Package ‘plyranges’

February 4, 2026
Type Package

Title A fluent interface for manipulating GenomicRanges
Version 1.30.1
Maintainer Michael Love <michaelisaiahlove@gmail.com>

Description A dplyr-like interface for interacting with the common Bioconductor
classes Ranges and GenomicRanges. By providing a grammatical
and consistent way of manipulating these classes their accessiblity for new
Bioconductor users is hopefully increased.

Depends R (>=3.5), BiocGenerics, IRanges (>= 2.12.0), GenomicRanges
(>=1.28.4), dplyr
Imports methods, rlang (>= 0.2.0), magrittr, tidyselect (>= 1.0.0),

rtracklayer, GenomicAlignments, Seqinfo, Rsamtools, S4Vectors
(>=0.23.10), utils

biocViews Infrastructure, DataRepresentation, WorkflowStep, Coverage

BugReports https://github.com/tidyomics/plyranges
License Artistic-2.0

Encoding UTF-8

ByteCompile true

Suggests knitr, BiocStyle, rmarkdown, testthat (>= 2.1.0),
HelloRanges, HelloRangesData, BSgenome.Hsapiens.UCSC.hg19,
pasillaBamSubset, covr, ggplot2

VignetteBuilder knitr
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

Collate 'class-AnchoredRanges.R' 'class-Operator.R'
'class-DeferredGenomicRanges.R' 'class-GroupedRanges.R'
'dplyr-arrange.R' 'dplyr-filter.R' 'dplyr-groups.R'
'dplyr-mutate.R' 'dplyr-pull.R' 'dplyr-select.R’
'dplyr-slice.R' 'dplyr-summarize.R' 'endo-coverage.R'
'endo-tile.R' 'io-bam.R' io-bed.R' 'io-bigwig.R' 'io-gff.R’
'io-wig.R' 'methods-DeferredGenomicRanges.R'
'methods-Operator.R' 'plyranges.R' 'ranges-add-distance.R’
'ranges-anchors.R' 'ranges-arithmetic-flank.R'
'ranges-arithmetic-setters.R' ranges-arithmetic-shift.R'
'ranges-arithmetic-stretch.R' 'ranges-bind.R' 'ranges-chop.R'

1

https://github.com/tidyomics/plyranges

'ranges-colwise.R' 'ranges-construct.R' 'ranges-disjoin.R'
'ranges-eval-quo.R' ranges-eval.R' 'ranges-expand.R'
'ranges-genomeinfo.R' ‘ranges-join-follow.R'
'ranges-join-nearest.R' 'ranges-join-precede.R’
'ranges-overlap-count.R' 'ranges-overlap-filter.R'
'ranges-overlap-find.R' 'ranges-overlap-groups.R'
'ranges-overlap-joins-intersect.R’
'ranges-overlap-joins-outer.R' 'ranges-overlap-self-joins.R'
'ranges-pairs.R' 'ranges-rangewise-setops.R' 'ranges-reduce.R’
'ranges-setops.R' 'utils-pipe.R’

git_url https://git.bioconductor.org/packages/plyranges
git_branch RELEASE_3_22

git_last commit bd10282

git_last_commit_date 2025-11-12

Repository Bioconductor 3.22

Date/Publication 2026-02-03

Author Stuart Lee [aut] (ORCID: <https://orcid.org/0000-0003-1179-8436>),
Michael Lawrence [aut, ctb],
Dianne Cook [aut, ctb],
Spencer Nystrom [ctb] (ORCID: <https://orcid.org/0000-0003-1000-1579>),
Pierre-Paul Axisa [ctb],
Michael Love [ctb, cre]

Contents

plyranges-package
add_nearest_distance e e e e
anchor L e e
arrange.Ranges L
AS_ATANEES .« . . v i i e e e e e e e e e e e e e
AS_TANEES . « v v e e e e e e e e e e e e e e e e e
bind_ranges
chop_by_introns
COMPULE_COVETAZE . .« .« « « o o v e e e e e e e e e e e e e e e e e e e
count_overlaps e e
DeferredGenomicRanges-class L.
disjoin_ranges e e
eXpand_Tanges e e e e e e e e e e e e e e e
FileOperator-class e
filter-ranges
filter_by_overlaps
find_overlaps L
flank_left e
GroupedGenomicRanges-class
INEETSECL_TANZES .« . .« « v v v e v v e e e e e e e e e e e e e e e e e
INEIWEAVE o o o i i i e e e e e e e e
join_follow
JOIN_NEAresto e e e
join_overlap_intersect L. e
join_overlap_self

Contents

https://orcid.org/0000-0003-1179-8436
https://orcid.org/0000-0003-1000-1579

plyranges-package 3

join_precede e 31
mutate.Ranges L e 32
Dot e e e e e 34
N_diStINCt e e e e 34
OVEISCOPE_TANZES . .« « v v v e v v e e e e e e e e e e e e e e e e e 35
pair_overlaps L 35
pull-ranges e e e e e e 37
ranges-info L e e 38
read_bam L e 39
read_bed L e 41
read_bigwig 42
read_gff 43
read_Wig e e e e 44
TedUCE_TANZES . . .« v v v e v e e e e e e e e e e e e e e e e 45
TEMOVE_NAMES v v v v e e e e e e e e e e e e e e e e 46
select.Ranges 46
set_width L e 47
shift_left. o o 48
slice Ranges e 49
StretCh . . . e e e 50
summarise.Ranges 51
tile_ranges e 52
write_bed L e 53
write_bigwig e e e 54
write_gff e 55
WILE_WIZ . . .« o o o o e e e e e 56
GounionToo e e 56
Do>% . .. 57
Index 59
plyranges-package plyranges: a grammar of genomic data manipulation
Description

plyranges is a dplyr like API to the Ranges/GenomicRanges infrastructure in Bioconductor.

Details

plryanges provides a consistent interface for importing and wrangling genomics data from a variety
of sources. The package defines a grammar of genomic data manipulation through a set of verbs.
These verbs can be used to construct human readable analysis pipelines based on Ranges objects.

* Modify genomic regions with the set_width() and stretch() functions.

* Modify genomic regions while fixing the start/end/center coordinates with the anchors()
family of functions.

 Sort genomic ranges with arrange().
* Modify, subset, and aggregate genomic data with the mutate(), filter(), and summarise () functions.
* Any of the above operations can be performed on partitions of the data with group_by ().

* Find nearest neighbour genomic regions with the join_nearest() family of functions.

4 add_nearest_distance

* Find overlaps between ranges with the join_overlap_inner () family of functions.

* Merge all overlapping and adjacent genomic regions with reduce_ranges().

* Merge the end points of all genomic regions with disjoin_ranges().

 Import and write common genomic data formats with the read_/write_ family of functions.
For more details on the features of plryanges, read the vignette: browseVignettes(package =

"plyranges”)

Author(s)

Maintainer: Michael Love <michaelisaiahlove@gmail.com> [contributor]

Authors:

e Stuart Lee (ORCID)
¢ Michael Lawrence [contributor]

e Dianne Cook [contributor]
Other contributors:

* Spencer Nystrom (ORCID) [contributor]

¢ Pierre-Paul Axisa [contributor]

See Also
Useful links:

* Report bugs at https://github.com/tidyomics/plyranges

add_nearest_distance Add distance to nearest neighbours between two Ranges objects

Description

Appends distance to nearest subject range to query ranges similar to setting distance in join_nearest_.
Distance is set to NA for features with no nearest feature by the selected nearest metric.

Usage
add_nearest_distance(x, y = x, name = "distance")
add_nearest_distance_left(x, y = x, name = "distance")
add_nearest_distance_right(x, y = x, name = "distance")
add_nearest_distance_upstream(x, y = x, name = "distance")

add_nearest_distance_downstream(x, y = x, name = "distance")

https://orcid.org/0000-0003-1179-8436
https://orcid.org/0000-0003-1000-1579
https://github.com/tidyomics/plyranges

anchor 5

Arguments
X The query ranges
y the subject ranges within which the nearest ranges are found. If missing, query
ranges are used as the subject.
name column name to create containing distance values
Details

By default add_nearest_distance will find arbitrary nearest neighbours in either direction and ig-
nore any strand information. The add_nearest_distance_left and add_nearest_distance_right
methods will find arbitrary nearest neighbour ranges on x that are left/right of those on y and ignore
any strand information.

The add_nearest_distance_upstream method will find arbitrary nearest neighbour ranges on x
that are upstream of those on y. This takes into account strandedness of the ranges. On the positive
strand nearest upstream will be on the left and on the negative strand nearest upstream will be on
the right.

The add_nearest_distance_downstream method will find arbitrary nearest neighbour ranges on
x that are upstream of those on y. This takes into account strandedness of the ranges. On the positive
strand nearest downstream will be on the right and on the negative strand nearest upstream will be
on the left.

Value

ranges in x with additional column containing the distance to the nearest range in y.

See Also

join_nearest

Examples

query <- data.frame(start = c(5,10, 15,20),
width = 5,
gc = runif(4)) %%
as_iranges()
subject <- data.frame(start = c(2:6, 24),
width = 3:8,
label = letters[1:6]) %>%
as_iranges()

add_nearest_distance(query, subject)
add_nearest_distance_left(query, subject)
add_nearest_distance_left(query)

anchor Anchored Ranges objects

Description

The GRangesAnchored class and the IRangesAnchored class allow components of a GRanges or
IRanges (start, end, center) to be held fixed.

6 anchor

Usage

anchor (x)
unanchor (x)
anchor_start(x)
anchor_end(x)
anchor_center(x)
anchor_centre(x)
anchor_3p(x)

anchor_5p(x)

Arguments

X a Ranges object

Details

Anchoring will fix a Ranges start, end, or center positions, so these positions will remain the same
when performing arithimetic. For GRanges objects, the function (anchor_3p()) will fix the start for
the negative strand, while anchor_5p () will fix the end for the positive strand. Anchoring modifies
how arithmetic is performed, for example modifying the width of a range with set_width() or
stretching a range with stretch(). To remove anchoring use unanchor ().

Value

a RangesAnchored object which has the same appearance as a regular Ranges object but with an
additional slot displaying an anchor.

Constructors

Depending on how you want to fix the components of a Ranges, there are five ways to construct a
RangesAnchored class. Here x is either an IRanges or GRanges object.

anchor_start(x) Fix the start coordinates

anchor_end(x) Fix the end coordinates

anchor_center(x) Fix the center coordinates

anchor_3p(x) On the negative strand fix the start coordinates, and for positive or unstranded
ranges fix the end coordinates.

anchor_5p(x) On the positive or unstranded ranges fix the start coordinates, coordinates and for
negative stranded ranges fix the end coordinates.

Accessors

To see what has been anchored use the function anchor. This will return a character vector contain-
ing a valid anchor. It will be set to one of c("start”, "end”, "center”) for an IRanges object
or one of c("start”, "end”, "center”, "3p", "5p") for a GRanges object.

arrange.Ranges

See Also

mutate.Ranges, stretch

Examples

df <- data.frame(start = 1:10, width = 5)
rng <- as_iranges(df)

rng_by_start <- anchor_start(rng)
rng_by_start

anchor(rng_by_start)

mutate(rng_by_start, width = 3L)

grng <- as_granges(df,

seqnames = "chri1”,
strand = c(rep(”"-", 5), rep("+", 5)))
rng_by_5p <- anchor_5p(grng)

rng_by_5p
mutate(rng_by_5p, width = 3L)

arrange.Ranges Sort a Ranges object

Description

Sort a Ranges object

Usage
S3 method for class 'Ranges'
arrange(.data, ...)

Arguments
.data A Ranges object.

Comma seperated list of variable names.

Value

A sorted Ranges object

Examples

rng <- as_iranges(data.frame(start = 1:10, width = 10:1))

rng <- mutate(rng, score = runif(10))

arrange(rng, score)

you can also use dplyr::desc to arrange by descending order

as_iranges

as_iranges

Construct a I/GRanges object from a tibble or data.frame

Description

The as_i(g)ranges function looks for column names in .data called start, end, width, seqnames and
strand in order to construct an IRanges or GRanges object. By default other columns in .data are
placed into the mcols (metadata columns) slot of the returned object.

Usage
as_iranges(.data, ..., keep_mcols = TRUE)
as_granges(.data, ..., keep_mcols = TRUE)
Arguments
.data adata.frame() or dplyr::tibble() to construct a Ranges object from
optional named arguments specifying which the columns in .data containin the
core components a Ranges object.
keep_mcols place the remaining columns into the metadata columns slot (default=TRUE)
Value

a Ranges object.

See Also

IRanges: :IRanges(), GenomicRanges: :GRanges ()

Examples

df <- data.frame(start=c(2:-1, 13:15), width=c(0:3, 2:0))

as_iranges(df)

df <- data.frame(start=c(2:-1, 13:15), width=c(0:3, 2:0), strand = "+")
will return an IRanges object

as_iranges(df)

df <- data.frame(start=c(2:-1, 13:15), width=c(0:3, 2:0),
strand = "+", segnames = "chr1")

as_granges (df)

as_g/iranges understand alternate name specification
df <- data.frame(start=c(2:-1, 13:15), width=c(0:3, 2:0),

strand = "+",

chr = "chr1”)

as_granges(df, segnames = chr)

can also handle DFrame input
df <- methods::as(df, "DFrame")
df$y <- IRanges::IntegerList(c(1,2,3), NA, 5, 6, 8, 9, 10:12)

as_iranges(df)

as_granges(df, segnames = chr)

as_ranges 9

as_ranges Coerce an Rle or RleList object to Ranges

Description

Coerce an Rle or RleList object to Ranges

Usage

as_ranges(.data)

Arguments

.data a S4Vectors: :Rle() or an IRanges: :RleList() object.

Details

This function is behind compute_coverage().

Value

an IRanges: : IRanges () object if the input is an S4Vectors: :R1le() object or a GenomicRanges: : GRanges()
object for an IRanges: :RleList() object.

See Also

S4Vectors::Rle(), IRanges: :RleList()

Examples

X <- S4Vectors::Rle(10:1, 1:10)
as_ranges(x)

must have names set
y <- IRanges::RleList(chr1l = x)
as_ranges(y)

bind_ranges Combine Ranges by concatentating them together

Description

Combine Ranges by concatentating them together

Usage
bind_ranges(..., .id = NULL)

10 chop_by_introns

Arguments
Ranges objects to combine. Each argument can be a Ranges object, or a list of
Ranges objects.

.id Ranges object identifier. When .id is supplied a new column is created that links
each row to the original Range object. The contents of the column correspond
to the named arguments or the names of the list supplied.

Value

a concatenated Ranges object

Note

Currently GRangesList or IRangesList objects are not supported.

Examples

gr <- as_granges(data.frame(start = 10:15,
width = 5,
seqgnames = "seql"))
gr2 <- as_granges(data.frame(start = 11:14,
width = 1:4,
seqgnames = "seq2"))

bind_ranges(gr, gr2)
bind_ranges(a = gr, b = gr2, .id = "origin")
bind_ranges(gr, list(gr, gr2), gr2)

bind_ranges(list(a = gr, b = gr2), c = gr, .id = "origin")

chop_by_introns Group a GRanges object by introns or gaps

Description

Group a GRanges object by introns or gaps

Usage
chop_by_introns(x)
chop_by_gaps(x)

Arguments

X a GenomicRanges object with a cigar string column

compute_coverage 11

Details

Creates a grouped Ranges object from a cigar string column, for chop_by_introns() will check
for the presence of "N" in the cigar string and create a new column called intron where TRUE
indicates the alignment has a skipped region from the reference. For chop_by_gaps() will check
for the presence of "N" or "D" in the cigar string and create a new column called "gaps" where
TRUE indicates the alignment has a deletion from the reference or has an intron.

Value

a GRanges object

Examples

if (require(pasillaBamSubset)) {

bamfile <- untreatedl_chr4()

define a region of interest

roi <- data.frame(segnames = "chr4", start = 5e5, end = 7e5) %>%
as_granges()

results in a grouped ranges object

rng <- read_bam(bamfile) %>%
filter_by_overlaps(roi) %>%
chop_by_gaps()

to find ranges that have gaps use filter with “n()"

rng %>% filter(n() >= 2)

compute_coverage Compute coverage over a Ranges object

Description

Compute coverage over a Ranges object

Usage
compute_coverage(x, shift, width, weight, ...)
Arguments
X a Ranges object
shift shift how much should each range in x be shifted by? (default = OL)
width width how long should the returned coverage score be? This must be either a
positive integer or NULL (default = NULL)
weight weight how much weight should be assigned to each range? Either an integer or

numeric vector or a column in Xx. (default = 1L)

other optional parameters to pass to coverage

12 count_overlaps

Value
An expanded Ranges object with a score column corresponding to the coverage value over that
interval. Note that compute_coverage drops metadata associated with the orginal ranges.

See Also

IRanges: :coverage(), GenomicRanges: :coverage()

Examples

rng <- as_iranges(data.frame(start = 1:10, width = 5))
compute_coverage(rng)

compute_coverage(rng, shift = 14L)
compute_coverage(rng, width = 10L)
count_overlaps Count the number of overlaps between two Ranges objects

Description

Count the number of overlaps between two Ranges objects
Usage
count_overlaps(x, y, maxgap, minoverlap)

S3 method for class 'IntegerRanges'
count_overlaps(x, y, maxgap = -1L, minoverlap = 0L)

S3 method for class 'GenomicRanges'
count_overlaps(x, y, maxgap = -1L, minoverlap = QL)

count_overlaps_within(x, y, maxgap, minoverlap)

S3 method for class 'IntegerRanges'
count_overlaps_within(x, y, maxgap = OL, minoverlap = 1L)

S3 method for class 'GenomicRanges'
count_overlaps_within(x, y, maxgap = OL, minoverlap = 1L)

count_overlaps_directed(x, y, maxgap, minoverlap)

S3 method for class 'GenomicRanges'
count_overlaps_directed(x, y, maxgap = -1L, minoverlap = 0OL)

count_overlaps_within_directed(x, y, maxgap, minoverlap)

S3 method for class 'GenomicRanges'
count_overlaps_within_directed(x, y, maxgap = -1L, minoverlap = 0L)

DeferredGenomicRanges-class 13

Arguments

X,y Objects representing ranges

maxgap, minoverlap
The maximimum gap between intervals as an integer greater than or equal to
zero. The minimum amount of overlap between intervals as an integer greater
than zero, accounting for the maximum gap.

Value

An integer vector of same length as x.

Examples

query <- data.frame(start = c(5,10, 15,20), width =5, gc = runif(4)) %>%
as_iranges()
subject <- data.frame(start = 2:6, width = 3:7, label = letters[1:5]) %>%
as_iranges()
query %>% mutate(n_olap = count_overlaps(., subject),
n_olap_within = count_overlaps_within(., subject))

DeferredGenomicRanges-class
DeferredGenomiRanges objects

Description

Enables deferred reading of files (currently only BAM files) by caching results after a plyranges
verb is called.

Slots

delegate a GenomicRanges object to be cached

ops A FileOperator object

See Also

read_bam()

14

expand_ranges

disjoin_ranges Disjoin then aggregate a Ranges object

Description

Disjoin then aggregate a Ranges object
Usage

disjoin_ranges(.data, ...)

disjoin_ranges_directed(.data, ...)

Arguments

.data a Ranges object to disjoin

Name-value pairs of summary functions.

Value

a Ranges object that is now disjoint (no bases overlap).

Examples

df <- data.frame(start = 1:10, width = 5, segnames = "seql”,

strand = sample(c("+", "-", "x"), 10, replace = TRUE), gc = runif(10))

rng <- as_granges(df)

rng %>% disjoin_ranges()

rng %>% disjoin_ranges(gc = mean(gc))

rng %>% disjoin_ranges_directed(gc = mean(gc))

expand_ranges Expand list-columns in a Ranges object

Description

Expand list-columns in a Ranges object

Usage
expand_ranges(
data,
.drop = FALSE,
.id = NULL,

.keep_empty = FALSE,
.recursive = FALSE

FileOperator-class 15

Arguments

data A Ranges object
list-column names to expand then unlist

.drop Should additional list columns be dropped (default = FALSE)? By default expand_ranges ()
will keep other list columns even if they are nested.

.id A character vector of length equal to number of list columns. If supplied will
create new column(s) with name .id identifying the index of the list column
(default = NULL).

.keep_empty If a list-like column contains empty elements, should those elements be kept?
(default = FALSE)

.recursive If there are multiple list-columns, should the columns be treated as parallel? If
FALSE each column will be unnested recursively, otherwise they are treated as
parallel, that is each list column has identical lengths. (deafualt = FALSE)

Value

a GRanges object with expanded list columns

Examples

grng <- as_granges(data.frame(segnames = "chr1”, start = 20:23, width = 1000))
grng <- mutate(grng,
exon_id = IntegerlList(a
)
expand_ranges(grng)
expand_ranges(grng, .id = "name")

1, b = c(4,5), c =3, d=1c(2,5))

empty list elements are not preserved by default

grng <- mutate(grng,
exon_id = IntegerList(a = NULL, b = c(4,5), c= 3, d = c(2,5))
)

expand_ranges(grng)

expand_ranges(grng, .keep_empty = TRUE)

expand_ranges(grng, .id = "name"”, .keep_empty = TRUE)

FileOperator-class An abstract class to represent operations performed over a file

Description

An abstract class to represent operations performed over a file

Details

This class is used internally by DeferredGenomicRanges objects. Currently, this class is only imple-
mented for bam files (as a BamFileOperator) but will eventually be extended to the other avaialable
readers.

16 filter-ranges

filter-ranges Subset a Ranges object

Description

Subset a Ranges object

Usage
S3 method for class 'Ranges'
filter(.data, ..., .preserve = FALSE)
Arguments
.data A Ranges object

valid logical predictates to subset .data by. These are determined by variables
in .data. If more than one condition is supplied, the conditions are combined
with &. Only rows where the condition evaluates to TRUE are kept.

.preserve when FALSE (the default) grouping structure is recalculated, TRUE is currently
not implemented.
Details

For any Ranges objects filter can act on all core components of the class including start, end,
width (for IRanges) or seqnames and strand (for GRanges) in addition to metadata columns. If the
Ranges object is grouped, filter will act seperately on each parition of the data.

Value

a Ranges object

See Also
dplyr::filter()

Examples

set.seed(100)
df <- data.frame(start = 1:10,

width = 5,
segnames = "seql”,
strand = sample(c("+", "-", "x"), 10, replace = TRUE),

gc = runif(10))
rng <- as_granges(df)

filter(rng, strand == "+")
filter(rng, gc > 0.5)

multiple criteria
filter(rng, strand == "+" | start > 5)
filter(rng, strand == "+" & start > 5)

filter_by_overlaps 17

multiple conditions are the same as and
filter(rng, strand == "+", start > 5)

grouping acts on each subset of the data
rng %>%

group_by(strand) %>%

filter(gc > 0.5)

filter_by_overlaps Filter by overlapping/non-overlapping ranges

Description

Filter by overlapping/non-overlapping ranges

Usage
filter_by_overlaps(x, y, maxgap = -1L, minoverlap = 0L)
filter_by_non_overlaps(x, y, maxgap, minoverlap)
filter_by_overlaps_directed(x, y, maxgap = -1L, minoverlap = 0L)

filter_by_non_overlaps_directed(x, y, maxgap, minoverlap)

Arguments
X, Yy Objects representing ranges
maxgap The maximimum gap between intervals as a single integer greater than or equal
to -1. If you modify this argument, minoverlap must be held fixed.
minoverlap The minimum amount of overlap between intervals as a single integer greater
than 0. If you modify this argument, maxgap must be held fixed.
Details

By default, filter_by_overlaps and filter_by_non_overlaps ignore strandedness for GenomicRanges: : GRanges ()
objects. To perform stranded operations use filter_by_overlaps_directedand filter_by_non_overlaps_directe
The argument maxgap is the maximum number of positions between two ranges for them to be con-

sidered overlapping. Here the default is set to be -1 as that is the the gap between two ranges that

has its start or end strictly inside the other. The argugment minoverlap refers to the minimum

number of positions overlapping between ranges, to consider there to be overlap.

Value

a Ranges object

See Also

IRanges: : subsetByOverlaps()

18 find_overlaps
Examples
df <- data.frame(segnames = c("chr1”, rep("chr2", 2),
rep(”"chr3”, 3), rep("chr4”, 4)),
start = 1:10,
width = 10:1,
strand = c("=", "H", MEN kU mgnmen wpw wgn n_now_wy
name = letters[1:10])
query <- as_granges(df)
df2 <- data.frame(segnames = c(rep(”"chr2”, 2), rep(”"chr1”, 3), "chr2"),
start = ¢(4,3,7,13,1,4),
width = c(6,6,3,3,3,9),
strand = c(rep("+", 3), rep("-", 3)))
subject <- as_granges(df2)
filter_by_overlaps(query, subject)
filter_by_overlaps_directed(query, subject)
filter_by_non_overlaps(query, subject)
filter_by_non_overlaps_directed(query, subject)
find_overlaps Find overlap between two Ranges
Description
Find overlap between two Ranges
Usage

find_overlaps(x, y, maxgap, minoverlap, suffix = c(".x", ".y"))

S3 method for class 'IntegerRanges'

find_overlaps(x, y, maxgap = -1L, minoverlap = oL, suffix = c(".x", ".y"))

S3 method for class 'GenomicRanges'

find_overlaps(x, y, maxgap = -1L, minoverlap = 0L, suffix = c(".x", ".y"))

find_overlaps_within(x, y, maxgap, minoverlap, suffix = c(".x", ".y"))

S3 method for class 'IntegerRanges'
find_overlaps_within(

X!

Y,

maxgap = -1L,

minoverlap = oL,

n n

suffix = c(”.x", ".y")

find_overlaps

S3 method for class 'GenomicRanges'
find_overlaps_within(

X!

Y,

maxgap = -1L,

minoverlap = oL,

suffix = c(".x", ".y")
)

19

find_overlaps_directed(x, y, maxgap, minoverlap, suffix = c(".x", ".y"))

S3 method for class 'GenomicRanges'
find_overlaps_directed(

X’

y’

maxgap = -1L,

minoverlap = oL,

suffix = c(".x", ".y")

)
find_overlaps_within_directed(x, y, maxgap, minoverlap, suffix

S3 method for class 'GenomicRanges'
find_overlaps_within_directed(x, y, maxgap, minoverlap, suffix

group_by_overlaps(x, y, maxgap, minoverlap)

S3 method for class 'IntegerRanges'
group_by_overlaps(x, y, maxgap = -1L, minoverlap

oL)

S3 method for class 'GenomicRanges'
group_by_overlaps(x, y, maxgap = -1L, minoverlap = 0L)

Arguments

X,y Objects representing ranges
maxgap, minoverlap

C(”.X”, "-y”))

"X, "y

suffix

Details

The maximimum gap between intervals as an integer greater than or equal to
negative one. The minimum amount of overlap between intervals as an integer
greater than zero, accounting for the maximum gap.

A character vector of length two used to identify metadata columns coming from
x and y.

find_overlaps() will search for any overlaps between ranges x and y and return a Ranges ob-
ject of length equal to the number of times x overlaps y. This Ranges object will have additional
metadata columns corresponding to the metadata columns in y. find_overlaps_within() is the
same but will only search for overlaps within y. For GRanges objects strand is ignored, unless
find_overlaps_directed() is used. If the Ranges objects have no metadata, one could use
group_by_overlaps() to be able to identify the index of the input Range x that overlaps a Range
in y. Alternatively, pair_overlaps() could be used to place the x ranges next to the range in y

they overlap.

20 flank_left

Value

A Ranges object with rows corresponding to the ranges in x that overlap y. In the case of group_by_overlaps(),
returns a GroupedRanges object, grouped by the number of overlaps of ranges in x that overlap y
(stored in a column called query).

See Also

IRanges: : findOverlaps(), GenomicRanges: : findOverlaps()

Examples

query <- data.frame(start = c(5,10, 15,20), width = 5, gc = runif(4)) %>%
as_iranges()

subject <- data.frame(start = 2:6, width = 3:7, label = letters[1:5]) %>%
as_iranges()

find_overlaps(query, subject)

find_overlaps(query, subject, minoverlap = 5)
find_overlaps_within(query, subject) # same result as minoverlap
find_overlaps(query, subject, maxgap = 1)

-- GRanges objects, strand is ignored by default
query <- data.frame(segnames = "chri1”,
start = c(11,101),
end = c(21, 200),
name = c("al”, "a2"),
strand = c("+", "-"),
score = c(1,2)) %>%
as_granges()
subject <- data.frame(segnames = "chri1”,
strand = c("+", "=", "+", "="),
start = ¢c(21,91,101,201),
end = ¢(30,101,110,210),
name = paste@("b"”, 1:4),
score = 1:4) %>%
as_granges()

ignores strandedness

find_overlaps(query, subject, suffix = c(".query”, ".subject"))
find_overlaps(query, subject, suffix = c(".query”, ".subject"), minoverlap = 2)
adding directed prefix includes strand
find_overlaps_directed(query, subject, suffix = c(".query"”, ".subject"))
flank_left Generate flanking regions
Description

Find flanking regions to the left or right or upstream or downstream of a Ranges object.

flank_left 21
Usage

flank_left(x, width = oL)

flank_right(x, width = oL)

flank_upstream(x, width = oL)

flank_downstream(x, width = QL)

Arguments
X a Ranges object.
width the width of the flanking region relative to the ranges in x. Either an integer
vector of length 1 or an integer vector the same length as x. The width can be
negative in which case the flanking region is reversed.
Details

The function flank_left will create the flanking region to the left of starting coordinates in x,
while flank_right will create the flanking region to the right of the starting coordinates in x.
The function flank_upstream will flank_left if the strand of rows in x is not negative and
will flank_right if the strand of rows in x is negative. The function flank_downstream will
flank_right if the strand of rows in x is not negative and will flank_leftt if the strand of rows
in x is negative.

By default flank_left and flank_right will ignore strandedness of any ranges, while flank_upstream
and flank_downstream will take into account the strand of x.

Value

A Ranges object of same length as x.

See Also

IRanges: :flank(), GenomicRanges: : flank()

Examples

gr <- as_granges(data.frame(start = 10:15,

width = 5,
segnames = “seql”,
Strand = C("+“, u+u’ u_n’ n_n, n+u’ u*u))>

flank_left(gr, width = 5L)
flank_right(gr, width = 5L)
flank_upstream(gr, width = 5L)
flank_downstream(gr, width = 5L)

22 GroupedGenomicRanges-class

GroupedGenomicRanges-class
Group a Ranges by one or more variables

Description

The function group_by takes a Ranges object and defines groups by one or more variables. Opera-
tions are then performed on the Ranges by their "group". ungroup() removes grouping.

Usage

S3 method for class 'GenomicRanges'
group_by(.data, ..., add = FALSE)

S3 method for class 'GroupedGenomicRanges'
ungroup(x, ...)

S3 method for class 'GroupedGenomicRanges'
groups(x)

S3 method for class 'GroupedIntegerRanges'

groups(x)
Arguments
.data a Ranges object.
Variable names to group by. These can be either metadata columns or the core
variables of a Ranges.
add if .data is already a GroupedRanges object, when add = FALSE the (default),
group_by () will override existing groups. If add = TRUE, additional groups
will be added.
X a GroupedRanges object.
Details

group_by() creates a new object of class GroupedGenomicRanges if the input is a GRanges ob-
ject or an object of class GroupedIntegerRanges if the input is a IRanges object. Both of these
classes contain a slot called groups corresponding to the names of grouping variables. They also
inherit from their parent classes, Ranges and GenomicRanges respectively. ungroup() removes the
grouping and will return either a GRanges or IRanges object.

Value
The group_by () function will return a GroupedRanges object. These have the same appearance as
a regular Ranges object but with an additional groups slot.

Accessors
To return grouping variables on a grouped Ranges use either

groups(x) Returns a list of symbols

group_vars(x) Returns a character vector

intersect_ranges

Examples

set.seed(100)
df <- data.frame(start = 1:10,
width = 5,
gc = runif(10),
cat = sample(letters[1:2], 10, replace = TRUE))
rng <- as_iranges(df)
rng_by_cat <- rng %>% group_by(cat)
grouping does not change appearance or shape of Ranges
rng_by_cat
a list of symbols
groups(rng_by_cat)
ungroup removes any grouping
ungroup(rng_by_cat)
group_by works best with other verbs
grng <- as_granges(df,
seqgnames = "chri1”,
strand = sample(c("+", "-"), size = 10, replace = TRUE))

grng_by_strand <- grng %>% group_by(strand)
grng_by_strand
grouping with other verbs
grng_by_strand %>% summarise(gc = mean(gc))
grng_by_strand %>% filter(gc == min(gc))
grng_by_strand %>%

ungroup() %>%

summarise(gc = mean(gc))

intersect_ranges Vector-wise Range set-operations

Description

Vector-wise Range set-operations

Usage

intersect_ranges(x, y)
intersect_ranges_directed(x, y)
union_ranges(x, y)
union_ranges_directed(x, y)
setdiff_ranges(x, y)
setdiff_ranges_directed(x, y)
complement_ranges(x)

complement_ranges_directed(x)

24 interweave

Arguments

X,y Two Ranges objects to compare.

Details

These are usual set-operations that act on the sets of the ranges represented in x and y. By default
these operations will ignore any strand information. The directed versions of these functions will
take into account strand for GRanges objects.

Value
A Ranges object
Examples
grl <- data.frame(segnames = "chri1”,
start = ¢(2,9),
end = ¢(7,9),
strand = c("+", "=")) %>%
as_granges()
gr2 <- data.frame(segnames = "chrl1”, start = 5, width =5, strand = "-") %>%

as_granges()

union_ranges(gril, gr2)
union_ranges_directed(gril, gr2)

intersect_ranges(grl, gr2)
intersect_ranges_directed(grl, gr2)

setdiff_ranges(grl, gr2)

setdiff_ranges_directed(gril, gr2)

taking the complement of a ranges requires annotation information
gr1 <- set_genome_info(grl, seqlengths = 100)
complement_ranges(gr1)

interweave Interweave a pair of Ranges objects together

Description

Interweave a pair of Ranges objects together

Usage

interweave(left, right, .id = NULL)

Arguments
left, right Ranges objects.
.id When supplied a new column that represents the origin column and is linked to

each row of the resulting Ranges object.

join_follow 25

Details

The output of interweave() takes pairs of Ranges objects and combines them into a single Ranges
object. If an .id argument is supplied, an origin column with name .id is created indicated which
side the resulting Range comes from (eit)

Value

a Ranges object

Examples
gr <- as_granges(data.frame(start = 10:15,
width = 5,
segnames = "seql”,
strand = c("+", 4T, Uermon o mgw wgnyyy

interweave(flank_left(gr, width = 5L), flank_right(gr, width = 5L))
interweave(flank_left(gr, width = 5L), flank_right(gr, width = 5L), .id = "origin")

join_follow Find following Ranges

Description

Find following Ranges

Usage
join_follow(x, y, suffix = c(".x", ".y"))

join_follow_left(x, y, suffix = c(".x", ".y"))

join_follow_upstream(x, y, suffix = c(".x", ".y"))
Arguments
X, Yy Ranges objects, which ranges in x follow those in y.
suffix A character vector of length two used to identify metadata columns coming from
x and y.
Details

By default join_follow will find abritrary ranges in y that are followed by ranges in x and ignore
any strand information. On the other hand join_follow_left will find all ranges in y that are on
the left-hand side of the ranges in x ignoring any strand information. Finally, join_follow_upstream
will find all ranges in x that are that are upstream of the ranges in y. On the positive strand this will
result in ranges in y that are left of those in x and on the negative strand it will result in ranges in y
that are right of those in x.

Value

A Ranges object corresponding to the ranges in x~ = that are followed by the ranges iny, all metadata is copi

26

Examples

join_nearest

query <- data.frame(start = c(5,10, 15,20), width = 5, gc = runif(4)) %>%

as_iranges()

subject <- data.frame(start = 2:6, width = 3:7, label = letters[1:5]) %>%

as_iranges()
join_follow(query, subject)

subject <- data.frame(segnames = "chri1”,
start = c(11,101),
end = c(21, 200),
name = c("al”, "a2"),
strand = c("+", "-"),
score = c(1,2)) %%
as_granges()
query <- data.frame(segnames = "chri1”,
strand = c("+", "=", "+") "="Y,
start = ¢c(21,91,101,201),
end = ¢(30,101,110,210),
name = paste@("b"”, 1:4),
score = 1:4) %>%
as_granges()

join_follow(query, subject)
join_follow_left(query, subject)
join_follow_upstream(query, subject)

join_nearest Find nearest neighbours between two Ranges objects

Description

Find nearest neighbours between two Ranges objects

Usage

join_nearest(x, y, suffix = c(".x", ".y"), distance = FALSE)

n

join_nearest_left(x, y, suffix = c(".x", ".y"), distance = FALSE)

n

join_nearest_right(x, y, suffix = c(".x", ".y"), distance = FALSE)

join_nearest_upstream(x, y, suffix = c(".x", ".y"), distance = FALSE)

n

join_nearest_downstream(x, y, suffix = c(”".x", ".y"), distance =

Arguments
X,y Ranges objects, add the nearest neighbours of ranges in x to those in y.
suffix A character vector of length two used to identify metadata columns
distance logical vector whether to add a column named "distance" containing the distance

to the nearest region. If set to a character vector of length 1, will use that as
distance column name.

join_nearest 27

Details

By default join_nearest will find arbitrary nearest neighbours in either direction and ignore any
strand information. The join_nearest_left and join_nearest_right methods will find arbi-
trary nearest neighbour ranges on x that are left/right of those on y and ignore any strand informa-
tion.

The join_nearest_upstream method will find arbitrary nearest neighbour ranges on x that are
upstream of those on y. This takes into account strandedness of the ranges. On the positive strand
nearest upstream will be on the left and on the negative strand nearest upstream will be on the right.

The join_nearest_downstream method will find arbitrary nearest neighbour ranges on x that are
upstream of those on y. This takes into account strandedness of the ranges.On the positive strand
nearest downstream will be on the right and on the negative strand nearest upstream will be on the
left.

Value

A Ranges object corresponding to the nearest ranges, all metadata is copied over from the right-hand
side ranges y.

Examples

query <- data.frame(start = c(5,10, 15,20),
width = 5,
gc = runif(4)) %%
as_iranges()
subject <- data.frame(start = c(2:6, 24),
width = 3:8,
label = letters[1:6]) %>%
as_iranges()

join_nearest(query, subject)
join_nearest_left(query, subject)
join_nearest_right(query, subject)

subject <- data.frame(segnames = "chril”,
start = c(11,101),
end = c(21, 200),
name = c("al", "a2"),
strand = c("+", "-"),
score = ¢(1,2)) %>%
as_granges()
query <- data.frame(segnames = "chr1”,
strand = c("+", "=", "+", "="),
start = c(21,91,101,201),
end = ¢(30,101,110,210),
name = paste@("b", 1:4),
score = 1:4) %>%
as_granges()
join_nearest_upstream(query, subject)
join_nearest_downstream(query, subject)

28

join_overlap_intersect

join_overlap_intersect

Join by overlapping Ranges

Description

Join by overlapping Ranges

Usage
join_overlap_intersect(x, y, maxgap, minoverlap, suffix = c(".x", ".y"))
join_overlap_intersect_within(x, y, maxgap, minoverlap, suffix = c(".x", ".y"))

join_overlap_intersect_directed(

X,
Y,
maxgap,
minoverlap,
suffix = c(".x", ".y")
)
join_overlap_intersect_within_directed(
X!
Y,
maxgap,
minoverlap,
suffix = c(".x", ".y")
)
join_overlap_inner(x, y, maxgap = -1L, minoverlap = oL, suffix = c(".x", ".y"))

join_overlap_inner_within(
X’
y’
maxgap = -1L,
minoverlap = 0oL,
suffix = c(”.x", ".y")

)
join_overlap_inner_directed(
X7
Y,
maxgap = -1L,

minoverlap = 0L,
suffix = c(”.x", ".y")

join_overlap_inner_within_directed(
X’
Y,

join_overlap_intersect 29

maxgap = -1L,
minoverlap = oL,
Suffix = C(“.X"’ H'yll)

)

join_overlap_left(x, y, maxgap, minoverlap, suffix = c(".x", ".y"))
join_overlap_left_within(x, y, maxgap, minoverlap, suffix = c(".x", ".y"))
join_overlap_left_directed(x, y, maxgap, minoverlap, suffix = c(".x", ".y"))

join_overlap_left_within_directed(
X’
y)
maxgap,
minoverlap,
suffix = c(”.x", ".y")

Arguments

Y Objects representing ranges

maxgap, minoverlap
The maximimum gap between intervals as an integer greater than or equal to
zero. The minimum amount of overlap between intervals as an integer greater
than zero, accounting for the maximum gap.

n

suffix Character to vectors to append to common columns in x and y (default=c(".x",

n ‘yn)).

Details

The function join_overlap_intersect() finds the genomic intervals that are the overlapping
ranges between x and y and returns a new ranges object with metadata columns from x and y.

The function join_overlap_inner() is equivalent to find_overlaps().

The function join_overlap_left() performs a left outer join between x and y. It returns all ranges
in x that overlap or do not overlap ranges in y plus metadata columns common to both. If there is
no overlapping range the metadata column will contain a missing value.

The function join_overlap_self () find all overlaps between a ranges object x and itself.

All of these functions have two suffixes that modify their behavior. The within suffix, returns
only ranges in x that are completely overlapped within in y. The directed suffix accounts for the
strandedness of the ranges when performing overlaps.

Value

a GRanges object

See Also

join_overlap_self(), join_overlap_left(), find_overlaps()

30 join_overlap_self

Examples

X <- as_iranges(data.frame(start = c(11, 101), end = c(21, 201)))
y <- as_iranges(data.frame(start = c(10, 20, 50, 100, 1),
end = c(19, 21, 105, 202, 5)))

self
join_overlap_self(y)

intersect takes common interval
join_overlap_intersect(x,y)

within
join_overlap_intersect_within(x,y)

left, and inner join, it's often useful having an id column here
y <=y %>% mutate(id = 1:n())

X <= x %>% mutate(id = 1:n())

join_overlap_inner(x,y)

join_overlap_left(y,x, suffix = c(”.left”, ".right"))
join_overlap_self Find overlaps within a Ranges object
Description

Find overlaps within a Ranges object

Usage

join_overlap_self(x, maxgap, minoverlap)
join_overlap_self_within(x, maxgap, minoverlap)
join_overlap_self_directed(x, maxgap, minoverlap)

join_overlap_self_within_directed(x, maxgap, minoverlap)

Arguments

X A Ranges object
maxgap, minoverlap
The maximimum gap between intervals as an integer greater than or equal to

zero. The minimum amount of overlap between intervals as an integer greater
than zero, accounting for the maximum gap.

Details

Self overlaps find any overlaps (or overlaps within or overlaps directed) between a ranges object
and itself.

join_precede

Value

a Ranges object

See Also

find_overlaps(), join_overlap_inner()

Examples

query <- data.frame(start = c(5,10, 15,20), width = 5, gc = runif(4)) %>%

as_iranges()

join_overlap_self(query)

-- GRanges objects, strand is ignored by default
query <- data.frame(seqgnames = "chril”,

start = c(11,101),
end = c(21, 200),
name = c("al"”, "a2"),
strand = c("+", "-"),
score = c(1,2)) %%

as_granges()

ignores strandedness
join_overlap_self(query)
join_overlap_self_within(query)

adding directed prefix includes strand
join_overlap_self_directed(query)

31

join_precede Find preceding Ranges
Description
Find preceding Ranges
Usage
join_precede(x, y, suffix = c(".x", ".y"))
join_precede_right(x, y, suffix = c(".x", ".y"))
join_precede_downstream(x, y, suffix = c(".x", ".y"))
Arguments
Y Ranges objects, which ranges in x precede those in y.
suffix A character vector of length two used to identify metadata columns coming from

x and y.

32 mutate.Ranges

Details

By default join_precede will return the ranges in x that come before the ranges in y and ignore any
strand information. The function join_precede_right will find all ranges in y that are on the right-
hand side of the ranges in X ignoring any strand information. Finally, join_precede_downstream
will find all ranges in y that are that are downstream of the ranges in x. On the positive strand this
will result in ranges in y that are right of those in x and on the negative strand it will result in ranges
in y that are left of those in x.

Value

A Ranges object corresponding to the ranges in y that are preceded by the ranges in x, all metadata
is copied over from the right-hand side ranges y.

Examples

subject <- data.frame(start = c(5,10, 15,20), width = 5, gc = runif(4)) %>%
as_iranges()

query <- data.frame(start = 2:6, width = 3:7, label = letters[1:5]) %>%
as_iranges()

join_precede(query, subject)

query <- data.frame(segnames = "chril”,
start = c(11,101),
end = c(21, 200),
name = c("al", "a2"),
strand = c("+", "-"),
score = c(1,2)) %>%
as_granges()
subject <- data.frame(segnames = "chril”,
strand = c("+", "=", "+", "="),
start = ¢c(21,91,101,201),
end = ¢(30,101,110,210),
name = paste@("b"”, 1:4),
score = 1:4) %>%
as_granges()

join_precede(query, subject)
join_precede_right(query, subject)
join_precede_downstream(query, subject)

mutate.Ranges Modify a Ranges object

Description

Modify a Ranges object

Usage

S3 method for class 'Ranges'
mutate(.data, ...)

mutate.Ranges

Arguments

.data

Value

a Ranges object

Examples

33

a Ranges object

Pairs of name-value expressions. The name-value pairs can either create new
metadata columns or modify existing ones.

df <- data.frame(start = 1:10,

width = 5,
segnames = "seql”,
strand = sample(c("+", "-", "x"), 10, replace = TRUE),

gc = runif(10))

rng <- as_granges(df)

mutate adds new columns

rng %>%

mutate(avg_gc

= mean(gc), row_id = 1:n())

can also compute on newly created columns

rng %>%

mutate(score

= gc * width, score2 = score + 1)

group by partitions the data and computes within each group

rng %>%

group_by(strand) %>%

mutate(avg_gc

= mean(gc), row_id = 1:n())

mutate can be used in conjuction with anchoring to resize ranges

rng %>%

mutate(width = 10)
by default width modfication fixes by start

rng %>%

anchor_start() %>%
mutate(width = 10)
fix by end or midpoint

rng %>%

anchor_end() %>%
mutate(width = width + 1)

rng %>%

anchor_center() %>%
mutate(width = width + 1)
anchoring by strand

rng %>%

anchor_3p() %>%
mutate(width = width * 2)

rng %>%

anchor_5p() %>%
mutate(width = width * 2)

34 n_distinct

n Compute the number of ranges in each group.

Description

This function should only be used within summarise(), mutate() and filter().

Usage
nO

Value

n() will only be evaluated inside a function call, where it returns an integer.

Examples

ir <- as_iranges(
data.frame(start = 1:10,

width = 5,
name = c(rep("a”, 5), rep("b", 3), rep("c”, 2))
)

)
by_names <- group_by(ir, name)
summarise(by_names, n = n())
mutate(by_names, n = n())
filter(by_names, n() >= 3)

n_distinct Compute the number of distinct unique values in a vector or List

Description

This is a wrapper to length(unique(x)) or lengths(unique(x)) if x is a List object

Usage

n_distinct(var)

Arguments

var a vector of values

Value

an integer vector

Examples

x <- CharacterList(c("a", "b", "c", "a"), "d")
n_distinct(x)
n_distinct(unlist(x))

overscope_ranges

35

overscope_ranges Create an overscoped environment from a Ranges object

Description

Create an overscoped environment from a Ranges object

Usage

overscope_ranges(x, envir = parent.frame())

Arguments

X a Ranges object

envir the environment to place the Ranges in (default = parent. frame())
Details

This is the backend for non-standard evaluation in plyranges.

Value

an environment

See Also

rlang: :new_data_mask(), rlang: :eval_tidy()

pair_overlaps Pair together two ranges objects

Description

Pair together two ranges objects

Usage

pair_overlaps(x, y, maxgap, minoverlap, suffix)
pair_nearest(x, y, suffix)
pair_precede(x, y, suffix)

pair_follow(x, y, suffix)

36

Arguments

X’y

pair_overlaps

Ranges objects to pair together.

maxgap, minoverlap

suffix

The maximimum gap between intervals as an integer greater than or equal to
negative one. The minimum amount of overlap between intervals as an integer
greater than zero, accounting for the maximum gap.

A character vector of length two used to identify metadata columns coming from

x and y.

Details

These functions return a DataFrame object, and is one way of representing paired alignments with

plyranges.

Value

a DataFrame with two ranges columns and the corresponding metadata columns.

See Also

[join_nearest()][join_overlap_inner()][join_precede()][join_follow()]

Examples

query <- data.frame(start = c(5,10, 15,20), width =5, gc =

as_iranges()
subject <- data.frame(start = 2:6, width
as_iranges()

pair_overlaps(query, subject)

runif(4)) %>%

3:7, label = letters[1:5]) %>%

pair_overlaps(query, subject, minoverlap = 5)
pair_nearest(query, subject)
query <- data.frame(seqnames = "chril”,
start = c(11,101),
end = c(21, 200),
name = c("al"”, "a2"),
strand = c("+", "-"),
score = c(1,2)) %%
as_granges()
subject <- data.frame(segnames = "chri1”,
strand = c("+", "=", "+" "="),
start = ¢(21,91,101,201),

end = ¢(30,101,110,210),

name =
score = 1:4) %>%
as_granges()

ignores strandedness

paste@("b"”, 1:4),

pair_overlaps(query, subject, suffix = c(".query”, ".subject"))
pair_follow(query, subject, suffix = c(”.query"”, ".subject"))

pair_precede(query, subject, suffix =
pair_precede(query, subject, suffix =

c(”.query”, ".subject"))
c(".query", ".subject"))

pull-ranges

37

pull-ranges

Extract a single column from a Ranges object as a vector

Description

Extract a single column from a Ranges object as a vector

Usage

S3 method for class 'Ranges'

pull(.data, var

Arguments

.data

var

name

See Also
dplyr::pull()

Examples

df <- data.frame(start

= -1, name = NULL, ...)

a Ranges object
A variable specified as:

* aliteral variable name

* a positive integer, giving the position counting from the left. In this case
order is start, end, width, (strand, seqnames), gc and score.

* a negative integer, giving the position counting from the right. The default
returns the last column (on the assumption that’s the column you’ve cre-
ated most recently). This argument is taken by expression and supports
quasiquotation (you can unquote column names and column locations).

An optional parameter that specifies the column to be used as names for a named
vector. Specified in a similar manner as var.

For use by methods.

= 1:10,
width = 5,
segnames = "seql”,
strand = sample(c("+", "-", "x"), 10, replace = TRUE),

gc = runif(10),
score = rpois(10, 2))

rng <- as_granges(df)

Pull parts of the range

pull(rng, start)

equivalent to start(rng)

Pull by column name

pull(rng, gc)

pull(rng, score)

Pull by position (positive from left, negative from right)

pull(rng, 1)

First metadata column

38 ranges-info

pull(rng, -1) # Last metadata column (default)
pull(rng, -2) # Second to last metadata column

Pull with names
pull(rng, score, name = gc)

ranges-info Construct annotation information

Description

To construct annotations by supplying annotation information use genome_info. To add annota-
tions to an existing Ranges object use set_genome_info. To retrieve an annotation as a Ranges
object use get_genome_info.

Usage

genome_info(
genome = NULL,
segnames = NULL,
seqlengths = NULL,
is_circular = NULL

set_genome_info(
.data,
genome = NULL,
segnames = NULL,
seqlengths = NULL,
is_circular = NULL

get_genome_info(.data)

Arguments
genome A character vector of length one indicating the genome build.
seqnames A character vector containing the name of sequences.
seqlengths An optional integer vector containg the lengths of sequences.
is_circular An optional logical vector indicating whether a sequence is ciruclar.
.data A Ranges object to annotate or retrieve an annotation for.

Value

a GRanges object containing annotations. To retrieve the annotations as a Ranges object use
get_genome_info.

See Also

Seginfo::Seqginfo()

read_bam 39

Examples

x <- genome_info(genome = "toy",
seqnames = letters[1:4],
seqlengths = c(100, 300, 15, 600),
is_circular = c(NA, FALSE, FALSE, TRUE))
X

rng <- as_granges(data.frame(segnames = "a", start = 30:50, width = 10))
rng
rng <- set_genome_info(rng,

genome = "toy",

seqnames = letters[1:4],

seqlengths = c(100, 300, 15, 600),

is_circular = c(NA, FALSE, FALSE, TRUE))
get_genome_info(rng)

Not run:

if (interactive()) {

requires internet connection
genome_info(genome = "hg38")

}

End(Not run)

read_bam Read a BAM file

Description

Read a BAM file

Usage

read_bam(file, index = file, paired = FALSE)

Arguments
file A connection or path to a BAM file
index The path to the BAM index file
paired Whether to treat alignments as paired end (TRUE) or single end (FALSE). De-
fault is FALSE.
Details

Reading a BAM file is deferred until an action such as using summarise() or mutate() oc-
curs. If paired is set to TRUE, when alignments are loaded, the GRanges has two additional
columns called read_pair_id and read_pair_group corresponding to paired reads and is grouped
by the read_pair_group.

Certain verbs have different behaviour, after using read_bam().

For select() valid columns are the fields available in the BAM file. Valid entries are qname
(QNAME), flag (FLAG), rname (RNAME), strand, pos (POS), qwidth (width of query), mapq

40 read_bam

(MAPQ), cigar (CIGAR), mrmm (RNEXT), mpos (PNEXT), isize (TLEN), seq (SEQ), and qual
(QUAL). Any two character tags in the BAM file are also valid.

For filter() the following fields are valid, to select the FALSE option place ! in front of the field:

* is_paired Select either unpaired (FALSE) or paired (TRUE) reads.

* is_proper_pair Select either improperly paired (FALSE) or properly paired (TRUE) reads.
This is dependent on the alignment software used.

* ‘is_unmapped_query* Select unmapped (TRUE) or mapped (FALSE) reads.
* has_unmapped_mate Select reads with mapped (FALSE) or unmapped (TRUE) mates.
* is_minus_strand Select reads aligned to plus (FALSE) or minus (TRUE) strand.

e is_mate_minus_strand Select reads where mate is aligned to plus (FALSE) or minus (TRUE)
strand.

e is_first_mate_read Select reads if they are the first mate (TRUE) or not (FALSE).
* is_second_mate_read Select reads if they are the second mate (TRUE) or not (FALSE).

* is_secondary_alignment Select reads if their alignment status is secondary (TRUE) or not
(FALSE). This might be relevant if there are multimapping reads.

* is_not_passing_quality_controls Select reads that either pass quality controls (FALSE)
or that do not (TRUE).

* is_duplicate Select reads that are unduplicated (FALSE) or duplicated (TRUE). This may
represent reads that are PCR or optical duplicates.

Value

A DeferredGenomicRanges object

See Also

Rsamtools: :BamFile(),GenomicAlignments: :readGAlignments()

Examples

if (require(pasillaBamSubset)) {

bamfile <- untreatedl_chr4()

nothing is read until an action has been performed

print(read_bam(bamfile))

define a region of interest

roi <- data.frame(seqgnames = "chr4"”, start = 5e5, end = 7e5) %>%
as_granges()

rng <- read_bam(bamfile) %>%
select(mapq) %>%
filter_by_overlaps(roi)

read_bed 41

read_bed Read a BED or BEDGraph file

Description

This is a lightweight wrapper to the import family of functions defined in rtracklayer.

Read common interval based formats as GRanges.

Usage

read_bed(file, col_names = NULL, genome_info = NULL, overlap_ranges = NULL)

read_bed_graph(
file,
col_names = NULL,
genome_info = NULL,
overlap_ranges = NULL

)

read_narrowpeaks(
file,
col_names = NULL,
genome_info = NULL,
overlap_ranges = NULL

)
Arguments
file A path to a file or a connection.
col_names An optional character vector for including additional columns in file that are
not part of the BED/narrowPeaks specification.
genome_info An optional character string or a Ranges object that contains information about

the genome build. For example the USSC identifier "hg19" will add build infor-
mation to the returned GRanges.

overlap_ranges An optional Ranges object. Only the intervals in the file that overlap the Ranges
will be returned.

Details

This is a lightweight wrapper to the import family of functions defined in rtracklayer. The
read_narrowpeaks function parses the ENCODE narrowPeak BED format (see https://genome.
ucsc.edu/FAQ/FAQformat.html#format12 for details.). As such the parser expects four addi-
tional columns called (corresponding to the narrowPeaks spec):

* signalValue

* pValue

* gValue

* peak

https://genome.ucsc.edu/FAQ/FAQformat.html#format12
https://genome.ucsc.edu/FAQ/FAQformat.html#format12

read_bigwig

42
Value
A GRanges object
See Also
rtracklayer: :BEDFile()
Examples

test_path <- system.file("tests"”, package = "rtracklayer")
bed_file <- file.path(test_path, "test.bed”)
gr <- read_bed(bed_file)

gr

gr <- read_bed(bed_file, genome_info = "hgl19")

gr

olap <- as_granges(data.frame(seqnames = "chr7"”, start = 1, end = 127473000))
gr <- read_bed(bed_file,
overlap_ranges = olap)

bedGraph

bg_file <- file.path(test_path, "test.bedGraph")
gr <- read_bed_graph(bg_file)

gr
narrowpeaks

np_file <- system.file("extdata”, "demo.narrowPeak.gz"”, package="rtracklayer")
gr <- read_narrowpeaks(np_file, genome_info = "hgl19")

gr

read_bigwig

Read a BigWig file

Description

Read a BigWig file

Usage

read_bigwig(file, genome_info = NULL, overlap_ranges = NULL)

Arguments
file

genome_info

overlap_ranges

Value

a GRanges object

A path to a file or URL.

An optional character string or a Ranges object that contains information about
the genome build. For example the identifier "hg19" will add build information
to the returned GRanges.

An optional Ranges object. Only the intervals in the file that overlap the Ranges
will be loaded.

read_gff 43

See Also

rtracklayer::BigWigFile()

Examples

if (.Platform$0S.type != "windows") {
test_path <- system.file("tests"”, package = "rtracklayer”)
bw_file <- file.path(test_path, "test.bw")
gr <- read_bigwig(bw_file)
gr
3

read_gff Read a GFF/GTF/GVT file

Description

This is a lightweight wrapper to the import family of functions defined in rtracklayer.

Usage

read_gff(file, col_names = NULL, genome_info = NULL, overlap_ranges = NULL)

read_gff1(file, col_names = NULL, genome_info = NULL, overlap_ranges = NULL)

read_gff2(file, col_names = NULL, genome_info = NULL, overlap_ranges = NULL)

read_gff3(file, col_names = NULL, genome_info = NULL, overlap_ranges = NULL)
Arguments
file A path to a file or a connection.
col_names An optional character vector for parsing specific columns in file that are part
of the GFF specification. These should name either fixed fields, like source or
type, or, for GFF2 and GFF3, any attribute.
genome_info An optional character string or a Ranges object that contains information about

the genome build. For example the UCSC identifier "hg19" will add build infor-
mation to the returned GRanges.

overlap_ranges An optional Ranges object. Only the intervals in the file that overlap the Ranges
will be returned.
Value

A GRanges object
a GRanges object

See Also

rtracklayer::GFFFile()

44 read_wig

Examples

test_path <- system.file("tests"”, package = "rtracklayer”)
gff3

test_gff3 <- file.path(test_path, "genes.gff3")

gr <- read_gff3(test_gff3)

gr

alternatively with read_gff

gr <- read_gff(test_gff3, genome_info = "hgl19")

gr

read_wig Read a WIG file

Description

This is a lightweight wrapper to the import family of functions defined in rtracklayer.

Usage

read_wig(file, genome_info = NULL, overlap_ranges = NULL)

Arguments
file A path to a file or a connection.
genome_info An optional character string or a Ranges object that contains information about

the genome build. For example the USSC identifier "hg19" will add build infor-
mation to the returned GRanges.

overlap_ranges An optional Ranges object. Only the intervals in the file that overlap the Ranges
will be returned.

Value

A GRanges object
A GRanges object

See Also

rtracklayer: :WIGFile()

Examples

test_path <- system.file("tests”, package = "rtracklayer”)
test_wig <- file.path(test_path, "step.wig")

gr <- read_wig(test_wig)

gr

gr <- read_wig(test_wig, genome_info = "hg19")

reduce_ranges

reduce_ranges Reduce then aggregate a Ranges object

Description

Reduce then aggregate a Ranges object

Usage
reduce_ranges(.data, min.gapwidth = 1L, ...)
reduce_ranges_directed(.data, min.gapwidth = 1L, ...)
Arguments
.data a Ranges object to reduce

min.gapwidth Ranges separated by a gap of at least min.gapwidth positions are not merged.

Name-value pairs of summary functions.

Value

a Ranges object with the

Examples

set.seed(10)
df <- data.frame(start = sample(1:10),

width = 5,
segnames = "seql”,
strand = sample(c("+", "-", "x"), 10, replace = TRUE),

gc = runif(10))

rng <- as_granges(df)

rng %>% reduce_ranges()

rng %>% reduce_ranges(gc = mean(gc))

rng %>% reduce_ranges_directed(gc = mean(gc))

rng %>% reduce_ranges_directed(gc = mean(gc), min.gapwidth = 10)

X <- data.frame(start = c(11:13, 2, 7:6),
width=3,
id=sample(letters[1:3], 6, replace = TRUE),
score= sample(1:6))

X <- as_iranges(x)

X %>% reduce_ranges()

X %>% reduce_ranges(score = sum(score))

X %>% group_by(id) %>% reduce_ranges(score = sum(score))

46 select.Ranges

remove_names Tools for working with named Ranges

Description

Tools for working with named Ranges

Usage

remove_names(.data)

names_to_column(.data, var = "name")
id_to_column(.data, var = "id")
Arguments
.data a Ranges object
var Name of column to use for names
Details

The function names_to_column() and id_to_column() always places var as the first column in
mcols(.data), shifting all other columns to the left. The id_to_column() creates a column with
sequential row identifiers starting at 1, it will also remove any existing names.

Value

Returns a Ranges object with empty names

Examples

ir <- IRanges::IRanges(start = 1:3, width = 4, names = c("a", "b", "c"))
remove_names(ir)
ir_noname <- names_to_column(ir)

ir_noname
ir_with_id <- id_to_column(ir)
ir_with_id
select.Ranges Select metadata columns of the Ranges object by name or position
Description

Select metadata columns of the Ranges object by name or position

Usage

S3 method for class 'Ranges'
select(.data, ..., .drop_ranges = FALSE)

set_width 47

Arguments

.data a Ranges object
One or more metadata column names.

.drop_ranges If TRUE select will always return a tibble. In this case, you may select columns
that form the core part of the Ranges object.

Details

Note that by default select only acts on the metadata columns (and will therefore return a Ranges
object) if a core component of a Ranges is dropped or selected without the other required compo-
nents (this includes the seqnames, strand, start, end, width names), then select will throw an error
unless .drop_ranges is set to TRUE.

Value

a Ranges object or a tibble

See Also

dplyr::select()

Examples

df <- data.frame(start = 1:10, width = 5, segnames = "seql”,

strand = sample(c("+", "=", "%*"), 10, replace = TRUE), gc = runif(10), counts = rpois(10, 2))
rng <- as_granges(df)

select(rng, -gc)

select(rng, gc)

select(rng, counts, gc)

select(rng, 2:1)

select(rng, segnames, strand, .drop_ranges = TRUE)

set_width Functional setters for Ranges objects

Description

Functional setters for Ranges objects
Usage

set_width(x, width)

set_start(x, start = QL)

set_end(x, end = QL)

set_seqgnames(x, seqgnames)

set_strand(x, strand)

48 shift_left

Arguments
X a Ranges object
width integer amount to modify width by
start integer amount to modify start by
end integer amount to modify end by
segnames update seqnames column
strand update strand column

Details

These methods are used internally in mutate() to modify core columns in Ranges objects.

Value

a Ranges object

shift_left Shift all coordinates in a genomic interval left or right, upstream or
downstream

Description

Shift all coordinates in a genomic interval left or right, upstream or downstream
Usage

shift_left(x, shift = oL)

shift_right(x, shift = oL)

shift_upstream(x, shift = 0L)

shift_downstream(x, shift = 0L)

Arguments
X a Ranges object .
shift the amount to move the genomic interval in the Ranges object by. Either a non-
negative integer vector of length 1 or an integer vector the same length as x.
Details

Shifting left or right will ignore any strand information in the Ranges object, while shifting up-
stream/downstream will shift coordinates on the positive strand left/right and the negative strand
right/left. By default, unstranded features are treated as positive. When using shift_upstream()
or shift_downstream() when the shift argument is indexed by the strandedness of the input
ranges.

slice.Ranges 49

Value

a Ranges object with start and end coordinates shifted.

See Also

IRanges: :shift(), GenomicRanges: :shift()

Examples

ir <- as_iranges(data.frame(start = 10:15, width = 5))
shift_left(ir, 5L)

shift_right(ir, 5L)

gr <- as_granges(data.frame(start = 10:15,

width = 5,
segnames = "seql”,
strand = c("+", M40, MonnInmgn ngnyyy
shift_upstream(gr, 5L)
shift_downstream(gr, 5L)
slice.Ranges Choose rows by their position
Description
Choose rows by their position
Usage
S3 method for class 'Ranges'
slice(.data, ..., .preserve = FALSE)

S3 method for class 'GroupedGenomicRanges'
slice(.data, ..., .preserve = FALSE)

S3 method for class 'GroupedIntegerRanges'

slice(.data, ..., .preserve = FALSE)
Arguments
.data a Ranges object

Integer row values indicating rows to keep. If .data has been grouped via
group_by.GenomicRanges (), then the positions are selected within each group.

.preserve when FALSE (the default) the grouping structure is recomputed, otherwise it is
kept as is. Currently ignored.

Value

a GRanges object

50 stretch

Examples
df <- data.frame(start = 1:10,
width = 5,
segnames = "seql”,
strand = sample(c("+", "-", "x"), 10, replace = TRUE),

gc = runif(10))
rng <- as_granges(df)
dplyr::slice(rng, 1:2)
dplyr::slice(rng, -n())
dplyr::slice(rng, -5:-n())

by_strand <- group_by(rng, strand)
slice with group by finds positions within each group
dplyr::slice(by_strand, n())

dplyr::slice(by_strand, which.max(gc))

if the index is beyond the number of groups slice are ignored
dplyr::slice(by_strand, 1:3)

stretch Stretch a genomic interval

Description

By default, stretch(x) will anchor by the center of a Ranges object. This means that half of
the value of extend will be added to the end of the range and the remaining half subtracted from
the start of the Range. The other anchors will leave the start/end fixed and stretch the end/start
respectively.

Usage

stretch(x, extend)

Arguments
X a Ranges object, to fix by either the start, end or center of an interval use
anchor_start(x), anchor_end(x), anchor_center(x). To fix by strand use
anchor_3p(x) or anchor_5p(x).
extend the amount to alter the width of a Ranges object by. Either an integer vector of
length 1 or an integer vector the same length as x.
Value

a Ranges object with modified start or end (or both) coordinates

See Also

anchor (), mutate()

summarise.Ranges 51

Examples

rng <- as_iranges(data.frame(start=c(2:-1, 13:15), width=c(0:3, 2:0)))
rng2 <- stretch(anchor_center(rng), 10)
stretch(anchor_start(rng2), 10)
stretch(anchor_end(rng2), 10)
grng <- as_granges(data.frame(segnames = "chrl”,
strand = c("+", =", U= N et oS gy
start=c(2:-1, 13:15),
width=c(0:3, 2:0)))
stretch(anchor_3p(grng), 10)
stretch(anchor_5p(grng), 10)

summarise.Ranges Reduce multiple values in a Ranges down to a single value

Description

Reduce multiple values in a Ranges down to a single value

Usage
S3 method for class 'Ranges'
summarise(.data, ...)
Arguments
.data a Ranges object

Name-value pairs of summary functions. The name will be the name of the
variable in the result. The value should be an expression that will return a value
that has length one or length equal to the number of groups.

Details

Creates one or more variables as a S4Vectors: :DataFrame() from the input Ranges object. If
the ranges object is grouped, there will be a row for each group. Because grouping may remove
whether a Ranges object is valid, a DataFrame is always returned.

Value

A S4Vectors::DataFrame()

Examples

df <- data.frame(start = 1:10, width = 5, segnames = "seql”,

strand = sample(c("+", "-", "x"), 10, replace = TRUE), gc = runif(10))
rng <- as_granges(df)

rng %>% summarise(gc = mean(gc))

rng %>% group_by(strand) %>% summarise(gc = mean(gc))

52 tile_ranges

tile_ranges Slide or tile over a Ranges object

Description

Slide or tile over a Ranges object

Usage

tile_ranges(x, width)

slide_ranges(x, width, step)

Arguments
X a Ranges object
width the maximum width of each windowt/tile (integer vector of length 1)
step the distance between start position of each sliding window (integer vector of
length 1)
Details

The tile_ranges() function paritions a Ranges object x by the given the width over all ranges
in x, truncated by the sequence end. The slide_ranges() function makes sliding windows within
each range of x of size width and sliding by step. Both slide_ranges() and tile_ranges()
return a new Ranges object with a metadata column called "partition" which contains the index of
the input range x that a parition belongs to.

Value

a Ranges object

See Also

GenomicRanges::tile()

Examples

gr <- data.frame(segnames = c("chr1”, rep("chr2", 3), rep("chr1”, 2), rep("chr3”, 4)),

start = 1:10,
end = 11,
strand = c("-", rep("+", 2), rep("x", 2), rep("+", 3), rep("-", 2))) %>%

as_granges() %>%
set_genome_info(seqlengths = ¢(11,12,13))

partition ranges into subranges of width 2, odd width ranges
will have one subrange of width 1
tile_ranges(gr, width = 2)

make sliding windows of width 3, moving window with step size of 2
slide_ranges(gr, width = 3, step = 2)

write_bed 53

write_bed Write a BED or BEDGraph file

Description

This is a lightweight wrapper to the export family of functions defined in rtracklayer.

Usage
write_bed(x, file, index = FALSE)

write_bed_graph(x, file, index = FALSE)

write_narrowpeaks(x, file)

Arguments
X A GRanges object
file File name, URL or connection specifying a file to write x to. Compressed files
with extensions such as ’.gz’ are handled automatically. If you want to index the
file with tabix use the index argument.
index Compress and index the output file with bgzf and tabix (default = FALSE). Note
that tabix indexing will sort the data by chromosome and start.
Value

The write functions return a BED(Graph)File invisibly

See Also
rtracklayer: :BEDFile()

Examples

Not run:
test_path <- system.file("tests”, package = "rtracklayer")
bed_file <- file.path(test_path, "test.bed")
gr <- read_bed(bed_file)
bed_file_out <- file.path(tempdir(), "new.bed")
write_bed(gr, bed_file_out)
read_bed(bed_file_out)
#' bedgraph
bg_file <- file.path(test_path, "test.bedGraph")
gr <- read_bed_graph(bg_file)
bg_file_out <- file.path(tempdir(), "new.bg")
write_bed(gr, bg_file_out)
read_bed(bg_file_out)
narrowpeaks
np_file <- system.file("extdata”, "demo.narrowPeak.gz",6 package="rtracklayer")
gr <- read_narrowpeaks(np_file, genome_info = "hgl9")
np_file_out <- file.path(tempdir(), "new.bg")
write_narrowpeaks(gr, np_file_out)

54 write_bigwig

read_narrowpeaks(np_file_out)

End(Not run)

write_bigwig Write a BigWig file

Description

This is a lightweight wrapper to the export family of functions defined in rtracklayer.

Usage

write_bigwig(x, file)

Arguments
X A GRanges object
file File name, URL or connection specifying a file to write x to. Compressed files
with extensions such as *.gz’ are handled automatically.
Value

The write functions return a BigWigFile invisibly

See Also

rtracklayer::BigWigFile()

Examples

Not run:

if (.Platform$0S.type != "windows") {
test_path <- system.file("tests”, package = "rtracklayer”)
bw_file <- file.path(test_path, "test.bw")
gr <- read_bigwig(bw_file)
gr

bw_out <- file.path(tempdir(), "test_out.bw")
write_bigwig(gr ,bw_out)

read_bigwig(bw_out)

}

End(Not run)

write_gff 55

write_gff Write a GFF(123) file

Description

This is a lightweight wrapper to the export family of functions defined in rtracklayer.

Usage
write_gff(x, file, index = FALSE)
write_gff1(x, file, index = FALSE)

write_gff2(x, file, index = FALSE)

write_gff3(x, file, index = FALSE)
Arguments

X A GRanges object

file Path or connection to write to

index If TRUE the output file will be compressed and indexed using bgzf and tabix.
Value

The write function returns a GFFFile object invisibly

See Also

rtracklayer: :GFFFile()

Examples

Not run:

test_path <- system.file("tests"”, package = "rtracklayer")
test_gff3 <- file.path(test_path, "genes.gff3")

gr <- read_gff3(test_gff3)

out_gff3 <- file.path(tempdir(), "test.gff3")
write_gff3(gr, out_gff3)

read_gff3(out_gff3)

End(Not run)

56 Jounion %

write_wig Write a WIG file

Description

Write a WIG file

Usage

write_wig(x, file)

Arguments
X A GRanges object
file File name, URL or connection specifying a file to write x to. Compressed files
with extensions such as ’.gz’ are handled automatically.
Value

The write function returns a WIGFile invisibly.

See Also

rtracklayer: :WIGFile()

%union?% Row-wise set operations on Ranges objects

Description

Row-wise set operations on Ranges objects
Usage

X %union% y

X %intersect% y

X %setdiff% y

between(x, y)

span(x, y)

Arguments

X,y Ranges objects

%>% 57

Details

Each of these functions acts on the rows between pairs of Ranges object. The function %union%().
will return the entire range between two ranges objects assuming there are no gaps, if you would like
to force gaps use span() instead. The function %intersect%() will create a new ranges object with
a hit column indicating whether or not the two ranges intersect. The function %setdiff%()will re-
turn the ranges for each row in x that are not in the corresponding row of y. The function between()
will return the gaps between two ranges.

Value

A Ranges object

See Also

[IRanges::punion()][IRanges::pintersect()][IRanges::pgap()][IRanges::psetdiff()]

Examples

<- as_iranges(data.frame(start = 1:10, width = 5))
stretch x by 3 on the right

<- stretch(anchor_start(x), 3)

take the rowwise union

%union% y

take the rowwise intersection

%intersect% y

asymetric difference

%setdiff% x

%hsetdiff% y

if there are gaps between the rows of each range use span
<- as_iranges(data.frame(start = c(20:15, 2:5),
width = ¢c(10:15,1:4)))

fill in the gaps and take the rowwise union
span(x,y)

find the gaps

between(x,y)

< X < X X H< X

%>% Pipe operator

Description

See magrittr::%>% for details.

Usage

lhs %>% rhs

Arguments

lhs A value or the magrittr placeholder.

rhs A function call using the magrittr semantics.

58 %>%

Value

The result of calling rhs(1hs).

Index

+ internal

%>%, ST
%intersect% (%union%), 56
%setdiff% (%union%), 56
%>%, 57,57
%union%, 56

add_nearest_distance, 4

add_nearest_distance_downstream
(add_nearest_distance), 4

add_nearest_distance_left
(add_nearest_distance), 4

add_nearest_distance_right
(add_nearest_distance), 4

add_nearest_distance_upstream
(add_nearest_distance), 4

anchor, 5

anchor_3p (anchor), 5

anchor_5p (anchor), 5

anchor_center (anchor), 5

anchor_centre (anchor), 5

anchor_end (anchor), 5

anchor_start (anchor), 5

arrange.Ranges, 7

as_granges (as_iranges), 8

as_iranges, 8

as_ranges, 9

BamFile(), 40
BamFileOperator-class
(FileOperator-class), 15
BEDFile(), 42, 53
between (%union%), 56
between(), 57
BigWigFile(), 43, 54
bind_ranges, 9

chop_by_gaps (chop_by_introns), 10

chop_by_introns, 10

complement_ranges (intersect_ranges), 23

complement_ranges_directed
(intersect_ranges), 23

compute_coverage, 11

compute_coverage(), 9

59

count_overlaps, 12
count_overlaps_directed
(count_overlaps), 12
count_overlaps_within (count_overlaps),
12
count_overlaps_within_directed
(count_overlaps), 12
coverage(), 12

data.frame(), 8

DataFrame(), 51

DeferredGenomicRanges-class, 13

disjoin_ranges, 14

disjoin_ranges_directed
(disjoin_ranges), 14

dplyr::filter(), 16
dplyr::pull(), 37
dplyr::select(), 47
dplyr::tibble(), 8

expand_ranges, 14

FileOperator-class, 15

filter-ranges, 16

filter.Ranges (filter-ranges), 16

filter_by_non_overlaps
(filter_by_overlaps), 17

filter_by_non_overlaps_directed
(filter_by_overlaps), 17

filter_by_overlaps, 17

filter_by_overlaps_directed
(filter_by_overlaps), 17

find_overlaps, 18

find_overlaps(), 29, 31

find_overlaps_directed (find_overlaps),
18

find_overlaps_within (find_overlaps), 18

find_overlaps_within_directed
(find_overlaps), 18

findOverlaps(), 20

flank(), 21

flank_downstream (flank_left), 20

flank_left, 20

flank_right (flank_left), 20

60

flank_upstream (flank_left), 20

genome_info (ranges-info), 38

GenomicAlignments: :readGAlignments(),
40

GenomicRanges: :GRanges(), 9, 17

get_genome_info (ranges-info), 38

GFFFile(), 43, 55

GRanges(), 8

group_by-ranges
(GroupedGenomicRanges-class),
22

group_by.GenomicRanges
(GroupedGenomicRanges-class),
22

group_by.GenomicRanges(), 49

group_by_overlaps (find_overlaps), 18

GroupedGenomicRanges-class, 22

GroupedIntegerRanges-class
(GroupedGenomicRanges-class),
22

groups.GroupedGenomicRanges
(GroupedGenomicRanges-class),
22

groups.GroupedIntegerRanges
(GroupedGenomicRanges-class),
22

id_to_column (remove_names), 46

intersect_ranges, 23

intersect_ranges_directed
(intersect_ranges), 23

interweave, 24

IRanges(), 8

IRanges: :IRanges(), 9

IRanges: :RleList(), 9

join_follow, 25
join_follow_left (join_follow), 25
join_follow_upstream(join_follow), 25
join_nearest, 5, 26
join_nearest_downstream (join_nearest),
26
join_nearest_left (join_nearest), 26
join_nearest_right (join_nearest), 26
join_nearest_upstream(join_nearest), 26
join_overlap_inner
(join_overlap_intersect), 28
join_overlap_inner(), 29, 31
join_overlap_inner_directed
(join_overlap_intersect), 28
join_overlap_inner_within
(join_overlap_intersect), 28

INDEX

join_overlap_inner_within_directed
(join_overlap_intersect), 28
join_overlap_intersect, 28
join_overlap_intersect(), 29
join_overlap_intersect_directed
(join_overlap_intersect), 28
join_overlap_intersect_within
(join_overlap_intersect), 28
join_overlap_intersect_within_directed
(join_overlap_intersect), 28
join_overlap_left
(join_overlap_intersect), 28
join_overlap_left(), 29
join_overlap_left_directed
(join_overlap_intersect), 28
join_overlap_left_within
(join_overlap_intersect), 28
join_overlap_left_within_directed
(join_overlap_intersect), 28
join_overlap_self, 30
join_overlap_self(), 29
join_overlap_self_directed
(join_overlap_self), 30
join_overlap_self_within
(join_overlap_self), 30
join_overlap_self_within_directed
(join_overlap_self), 30
join_precede, 31
join_precede_downstream (join_precede),
31
join_precede_right (join_precede), 31

mutate.Ranges, 7, 32

n, 34
n_distinct, 34
names_to_column (remove_names), 46

overscope_ranges, 35

pair_follow (pair_overlaps), 35
pair_nearest (pair_overlaps), 35
pair_overlaps, 35

pair_precede (pair_overlaps), 35
plyranges (plyranges-package), 3
plyranges-package, 3
pull-ranges, 37

pull.Ranges (pull-ranges), 37

ranges-info, 38

read_bam, 39

read_bed, 41

read_bed_graph (read_bed), 41

INDEX

read_bigwig, 42

read_gff, 43

read_gff1 (read_gff), 43

read_gff2 (read_gff), 43

read_gff3 (read_gff), 43

read_narrowpeaks (read_bed), 41

read_wig, 44

reduce_ranges, 45

reduce_ranges_directed (reduce_ranges),
45

remove_names, 46

rlang::eval_tidy(), 35

rlang: :new_data_mask(), 35

Rle(), 9

RleList(), 9

S4Vectors::Rle(), 9
select.Ranges, 46
Seqinfo::Seqinfo(), 38
set_end (set_width), 47
set_genome_info (ranges-info), 38
set_seqnames (set_width), 47
set_start (set_width), 47
set_strand (set_width), 47
set_width, 47
setdiff_ranges (intersect_ranges), 23
setdiff_ranges_directed
(intersect_ranges), 23
shift(), 49
shift_downstream (shift_left), 48
shift_downstream(), 48
shift_left, 48
shift_right (shift_left), 48
shift_upstream(shift_left), 48
shift_upstream(), 48
slice.GroupedGenomicRanges
(slice.Ranges), 49
slice.GroupedIntegerRanges
(slice.Ranges), 49
slice.Ranges, 49
slide_ranges (tile_ranges), 52
span (%union%), 56
span(), 57
stretch, 7, 50
subsetByOverlaps(), 17
summarise.Ranges, 51

tile(), 52
tile_ranges, 52

unanchor (anchor), 5

ungroup.GroupedGenomicRanges
(GroupedGenomicRanges-class),
22

union_ranges (intersect_ranges), 23
union_ranges_directed
(intersect_ranges), 23

WIGFile(), 44, 56

write_bed, 53

write_bed_graph (write_bed), 53
write_bigwig, 54

write_gff, 55

write_gff1 (write_gff), 55
write_gff2 (write_gff), 55
write_gff3 (write_gff), 55
write_narrowpeaks (write_bed), 53
write_wig, 56

61

	plyranges-package
	add_nearest_distance
	anchor
	arrange.Ranges
	as_iranges
	as_ranges
	bind_ranges
	chop_by_introns
	compute_coverage
	count_overlaps
	DeferredGenomicRanges-class
	disjoin_ranges
	expand_ranges
	FileOperator-class
	filter-ranges
	filter_by_overlaps
	find_overlaps
	flank_left
	GroupedGenomicRanges-class
	intersect_ranges
	interweave
	join_follow
	join_nearest
	join_overlap_intersect
	join_overlap_self
	join_precede
	mutate.Ranges
	n
	n_distinct
	overscope_ranges
	pair_overlaps
	pull-ranges
	ranges-info
	read_bam
	read_bed
	read_bigwig
	read_gff
	read_wig
	reduce_ranges
	remove_names
	select.Ranges
	set_width
	shift_left
	slice.Ranges
	stretch
	summarise.Ranges
	tile_ranges
	write_bed
	write_bigwig
	write_gff
	write_wig
	union
	>
	Index

