Package ‘scBFA’

February 7, 2026

Version 1.25.0
Date 2019-03-09

Title A dimensionality reduction tool using gene detection pattern to
mitigate noisy expression profile of scRNA-seq

Description This package is designed to model gene detection pattern of scRNA-seq through a bi-
nary factor analysis model. This model allows user to pass into a cell level covariate ma-
trix X and gene level covariate matrix Q to account for nuisance variance(e.g batch ef-
fect), and it will output a low dimensional embedding matrix for downstream analysis.

URL https://github.com/ucdavis/quon-titative-biology/BFA

BugReports https://github.com/ucdavis/quon-titative-biology/BFA/issues

biocViews SingleCell, Transcriptomics,
DimensionReduction,GeneExpression, ATACSeq, BatchEffect, KEGG,
QualityControl

Depends R (>=3.6)

Imports SingleCellExperiment, SummarizedExperiment, Seurat, MASS,
zinbwave, stats, copula, ggplot2, DESeq?2, utils, grid, methods,
Matrix

Suggests knitr, rmarkdown, testthat, Rtsne
VignetteBuilder knitr

RoxygenNote 7.0.2

License GPL-3 + file LICENSE
LazyData true

Encoding UTF-8

git_url https://git.bioconductor.org/packages/scBFA
git_branch devel

git_last_commit 128392e¢
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-02-06

https://github.com/ucdavis/quon-titative-biology/BFA
https://github.com/ucdavis/quon-titative-biology/BFA/issues

BinaryPCA

Author Ruoxin Li [aut, cre],
Gerald Quon [aut]

Maintainer Ruoxin Li <uskli@ucdavis.edu>

Contents
BinaryPCA e 2
celltype L 4
celltype_toy e e e 4
diagnose e e e e 5
disperPlot e 6
exprdata e 6
getGeneExpr 7
getLoading 7
GELSCOTE o o o e e e e e e e 8
gradient e e 8
gradient_chunk L 9
InitBinaryFA e e 9
neg_loglikelihood 10
neg_loglikelihood_chunk Lo 11
OptimBFA e 11
(] 107 = 12
SCBFA . . e 13
SCNOISESIM 15
ZIND_LOY . . . o o e e e e 16

Index 17

BinaryPCA Performs Binary PCA (as outlined in our paper). This function take the
input of gene expression profile and perform PCA on gene detection
pattern
Description

Performs Binary PCA (as outlined in our paper). This function take the input of gene expression
profile and perform PCA on gene detection pattern

Usage

BinaryPCA(scData, X = NULL, scale. = FALSE, center = TRUE)

BinaryPCA 3
Arguments
scData can be a raw count matrix, in which rows are genes and columns are cells; can
be a seurat object; can be a SingleCellExperiment object.
X N by C covariate matrix,e.g batch effect, in which rows are cells,columns are
number of covariates. If no such covariates available X = NULL
scale. Logical value isndicating whether the variables should be scaled to have unit
variance before the analysis takes place. In general scaling is not advisable,
since we think the variance in the gene detection space is potentially associated
with celltypes (e.g cell type specific markers)
center Logical value indicating whether the variables should be shifted to be zero cen-
tered
Value

A list with class "prcomp",containing the following components:

sdev: the standard deviations of the principal components (i.e., the square roots of the eigenvalues
of the covariance/correlation matrix, though the calculation is actually done with the singular values

of the data matrix).

rotation: the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors).
The function princomp returns this in the element loadings.

x: the rotated data (the centred (and scaled if requested) data multiplied by the rotation matrix) is
returned. Hence, cov(X) is the diagonal matrix diag(sdev”2).

center, scale. centering and scaling used, or FALSE.

Examples

Working with Seurat or SingleCellExperiment object

library(Seurat)
library(SingleCellExperiment)

Input expression profile, 5 genes x 3 cells

GeneExpr = matrix(rpois(15,1),nrow = 5,ncol = 3)

rownames (GeneExpr) = paste@("gene",seq_len(nrow(GeneExpr)))
colnames(GeneExpr) = paste@(”cell”,seq_len(ncol(GeneExpr)))
celltype = as.factor(sample(c(1,2,3),3,replace = TRUE))

Create cell level technical batches

batch = sample(c("replicate 1","replicate 2","replicate 2"))
X = matrix(NA,nrow = length(batch),ncol = 1)

X[which(batch =="replicate 1"), 1 = 0

X[which(batch =="replicate 2"), 1 =1

rownames(X) = colnames(GeneExpr)

##run BFA with raw count matrix

4 celltype_toy

bpca_model = BinaryPCA(scData = GeneExpr,X = scale(X))
Create Seurat object for input to BFA

n

scData = CreateSeuratObject(counts = GeneExpr,project = "sc"”,min.cells = @)
Standardize the covariate matrix should be a default operation
bpca_model = BinaryPCA(scData = scData, X = scale(X))

Build the SingleCellExperiment object for input to BFA

Set up SingleCellExperiment class

sce <- SingleCellExperiment(assay = list(counts = GeneExpr))

Standardize the covariate matrix should be a default operation

bpca_model = BinaryPCA(scData = sce, X = scale(X))

celltype Cell types as labels of example scRNA-seq dataset(exprdata)

Description

A vector contains the cell types as labels for cells in example scRNA-seq dataset(exprdata)

Usage
data(celltype)

References

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89232

celltype_toy toy cell type vector with 3 cell types generated for 5 cells in toy dataset

Description

The cell type vector is generated from the following code

Usage
data(celltype_toy)

Details

celltype = as.factor(sample(c(1,2,3),5,replace = TRUE))

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89232

diagnose 5

diagnose Perform diagnoisis of dispersion on the expression profile to check
whether scBFA works on specific dataset

Description

Perform diagnoisis of dispersion on the expression profile to check whether scBFA works on spe-
cific dataset

Usage

diagnose(
scData,
sampleInfo = NULL,
disperType = "Fitted",

diagnose_feature = "dispersion”
)
Arguments

scData can be a raw count matrix, in which rows are genes and columns are cells; can
be a seurat object; can be a SingleCellExperiment object.

sampleInfo sample level feature matrix,e.g batch effect,experimental conditions in which
rows are cells,columns are number of covariates.Default is NULL

disperType a parameter to tell which dispersion estimate the user can plot DESeq?2 offers

stepwise dispersion estimate, a gene wise dispersion estimate using "GeneEst",
dispersion estimate from fitted disperions ~ mean curve (using "Fitted") And
final MAP estimate,using "Map". Default value is "Fitted"

diagnose_feature
a parameter to determine whether the user want to check GDR or dispersion.

Value

A Figure to tell the where the input data’s dispersion ~ tpm curve align to the 14 benchmark datasets
in Figure 2.a or Gene detection rate

Examples

data(exprdata)
diagnose(scData = exprdata)

6 exprdata

disperPlot Reference dataset(disperPlot)

Description

A dataframe contains all the gene-wise dispersion estimates loess curve for 14 datasets we bench-
marked in Figure 2.a

Usage

data(disperPlot)

Details

The variable in the columns are: fitted_dispersion: the log value of gene-wise dispersion after fitting
a loess curve with respect to TPM value. Note that the genes at the top 2.5 meantpm is average tpm
value calculated per gene dataset are nams for datasets variance is gene selection method, here is
HEG vs HVG

exprdata ScRNA-seq dataset(exprdata)

Description

A matrix contains 950 cells and 500 genes. The source of this dataset is cDC/ pre-DC cells(see
supplementary files) We subset most variant 100 genes as example scRNA-seq dataset(exprdata)

Usage

data(exprdata)

References

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89232

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89232

getGeneExpr 7

getGeneExpr Function to extract gene expression matrix from input observation ma-
trix

Description

Function to extract gene expression matrix from input observation matrix

Usage
getGeneExpr(scData)
Arguments
scData can be a raw count matrix, in which rows are genes and columns are cells; can
be a seurat object; can be a SingleCellExperiment object
Value

a raw expression matrix in which rows are genes and columns are cells.

Examples

scData = matrix(rpois(15,1),3,5)

GeneExpr = getGeneExpr(scData)

getlLoading Function to get low dimensional loading matrix

Description

Function to get low dimensional loading matrix

Usage

getLoading(modelEnv)
Arguments

modelEnv output environment variable
Value

A: G by K compressed feature space

8 gradient
Examples
GeneExpr = matrix(rpois(15,1),3,5)
bfa_model = scBFA(scData = GeneExpr,X = NULL,numFactors =2)
A = getlLoading(bfa_model)
getScore Function to get low dimensional embedding matrix
Description
Function to get low dimensional embedding matrix
Usage
getScore(modelEnv)
Arguments
modelEnv output environment variable
Value
Z: N by K low dimensional embedding
Examples
GeneExpr = matrix(rpois(15,1),3,5)
bfa_model = scBFA(scData = GeneExpr,X = NULL,numFactors =2)
Z = getScore(bfa_model)
gradient Calculate gradient of the negative log likelihood, used for calls to the
optim() function.
Description
Calculate gradient of the negative log likelihood, used for calls to the optim() function.
Usage
gradient(parameters, modelEnv)
Arguments
parameters Vectorized parameter space.
modelEnv Environment variable contains parameter space, and global variables such as

N,G,C,detection matrix B, etc

gradient_chunk 9

Value

Vectorized gradient

gradient_chunk Calculate gradient of the negative log likelihood, used for calls to the
optim() function.

Description

Calculate gradient of the negative log likelihood, used for calls to the optim() function.

Usage

gradient_chunk(parameters, modelEnv)

Arguments
parameters Vectorized parameter space.
modelEnv Environment variable contains parameter space, and global variables such as
N,G,C,detection matrix B, etc
Value

Vectorized gradient

InitBinaryFA This function should be called to initialize input parameters into the
main scBFA function

Description

This function should be called to initialize input parameters into the main scBFA function

Usage

InitBinaryFA(
modelEnv,
GeneExpr,
numFactors,
epsilon,
X = NULL,
Q = NULL,
initCellcoef,
updateCellcoef,
updateGenecoef,
NUM_CELLS_PER_CHUNK = min(ncol(GeneExpr), 50000),
doChunking = (NUM_CELLS_PER_CHUNK < modelEnv$numCells)

10 neg_loglikelihood

Arguments
modelEnv Empty R environment variable to contain following parameters: A,Z,V,U,5,7,¢
GeneExpr G by N rawcount matrix, in which rows are genes and columns are cells
numFactors Numeric value, number of latent dimensions
epsilon Numeric value, parameter to control the strength of regularization
X N by C cell-specific covariate matrix(e.g batch effect), in which rows are cells,columns
are number of covariates. If no such covariates are available, then X = NULL
Q G by T gene-specific covariate matrix(e.g quality control measures), in which

rows are genes columns are number of covariates, If no such covariates are avail-
able, then Q = NULL

initCellcoef Initialization of C by G gene-specific coefficient matrix as user-defined coeffi-
cient 5. Such user defined coefficient can be applied to address confounding
batch effect

updateCellcoef Logical value, parameter to decide whether to update C by G gene-specific coef-
ficient matrix. Again, when the cell types are confounded with technical batches

or there is no cell level covariate matrix, the user can keep the initialization of
coefficients as known estimate.

updateGenecoef Logical value, parameter to decide whether to update N by T gene-specific co-
efficient matrix. Again, when there is no gene level covariate matrix, this value
should be FALSE by default.

NUM_CELLS_PER_CHUNK

scBFA can run out of memory on large datasets, so we can chunk up computa-
tions to avoid this if necessary. NUM_CELLS_PER_CHUNK is the number of
cells per *chunk’ computed. Shrink if running out of mem.

doChunking Use memory-efficient (but slower) chunking. Will do automatically if the chunk
size is specified to be smaller than the # of cells in dataset.

Value

A model environment containing the following parameters: A,Z,V,U,53,7,e.

neg_loglikelihood Calculate negative penalized likelihood, used for calls to the optim()
Sfunction.

Description
The penalized likelihood function: f(A, Z, 3,0,U) = S_[InP(B; A, Z,U,V, 3,7)]ij—e1*||Al|3—
€2 # || Z]13 — €5+ |15 — €2 = [[]3

Usage

neg_loglikelihood(parameters, modelEnv)

neg_loglikelihood_chunk 11

Arguments
parameters Vectorized parameter space.
modelEnv Environment variable contains parameter space, and global variables such as
N,G,C,detection matrix B, etc
Value

Scalar penalized likelihood

neg_loglikelihood_chunk
Calculate negative penalized likelihood, used for calls to the optim()
function.

Description
The penalized likelihood function: f(A, Z, 3,0,U) = Y.[InP(B; A, Z,U,V, 3,7)]ij—e1*||Al|3—
ex % || Z|[3 — €3+ |15 — €2 % ||7][3

Usage

neg_loglikelihood_chunk(parameters, modelEnv)

Arguments
parameters Vectorized parameter space.
modelEnv Environment variable contains parameter space, and global variables such as
N,G,C,detection matrix B, etc
Value

Scalar penalized likelihood

OptimBFA Optimize parameters of BFA'’s likelihood function

Description

Optimize parameters of BFA’s likelihood function

Usage

OptimBFA(modelEnv, maxit, method)

12 restore

Arguments
modelEnv Environment variable contains parameter space, and global variables such as
N,G,C,detection matrix B, etc
maxit Maximum number of iteration with respect to objective function, default is 300
iterations
method Optimization method, default is the conjugate gradient approach L-BFGS-B is
recommended for smaller dataset less than 10k cells
Value

The entire model environment

restore Restore the vector of parameter space into their seperated parameter-
ization

Description

Restore the vector of parameter space into their seperated parameterization

Usage

restore(parameters, modelEnv)

Arguments
parameters: Vectorized parameter space.
modelEnv: Environment variable contains parameter space , and global variables such as
N,G,C,T,detection matrix B etc
Value

A list parameters containing the following parameters: A,Z,U,V,beta,gamma,epsilon

scBFA

13

scBFA

Perform BFA model on the expression profile

Description

Perform BFA model on the expression profile

Usage

scBFA(
scData,
numFactors,
X = NULL,
Q = NULL,
maxit = 300,

method = "L-BFGS-B",

initCellcoef

= NULL,

updateCellcoef = TRUE,
updateGenecoef = TRUE,
NUM_CELLS_PER_CHUNK = 5000,
doChunking = FALSE

Arguments

scData

numFactors
X

maxit

method

initCellcoef

updateCellcoef

can be a raw count matrix, in which rows are genes and columns are cells; can
be a seurat object; can be a SingleCellExperiment object.

Numeric value, number of latent dimensions

N by C covariate matrix,e.g batch effect, in which rows are cells,columns are
number of covariates.Default is NULL

G by T gene-specific covariate matrix(e.g quality control measures), in which
rows are genes columns are number of covariates, If no such covariates are avail-
able, then Q = NULL

Numeric value, parameter to control the Maximum number of iterations in the
optimization, default is 300.

Method of optimization,default is L-BFGS-B(Limited memory BFGS) approach.
Conjugate Gradient (CG) is recommended for larger dataset (number of cells >
10k)

Initialization of C by G gene-specific coefficient matrix as user-defined coeffi-
cient 8. Such user defined coefficient can be applied to address confounding
batch effect

Logical value, parameter to decide whether to update C by G gene-specific coef-
ficient matrix. Again, when the cell types are confounded with technical batches
or there is no cell level covariate matrix, the user can keep the initialization of
coefficients as known estimate.

14 scBFA

updateGenecoef Logical value, parameter to decide whether to update N by T gene-specific co-
efficient matrix. Again, when there is no gene level covariate matrix, this value
should be FALSE by default.

NUM_CELLS_PER_CHUNK
scBFA can run out of memory on large datasets, so we can chunk up computa-
tions to avoid this if necessary. NUM_CELLS_PER_CHUNK is the number of
cells per *chunk’ computed. Shrink if running out of mem.

doChunking Use memory-efficient (but slower) chunking. Will do automatically if the chunk
size is specified to be smaller than the # of cells in dataset.

Value

A model environment containing all parameter space of a BFA model as well as global variables
needed for calculation:

A: G by K compressed feature space matrix

Z: N by K low dimensional embedding matrix
B: C by G cell level coefficient matrix

~v: N by T gene level coefficient matrix

V. G by 1 offset matrix

U: N by 1 offset matrix

Examples
Working with Seurat or SingleCellExperiment object
library(Seurat)
library(SingleCellExperiment)
Input expression profile, 5 genes x 3 cells
GeneExpr = matrix(rpois(15,1),nrow = 5,ncol = 3)
rownames (GeneExpr) = paste@("gene",seq_len(nrow(GeneExpr)))
colnames(GeneExpr) = paste@(”cell”,seq_len(ncol(GeneExpr)))
celltype = as.factor(sample(c(1,2,3),3,replace = TRUE))
Create cell level technical batches
batch = sample(c("replicate 1","replicate 2","replicate 2"))
X = matrix(NA,nrow = length(batch),ncol = 1)
X[which(batch =="replicate 1"), 1 = 0
X[which(batch =="replicate 2"), 1 =1
rownames(X) = colnames(GeneExpr)
run BFA with raw count matrix

bfa_model = scBFA(scData = GeneExpr,X = scale(X),numFactors =2)

Create Seurat object for input to BFA

scNoiseSim 15

scData = CreateSeuratObject(counts = GeneExpr,project="sc"”,min.cells = 0)
Standardize the covariate matrix should be a default operation
bfa_model = scBFA(scData = scData, X = scale(X), numFactors = 2)

Build the SingleCellExperiment object for input to BFA

Set up SingleCellExperiment class

sce <- SingleCellExperiment(assay = list(counts = GeneExpr))

Standardize the covariate matrix should be a default operation

bfa_model = scBFA(scData = sce, X = scale(X), numFactors = 2)

scNoiseSim simulation to generate scRNA-seq data with varying level of gene de-
tection noise versus gene count noise

Description
simulation to generate scCRNA-seq data with varying level of gene detection noise versus gene count
noise

Usage

scNoiseSim(zinb, celltype, disper, var_dropout = 1, var_count = 1, delta)

Arguments

zinb a ZINB-WaVE object representing ZINB-WaVE fit to real data to get realistic
simulation parameters

celltype a factor to specify the ground-truth cell types in the original dataset that the
parameter of zinb object is fit to. Since we filter out some simulated cells due to
low amount of genes detected in that cell, we subset the ground truth cell types
correspondingly

disper numeric value, parameter to control the size factor r in N B(u,). r is varied in
the set 0.5,1,5 in our simulation(as outlined in our paper)

var_dropout numeric value, parameter to control the noise level added to a common embed-
ding space for to generate gene detection matrix. This parameter is formulated
as o, and in the paper is selected from the set 0.1, 0.5, 1, 2, 3

var_count numeric value, parameter to control the noise level added to a common embed-
ding space to generate gene count matrix. This parameter is formulated as o,
and and in the paper is selected from the set 0.1, 0.5, 1,2, 3

delta intercept to control the overall gene detection rate. and in the paper is selected

from the set -2, -0.5, 1,2.5.4

16

Value

GeneExpr,a count matrix with rows number of genes and columns number of cells

celltype,a vector specify the corresponding celltype after QC measures.

Examples

raw counts matrix with rows are genes and columns are cells
data("zinb_toy"”,package = "scBFA", envir = environment())

a vector specify the ground truth of cell types provided by conquer database
data("celltype_toy"”,package = "scBFA",envir = environment())

zinb_toy

scData = scNoiseSim(zinb = zinb_toy,
celltype = celltype_toy,
disper =1,
var_dropout =1,
var_count = 1,
delta = 1)
zinb_toy example zinb object after fitting a toy dataset with 5 cells and 10 genes
Description

The toy dataset is generated from the following code require(zinbwave) GeneExpr = matrix(rpois(50,1),nrow
=10,ncol = 5) rownames(GeneExpr) = paste0("gene",seq_len(nrow(GeneExpr))) colnames(GeneExpr)
= pasteO("cell",seq_len(ncol(GeneExpr))) celltype = as.factor(sample(c(1,2,3),5,replace = TRUE))

zinb = zinbFit(Y = GeneExpr,K=2)

Usage
data(zinb_toy)

Index

x data neg_loglikelihood, 10
celltype, 4 neg_loglikelihood_chunk, 11
celltype_toy, 4
disperPlot, 6 OptimBFA, 11
exprdata, 6
zinb_toy, 16

* export
BinaryPCA, 2
diagnose, 5
getGeneExpr, 7 zinb_toy, 16
getLoading, 7
getScore, 8
gradient, 8
gradient_chunk, 9
ScBFA, 13
scNoiseSim, 15

* internal
InitBinaryFA, 9
neg_loglikelihood, 10
neg_loglikelihood_chunk, 11
OptimBFA, 11
restore, 12

restore, 12

ScBFA, 13
scNoiseSim, 15

BinaryPCA, 2

celltype, 4
celltype_toy, 4

diagnose, 5
disperPlot, 6

exprdata, 6
getGeneExpr, 7
getloading, 7
getScore, 8
gradient, 8
gradient_chunk, 9
InitBinaryFA, 9

17

	BinaryPCA
	celltype
	celltype_toy
	diagnose
	disperPlot
	exprdata
	getGeneExpr
	getLoading
	getScore
	gradient
	gradient_chunk
	InitBinaryFA
	neg_loglikelihood
	neg_loglikelihood_chunk
	OptimBFA
	restore
	scBFA
	scNoiseSim
	zinb_toy
	Index

