaArray-method (NaArray), 13
nnavals<- (is_nonna), 8
nnavals<-,ANY-method (is_nonna), 8
nnawhich (is_nonna), 8
nnawhich,ANY-method (is_nonna), 8
nnawhich,NaArray-method (NaArray), 13
NULL_OR_list (SVT_SparseArray-class), 59
NULL_OR_list-class

(SVT_SparseArray-class), 59
nzcoo (COO_SparseArray-class), 3
nzcoo,COO_SparseArray-method

(COO_SparseArray-class), 3
nzcount (is_nonzero), 10
nzcount,ANY-method (is_nonzero), 10

INDEX 73

nzcount,COO_SparseArray-method
(COO_SparseArray-class), 3

nzcount,CsparseMatrix-method
(is_nonzero), 10

nzcount,RsparseMatrix-method
(is_nonzero), 10

nzcount,SVT_SparseArray-method
(SVT_SparseArray-class), 59

nzcount,TsparseMatrix-method
(is_nonzero), 10

nzdata (COO_SparseArray-class), 3
nzdata,COO_SparseArray-method

(COO_SparseArray-class), 3
nzvals (is_nonzero), 10
nzvals,ANY-method (is_nonzero), 10
nzvals,COO_SparseArray-method

(COO_SparseArray-class), 3
nzvals,dgCMatrix-method (is_nonzero), 10
nzvals,lgCMatrix-method (is_nonzero), 10
nzvals,nMatrix-method (is_nonzero), 10
nzvals,SVT_SparseArray-method

(SVT_SparseArray-class), 59
nzvals<- (is_nonzero), 10
nzvals<-,ANY-method (is_nonzero), 10
nzvals<-,COO_SparseArray-method

(COO_SparseArray-class), 3
nzwhich (is_nonzero), 10
nzwhich,ANY-method (is_nonzero), 10
nzwhich,COO_SparseArray-method

(COO_SparseArray-class), 3
nzwhich,CsparseMatrix-method

(is_nonzero), 10
nzwhich,RsparseMatrix-method

(is_nonzero), 10
nzwhich,SVT_SparseArray-method

(SVT_SparseArray-class), 59

pmax (SparseArray-misc-methods), 52
pmax,SparseArray-method

(SparseArray-misc-methods), 52
pmin, 53
pmin (SparseArray-misc-methods), 52
pmin,SparseArray-method

(SparseArray-misc-methods), 52
poissonSparseArray (randomSparseArray),

29
poissonSparseMatrix

(randomSparseArray), 29

randomSparseArray, 29, 39
randomSparseMatrix (randomSparseArray),

29
range, 29, 57
range,COO_SparseArray-method

(SparseArray-summarization), 57
range,NaArray-method

(NaArray-summarization), 28
range,SVT_SparseArray-method

(SparseArray-summarization), 57
range.COO_SparseArray

(SparseArray-summarization), 57
range.NaArray (NaArray-summarization),

28
range.SVT_SparseArray

(SparseArray-summarization), 57
rbind,NaArray-method (NaArray-abind), 15
rbind,SparseArray-method

(SparseArray-abind), 40
read_block, 34, 35
read_block_as_dense, 34
read_block_as_sparse, 6, 7, 34
read_block_as_sparse,ANY-method

(read_block_as_sparse), 34
readSparseCSV, 32, 39
readSparseTable (readSparseCSV), 32
round,NaArray-method

(NaArray-Math-methods), 21
round,SVT_SparseArray-method

(SparseArray-Math-methods), 47
rowAlls (SparseArray-matrixStats), 48
rowAlls,SparseArray-method

(SparseArray-matrixStats), 48
rowAnyNAs (SparseArray-matrixStats), 48
rowAnyNAs,NaArray-method

(NaArray-matrixStats), 22
rowAnyNAs,SparseArray-method

(SparseArray-matrixStats), 48
rowAnys (SparseArray-matrixStats), 48
rowAnys,SparseArray-method

(SparseArray-matrixStats), 48
rowMaxs (SparseArray-matrixStats), 48
rowMaxs,NaArray-method

(NaArray-matrixStats), 22
rowMaxs,SparseArray-method

(SparseArray-matrixStats), 48
rowMeans (SparseArray-matrixStats), 48
rowMeans,SparseArray-method

74 INDEX

(SparseArray-matrixStats), 48
rowMeans2 (SparseArray-matrixStats), 48
rowMeans2,SparseArray-method

(SparseArray-matrixStats), 48
rowMedians (SparseArray-matrixStats), 48
rowMedians,SparseArray-method

(SparseArray-matrixStats), 48
rowMins (SparseArray-matrixStats), 48
rowMins,NaArray-method

(NaArray-matrixStats), 22
rowMins,SparseArray-method

(SparseArray-matrixStats), 48
rowProds (SparseArray-matrixStats), 48
rowProds,SparseArray-method

(SparseArray-matrixStats), 48
rowRanges (SparseArray-matrixStats), 48
rowRanges,NaArray-method

(NaArray-matrixStats), 22
rowRanges,SparseArray-method

(SparseArray-matrixStats), 48
rowSds (SparseArray-matrixStats), 48
rowSds,SparseArray-method

(SparseArray-matrixStats), 48
rowsum, 35, 36
rowsum (rowsum-methods), 35
rowsum,dsparseMatrix-method

(rowsum-methods), 35
rowsum,SparseMatrix-method

(rowsum-methods), 35
rowsum-methods, 35
rowsum.dsparseMatrix (rowsum-methods),

35
rowsum.SparseMatrix (rowsum-methods), 35
rowsum_methods, 39
rowsum_methods (rowsum-methods), 35
rowSums (SparseArray-matrixStats), 48
rowSums,NaArray-method

(NaArray-matrixStats), 22
rowSums,SparseArray-method

(SparseArray-matrixStats), 48
rowSums2 (SparseArray-matrixStats), 48
rowSums2,NaArray-method

(NaArray-matrixStats), 22
rowSums2,SparseArray-method

(SparseArray-matrixStats), 48
rowVars (SparseArray-matrixStats), 48
rowVars,SparseArray-method

(SparseArray-matrixStats), 48

rpois, 30, 31
rsparsematrix, 30, 31, 62

S4groupGeneric, 17, 19–22, 42, 43, 45–48
sd,NaArray-method

(NaArray-summarization), 28
sd,SparseArray-method

(SparseArray-summarization), 57
set_SparseArray_nthread, 24, 50, 58
set_SparseArray_nthread

(thread-control), 63
show,NaArray-method (NaArray), 13
show,SparseArray-method (SparseArray),

36
signif,NaArray-method

(NaArray-Math-methods), 21
signif,SVT_SparseArray-method

(SparseArray-Math-methods), 47
SparseArray, 4, 6, 7, 11, 12, 24, 25, 29–31,

33, 35, 36, 40–43, 45–50, 52–55, 57,
60, 62, 64

SparseArray-abind, 40
SparseArray-aperm, 42
SparseArray-Arith

(SparseArray-Arith-methods), 42
SparseArray-arith

(SparseArray-Arith-methods), 42
SparseArray-Arith-methods, 42
SparseArray-arith-methods

(SparseArray-Arith-methods), 42
SparseArray-class (SparseArray), 36
SparseArray-combine

(SparseArray-abind), 40
SparseArray-Compare

(SparseArray-Compare-methods),
44

SparseArray-compare
(SparseArray-Compare-methods),
44

SparseArray-Compare-methods, 44
SparseArray-compare-methods

(SparseArray-Compare-methods),
44

SparseArray-Complex
(SparseArray-Complex-methods),
46

SparseArray-complex
(SparseArray-Complex-methods),
46

INDEX 75

SparseArray-Complex-methods, 46
SparseArray-complex-methods

(SparseArray-Complex-methods),
46

SparseArray-dim-tuning, 46
SparseArray-Logic

(SparseArray-Logic-methods), 46
SparseArray-logic

(SparseArray-Logic-methods), 46
SparseArray-Logic-methods, 46
SparseArray-logic-methods

(SparseArray-Logic-methods), 46
SparseArray-Math

(SparseArray-Math-methods), 47
SparseArray-math

(SparseArray-Math-methods), 47
SparseArray-Math-methods, 47
SparseArray-math-methods

(SparseArray-Math-methods), 47
SparseArray-Math2

(SparseArray-Math-methods), 47
SparseArray-math2

(SparseArray-Math-methods), 47
SparseArray-Math2-methods

(SparseArray-Math-methods), 47
SparseArray-math2-methods

(SparseArray-Math-methods), 47
SparseArray-matrixStats, 48
SparseArray-misc

(SparseArray-misc-methods), 52
SparseArray-misc-methods, 52
SparseArray-subassignment, 54
SparseArray-subsetting, 55
SparseArray-summarization, 57
SparseArray-transposition

(SparseArray-aperm), 42
SparseArray_abind, 38
SparseArray_abind (SparseArray-abind),

40
SparseArray_aperm, 38
SparseArray_aperm (SparseArray-aperm),

42
SparseArray_Arith, 38
SparseArray_Arith

(SparseArray-Arith-methods), 42
SparseArray_arith

(SparseArray-Arith-methods), 42
SparseArray_Arith-methods

(SparseArray-Arith-methods), 42
SparseArray_arith-methods

(SparseArray-Arith-methods), 42
SparseArray_combine

(SparseArray-abind), 40
SparseArray_Compare, 38
SparseArray_Compare

(SparseArray-Compare-methods),
44

SparseArray_compare
(SparseArray-Compare-methods),
44

SparseArray_Compare-methods
(SparseArray-Compare-methods),
44

SparseArray_compare-methods
(SparseArray-Compare-methods),
44

SparseArray_Complex, 39
SparseArray_Complex

(SparseArray-Complex-methods),
46

SparseArray_complex
(SparseArray-Complex-methods),
46

SparseArray_Complex_methods
(SparseArray-Complex-methods),
46

SparseArray_complex_methods
(SparseArray-Complex-methods),
46

SparseArray_dim_tuning
(SparseArray-dim-tuning), 46

SparseArray_Logic, 38
SparseArray_Logic

(SparseArray-Logic-methods), 46
SparseArray_logic

(SparseArray-Logic-methods), 46
SparseArray_Logic-methods

(SparseArray-Logic-methods), 46
SparseArray_logic-methods

(SparseArray-Logic-methods), 46
SparseArray_Math, 38
SparseArray_Math

(SparseArray-Math-methods), 47
SparseArray_math

(SparseArray-Math-methods), 47
SparseArray_Math2

76 INDEX

(SparseArray-Math-methods), 47
SparseArray_math2

(SparseArray-Math-methods), 47
SparseArray_Math2_methods

(SparseArray-Math-methods), 47
SparseArray_math2_methods

(SparseArray-Math-methods), 47
SparseArray_Math_methods

(SparseArray-Math-methods), 47
SparseArray_math_methods

(SparseArray-Math-methods), 47
SparseArray_matrixStats, 39, 64
SparseArray_matrixStats

(SparseArray-matrixStats), 48
SparseArray_misc, 39
SparseArray_misc

(SparseArray-misc-methods), 52
SparseArray_misc_methods

(SparseArray-misc-methods), 52
SparseArray_subassignment, 38
SparseArray_subassignment

(SparseArray-subassignment), 54
SparseArray_subsetting, 38
SparseArray_subsetting

(SparseArray-subsetting), 55
SparseArray_summarization, 38
SparseArray_summarization

(SparseArray-summarization), 57
SparseArray_transposition

(SparseArray-aperm), 42
SparseMatrix, 30, 32, 35, 36, 40, 49, 58
SparseMatrix (SparseArray), 36
SparseMatrix-class (SparseArray), 36
SparseMatrix-mult, 58
sparseMatrix-utils, 59
SparseMatrix_mult, 39, 64
SparseMatrix_mult (SparseMatrix-mult),

58
sparseMatrix_utils

(sparseMatrix-utils), 59
sparsity (is_nonzero), 10
SVT_SparseArray, 3, 4, 7, 13, 14, 17, 19–21,

30, 31, 35, 37, 38, 42, 43, 45–47, 50,
57

SVT_SparseArray
(SVT_SparseArray-class), 59

SVT_SparseArray-class, 59
SVT_SparseMatrix, 30, 32, 36, 38

SVT_SparseMatrix
(SVT_SparseArray-class), 59

SVT_SparseMatrix-class
(SVT_SparseArray-class), 59

t,NaMatrix-method (NaArray-aperm), 16
t,SVT_SparseMatrix-method

(SparseArray-aperm), 42
t.NaMatrix (NaArray-aperm), 16
t.SVT_SparseMatrix (SparseArray-aperm),

42
tcrossprod, 58
tcrossprod (SparseMatrix-mult), 58
tcrossprod,ANY,SparseMatrix-method

(SparseMatrix-mult), 58
tcrossprod,matrix,SparseMatrix-method

(SparseMatrix-mult), 58
tcrossprod,SparseMatrix,ANY-method

(SparseMatrix-mult), 58
tcrossprod,SparseMatrix,matrix-method

(SparseMatrix-mult), 58
tcrossprod,SparseMatrix,missing-method

(SparseMatrix-mult), 58
tcrossprod,SparseMatrix,SparseMatrix-method

(SparseMatrix-mult), 58
thread-control, 63
thread_control (thread-control), 63
tolower, 53
tolower (SparseArray-misc-methods), 52
tolower,COO_SparseArray-method

(SparseArray-misc-methods), 52
toupper (SparseArray-misc-methods), 52
toupper,COO_SparseArray-method

(SparseArray-misc-methods), 52
tune_Array_dims,NaArray-method

(NaArray-subsetting), 26
tune_Array_dims,SVT_SparseArray-method

(SparseArray-dim-tuning), 46
type, 7, 35, 58
type,COO_SparseArray-method

(COO_SparseArray-class), 3
type,NaArray-method (NaArray), 13
type,SVT_SparseArray-method

(SVT_SparseArray-class), 59
type<-,COO_SparseArray-method

(COO_SparseArray-class), 3
type<-,NaArray-method (NaArray), 13
type<-,SVT_SparseArray-method

(SVT_SparseArray-class), 59

INDEX 77

var,NaArray,ANY-method
(NaArray-summarization), 28

var,SparseArray,ANY-method
(SparseArray-summarization), 57

which, 9, 12, 39
writeSparseCSV (readSparseCSV), 32

	COO_SparseArray-class
	extract_sparse_array
	is_nonna
	is_nonzero
	NaArray
	NaArray-abind
	NaArray-aperm
	NaArray-Arith-methods
	NaArray-Compare-methods
	NaArray-Logic-methods
	NaArray-Math-methods
	NaArray-matrixStats
	NaArray-misc-methods
	NaArray-subassignment
	NaArray-subsetting
	NaArray-summarization
	randomSparseArray
	readSparseCSV
	read_block_as_sparse
	rowsum-methods
	SparseArray
	SparseArray-abind
	SparseArray-aperm
	SparseArray-Arith-methods
	SparseArray-Compare-methods
	SparseArray-Complex-methods
	SparseArray-dim-tuning
	SparseArray-Logic-methods
	SparseArray-Math-methods
	SparseArray-matrixStats
	SparseArray-misc-methods
	SparseArray-subassignment
	SparseArray-subsetting
	SparseArray-summarization
	SparseMatrix-mult
	sparseMatrix-utils
	SVT_SparseArray-class
	thread-control
	Index

