Package ‘roar’

February 4, 2026

Type Package

Title Identify differential APA usage from RNA-seq alignments
Version 1.46.0

Date 2016-03-21

Author FElena Grassi

Maintainer Elena Grassi <grassi.e@gmail.com>

Description Identify preferential usage of APA sites, comparing two biological conditions, start-
ing from known alternative sites and alignments obtained from standard RNA-seq experiments.

biocViews Sequencing, HighThroughputSequencing, RNAseq, Transcription
License GPL-3
Depends R (>=3.0.1)

Imports methods, BiocGenerics, S4Vectors, IRanges, GenomicRanges,
SummarizedExperiment, GenomicAlignments (>= 0.99.4),
rtracklayer, GenomeInfoDb

Suggests RNAseqData. HNRNPC.bam.chr14, testthat

URL https://github.com/vodkatad/roar/
git_url https://git.bioconductor.org/packages/roar
git_branch RELEASE_3_22

git_last_commit bb81790
git_last_commit_date 2025-10-29

Repository Bioconductor 3.22
Date/Publication 2026-02-03

Contents

r0ar-package e e e e e e e e e
checkStep e
combineFisherMethod
computePairedPvals oo L
computePvals
computeRoarso

https://github.com/vodkatad/roar/

2 checkStep

countResults L 8
fpkmResults e 9
getFisher e 10
MEANACIOSSASSAYS .« « v v v v e e e e e e e e e e e e e e e e e 11
pvalueCorrectFilter L 11
pvalueFilter 12
RoarDataset 13
RoarDataset-class 15
RoarDatasetFromFiles 16
RoarDatasetMultiple APA 17
RoarDatasetMultipleAPA-class 18
RoarDatasetMultipleAPAFromFiles 20
standardFilter L 21
totalResults 22

Index 24

roar-package Identify differential APA usage from RNA-seq alignments
Description

Identify preferential usage of APA sites, comparing two biological conditions, starting from known
alternative sites and alignments obtained from standard RNA-seq experiments.

Details

The codeRoarDataset class exposes methods to perform the whole analysis, in order to identify
genes with preferential expression of long/short isoforms in a condition with respect to another one.
The needed input data are alignments deriving from RNA-seq experiments of the two conditions
and a set of coordinates of APA sites for genes with an alternative APA site proximal to the one
used “normally”.

Author(s)

Elena Grassi <grassi.e@gmail.com>

checkStep Private/inner/helper method to check the order of the invoked analysis
methods

Description

This method should not be used by package users. It gets an rds object and a required number of
analysis step and, if possible, calls the requested method to reach that step. It returns the object and
a logical value that tells if the analysis can go on.

Usage

checkStep(rds, neededStep)

combineFisherMethod 3

Arguments

rds A RoarDataset object.

neededStep The analysis step where rds should be/arrive.
Value

A list containing a logical that shows if the needed step could be reached with rds and the object at
the requested step. Check step won’t repeat a step already done and the logical value will be FALSE
in this case (and rds won’t be returned modified).

combineFisherMethod Private/inner/helper method to combine pvalues of independent test
with the Fisher method

Description

This method should not be used by package users. Given a numerical vector of pvalues, which
should be obtained from independent tests on the same null hypothesis, this will give the combined
pvalue following the Fisher method.

Usage
combineFisherMethod(pvals)
Arguments
pvals A numerical vector with pvalues of independent tests on the same HO.
Value

The combined pvalue given by the Fisher method.

computePairedPvals Computes pvalues (Fisher test) on the read counts in this roar analysis

Description

This is the third step in the Roar analyses: it applies a Fisher test comparing counts falling on the
PRE and POST portion in the treatment and control conditions for every gene. The paired method
should be used when the experimental setup offers multiple paired samples for the two conditions:
that is foreach sample of the control condition there is a naturally paired one for the treatment (i.e.
cells derived from the same plate divided in two groups and treated or not). For example in the
below code sample treatment sample n.1 (rd1l) is paired with control n.2 (rd4) and rd2 with rd3.
The pvalue resulting from Fisher test applied on the different samples pairings will be combined
with the Fisher method, therefore the pairs of samples should be independent between each other.

Usage

computePvals

computePairedPvals(rds, treatmentSamples, controlSamples)

Arguments

rds

controlSamples

Value

The RoarDataset or the RoarDatasetMultipleAPA which contains the counts
over PRE-POST portions in the two conditions to be compared via pvalues.

treatmentSamples
Numbers that represent the indexes of the treatmentBams/GappedAlign param-
eter given to the RoarDataset costructor and the order in which they are paired

with control samples.

Numbers that represent the indexes of the controlBams/GappedAlign parameter

given to the RoarDataset costructor and the order in which they are paired with

treatment samples.

The RoarDataset or the RoarDatasetMultipleAPA object given as rds with the compute pvalues
phase of the analysis done. Pvalues will be held in the RoarDataset object itself in the case of single
samples, while in a separate slot otherwise, but end user normally should not analyze those directly
but use totalResults or fpkmResults at the end of the analysis.

Examples

library(GenomicAlignments)
gene_id <- c("A_PRE", "A_POST", "B_PRE", "B_POST")

features <-
seqgnames
strand =
ranges =

start=
width=

GRanges(
= Rle(c("chr1”, "chri1”, "chr2", "chr2")),
strand(rep(”+"”, length(gene_id))),

IRanges(
c(1000, 2000, 3000, 3600),
c (1000, 900, 600, 300)),

DataFrame(gene_id)

)

rd1 <- GAlignments("a", segnames = Rle("chr1"), pos
rd2 <- GAlignments("a", seqnames = Rle("chr1"), pos = as.
rd3 <- GAlignments("a", segnames = Rle("chr2"), pos
rd4 <- GAlignments("a", segnames = Rle("chr2"), pos

as.

as.
as.

integer(1000), cigar
integer(2000), cigar
integer(3000), cigar
integer(3400), cigar

rds <- RoarDataset(list(rdl,rd2), list(rd3, rd4), features)
rds <- countPrePost(rds, FALSE)

rds <- computeRoars(rds)

rds <- computePairedPvals(rds, c(1,2), c(2,1))

"300M", strand = strand("+"))
"300M", strand = strand("+"))
"300M", strand = strand("+"))
"300M", strand = strand("+"))

computePvals

Computes pvalues (Fisher test) on the read counts in this roar analysis

Description

This is the third step in the Roar analyses: it applies a Fisher test comparing counts falling on
the PRE and POST portion in the treatment and control conditions for every gene. If there are
multiple samples for a condition every combinations of comparisons between the samples lists are

considered.

computeRoars 5

Usage
computePvals(rds)
Arguments
rds The RoarDataset or the RoarDatasetMultipleAPA which contains the counts
over PRE-POST portions in the two conditions to be compared via pvalues.
Value

The RoarDataset or the RoarDatasetMultipleAPA object given as rds with the compute pvalue
phase of the analysis done. Pvalues will be held in the RoarDataset object itself in the case of single
samples, while in a separate slot otherwise, but end user normally should not analyze those directly
but use totalResults or fpkmResults at the end of the analysis.

Examples

library(GenomicAlignments)
gene_id <- c("A_PRE", "A_POST", "B_PRE", "B_POST")
features <- GRanges(
segnames = Rle(c("chr1”, "chr1”, "chr2", "chr2")),
strand = strand(rep("+", length(gene_id))),
ranges = IRanges(
start=c(1000, 2000, 3000, 3600),
width=c(1000, 900, 600, 300)),
DataFrame(gene_id)
)
rd1 <- GAlignments("a", seqnames = Rle("chr1"”), pos = as.integer(1000), cigar = "300M", strand = strand("+"))
rd2 <- GAlignments("a", seqnames = Rle("chr1"”), pos = as.integer(2000), cigar = "300M", strand = strand("+"))
rd3 <- GAlignments("a", seqnames = Rle("chr2"), pos = as.integer(3000), cigar = "300M", strand = strand("+"))
rds <- RoarDataset(list(c(rdl,rd2)), list(rd3), features)
rds <- countPrePost(rds, FALSE)
rds <- computeRoars(rds)
rds <- computePvals(rds)

computeRoars Computes m/M and roar values

Description

This is the second step in the Roar analyses: it computes the ratio of prevalence of the short and
long isoforms for every gene in the treatment and control condition (m/M) and their ratio, roar, that
indicates if there is a relative shortening-lengthening in a condition over the other one. A roar > 1
for a given gene means that in the treatment condition that gene has an higher ratio of short vs long
isoforms with respect to the control condition (and the opposite for roar < 1). Negative or NA m/M
or roar occurs in not definite situations, such as counts equal to zero for PRE or POST portions.
If for one of the conditions there are more than one samples then calculations are performed on
average counts.

6 cores

Usage
computeRoars(rds, gwidthTreatment=NA, gwidthControl=NA)
computeRoars(rds, qwidthTreatment, qwidthControl)
Arguments
rds The RoarDataset or the RoarDatasetMultipleAPA which contains the counts
over PRE-POST portions in the two conditions to be compared via roar.
gwidthTreatment

The mean length of the reads in the treatment bam files - used internally for the
interaction between RoarDataset and RoarDatasetMultipleAPA objects. The
default (NA) calculates this value from the bam and should not be changed.

gwidthControl The mean length of the reads in the control bam files - used internally for the
interaction between RoarDataset and RoarDatasetMultipleAPA objects. The
default (NA) calculates this value from the bam and should not be changed.

Value

The RoarDataset or the RoarDatasetMultipleAPA object given as rds with the computeRoars
phase of the analysis done. m/M and roars will be held in the RoarDataset object itself in the case
of single samples, while in two slots otherwise, but end user normally should not analyze those
directly but use totalResults or fpkmResults at the end of the analysis.

Examples

library(GenomicAlignments)
gene_id <- c("A_PRE", "A_POST", "B_PRE", "B_POST")
features <- GRanges(
segnames = Rle(c("chr1”, "chr1”, "chr2", "chr2")),
strand = strand(rep(”+", length(gene_id))),
ranges = IRanges(
start=c(1000, 2000, 3000, 3600),
width=c(1000, 900, 600, 300)),
DataFrame(gene_id)
)
rd1 <- GAlignments("a", seqnames = Rle("chr1"”), pos = as.integer(1000), cigar = "300M", strand = strand("+"))
rd2 <- GAlignments("a", seqnames = Rle("chr1"), pos = as.integer(2000), cigar = "300M", strand = strand("+"))
rd3 <- GAlignments("a", seqgnames = Rle("chr2"), pos = as.integer(3000), cigar = "300M", strand = strand("+"))
rds <- RoarDataset(list(c(rdl,rd2)), list(rd3), features)
rds <- countPrePost(rds, FALSE)
rds <- computeRoars(rds)

cores Method to check how many cores are used by a roar analysis - right
now not useful

Description

Right now always returns 1 as long as multi-core support has to be implemented.

countPrePost 7

Usage
cores(rds)
Arguments
rds A RoarDataset object.
Value

The number of cores used by this roar analisys.

countPrePost Counts reads falling over PRE/POST portions of the given transcripts

Description

This is the first step in the Roar analyses: it counts reads overlapping with the PRE/POST portions
defined in the given gtf/GRanges annotation. See RoarDataset for details on how to define these
portions. Reads of the given bam annotation files that falls over this portion are accounted for with
the following rules:

1- reads that align on only one of the given features are assigned to that feature, even if the overlap
is not complete 2- reads that align on both a PRE and a POST feature of the same gene (spanning
reads) are assigned to the POST one, considering that they have clearly been obtained from the
longest isoform

If the stranded argument is set to TRUE then strandness is considered when counting reads. When
rds is a RoarDatasetMultipleAPA counts are obtained on more than two portions for each tran-
script in order to be able to efficiently evaluate multiple APA sites. The option stranded=TRUE is
still not implemented for RoarDatasetMultipleAPA.

Usage
countPrePost(rds, stranded=FALSE)
Arguments
rds The RoarDataset or the RoarDatasetMultipleAPA which contains the align-
ments and annotation informations over which counts will be performed.
stranded A logical indicating if strandness should be considered when counting reads
or not. Default=FALSE. WARNING: not implemented (ignored) when using
RoarDatasetMultipleAPA.
Value

The RoarDataset object given as rds with the counting reads phase of the analysis done. Counts
will be held in the RoarDataset object itself in the case of single samples, while

8 countResults

Examples

library(GenomicAlignments)
gene_id <- c("A_PRE"”, "A_POST"”, "B_PRE", "B_POST")
features <- GRanges(
seqnames = Rle(c("chr1”, "chri1”, "chr2", "chr2")),
strand = strand(rep(”+", length(gene_id))),
ranges = IRanges(
start=c(1000, 2000, 3000, 3600),
width=c(1000, 900, 600, 300)),
DataFrame(gene_id)
)
rd1 <- GAlignments("a", segnames = Rle("chr1"”), pos = as.integer(1000), cigar = "300M", strand = strand("+"))
rd2 <- GAlignments("a", seqnames = Rle("chr1"), pos = as.integer(2000), cigar = "300M", strand = strand("+"))
rd3 <- GAlignments("a", seqnames = Rle("chr2"), pos = as.integer(3000), cigar = "300M", strand = strand("+"))
rds <- RoarDataset(list(c(rdl,rd2)), list(rd3), features)
rds <- countPrePost(rds)

countResults Returns a dataframe with results of the analysis for a RoarDataset
object or a RoarDatasetMultipleAPA object

Description

The last step of a classical Roar analyses: it returns a dataframe containing m/M values, roar values,
pvalues and estimates of expression (number of reads falling over the PRE portions).

Usage
countResults(rds)
Arguments
rds The RoarDataset or the RoarDatasetMultipleAPA with all the analysis steps
(countPrePost, computeRoars, computePvals) performed. If one or more
steps hadn’t been performed they will be called automatically.
Value

The resulting dataframe will be identical to that returned by link{totalResults} but with two
columns added: "treatmentValue" and "controlValue". These columns will contain a number that
indicates the level of expression of the relative gene in the treatment (or control) condition. For
RoarDataset this number represents the counts (averaged across samples when applicable) ob-
tained for the PRE portion of the gene. For RoarDatasetMultipleAPA every possible PRE choice
will have its corresponding reads counts assigned and also the length of the PRE portion (counting
only exonic bases). See the vignette for more details.

fpkmResults 9

Examples

library(GenomicAlignments)
gene_id <- c("A_PRE", "A_POST", "B_PRE", "B_POST")
features <- GRanges(
segnames = Rle(c("chr1”, "chr1”, "chr2", "chr2")),
strand = strand(rep(”"+", length(gene_id))),
ranges = IRanges(
start=c(1000, 2000, 3000, 3600),
width=c(1000, 900, 600, 300)),
DataFrame(gene_id)
)
rd1 <- GAlignments("a", seqnames = Rle("chr1"”), pos = as.integer(1000), cigar = "300M", strand = strand("+"))
rd2 <- GAlignments("a", seqnames = Rle("chr1"), pos = as.integer(2000), cigar = "300M", strand = strand("+"))
rd3 <- GAlignments("a", seqnames = Rle("chr2"), pos = as.integer(3000), cigar = "300M", strand = strand("+"))
rds <- RoarDataset(list(c(rdl,rd2)), list(rd3), features)
rds <- countPrePost(rds, FALSE)
rds <- computeRoars(rds)
rds <- computePvals(rds)
dat <- countResults(rds)

fpkmResults Returns a dataframe with results of the analysis for a RoarDataset
object or a RoarDatasetMultipleAPA object

Description

The last step of a classical Roar analyses: it returns a dataframe containing m/M values, roar values,
pvalues and estimates of expression (a measure recalling FPKM).

Usage
fpkmResults(rds)
Arguments
rds The RoarDataset or the RoarDatasetMultipleAPA with all the analysis steps
(countPrePost, computeRoars, computePvals) performed. If one or more
steps hadn’t been performed they will be called automatically.
Value

The resulting dataframe will be identical to that returned by totalResults but with two columns
added: "treatmentValue" and "controlValue". These columns will contain a number that indicates
the level of expression of the relative gene in the treatment (or control) condition. For RoarDataset
this number derives from the counts (averages across samples when applicable) obtained for the
PRE portion of the gene and is similar to the RPKM standard measure of expression used in RNAseq
experiment. Specifically we correct the counts on the PRE portions dividing them by portion length
and total numer of reads aligned on all PRE portions and the multiply the results for 1000000000.
See the vignette for more details.

10

getFisher

For RoarDatasetMultipleAPA the same procedure is applied to all the possible PRE choices for
genes. Note that summing all the counts for every PRE portion assigned to a gene could lead to
count some reads multiple times when summing all the PRE portions counts therefore this measure
is not completely comparable with the one obtained with the single APA analysis. The length
column added in this case contains the length of the PRE portions (counting only exonic bases).

Examples

library(GenomicAlignments)
gene_id <- c("A_PRE", "A_POST", "B_PRE", "B_POST")

features <-
segnames
strand =
ranges =

start=
width=

GRanges(

= Rle(c("chr1”, "chr1”, "chr2", "chr2")),
strand(rep(”+", length(gene_id))),
IRanges(

c(1000, 2000, 3000, 3600),

c(1000, 900, 600, 300)),

DataFrame(gene_id)

)

rd1 <- GAlignments("a", segnames = Rle("chr1"), pos = as.integer(1000), cigar
rd2 <- GAlignments("a", segnames = Rle("chr1"”), pos = as.integer(2000), cigar
rd3 <- GAlignments("a", seqnames = Rle("chr2"), pos = as.integer(3000), cigar
rds <- RoarDataset(list(c(rdl,rd2)), list(rd3), features)

rds <- countPrePost(rds, FALSE)

rds <- computeRoars(rds)

rds <- computePvals(rds)

dat <- fpkmResults(rds)

"300M", strand = strand("+"))
"300M", strand = strand("+"))
"300M", strand = strand("+"))

getFisher

Private/inner/helper method to perform Fisher test

Description

This method should not be used by package users. Given a numerical vector of length 4 it will
perform a Fisher test and return the p-value for the two.sided test. Non-integer values will be

rounded.
Usage
getFisher(counts)
Arguments
counts A numerical vector of length 4.
Value

The pvalue for the two.sided Fisher test.

meanAcrossAssays 11

meanAcrossAssays Private/inner/helper method to get average counts across samples

Description

This method should not be used by package users. It gets average counts for "pre" or "post” portions
(depending on the wantedColumns argument) given the list of assays for one of the two conditions.

Usage
meanAcrossAssays(assays, wantedColumns)
Arguments
assays A list of matrixes/dataframes.

wantedColumns The name of the columns ("pre" or "post") whose means should be computed.
Average will be calculated on the corresponding rows of the list of matrices/dataframe,
working on the given column.

Value

The pvalue for the two.sided Fisher test.

pvalueCorrectFilter Returns a dataframe with results of the analysis for a RoarDataset
object or a RoarDatasetMultipleAPA object

Description

The last step of a classical Roar analyses: it returns a dataframe containing m/M values, roar values,
pvalues and estimates of expression (a measure recalling FPKM). Only the genes with an expression
estimate bigger than a given cutoff will be considered. Also pvalues, corrected considering multiple
testing, will be considered for filtering.

Usage
pvalueCorrectFilter(rds, fpkmCutoff, pvalCutoff, method)
Arguments
rds The RoarDataset or the RoarDatasetMultipleAPA with all the analysis steps
(countPrePost, computeRoars, computePvals) performed. If one or more
steps hadn’t been performed they will be called automatically.
fpkmCutoff The cutoff that will be used to determine if a gene is expressed or not.
pvalCutoff The cutoff that will be used to determine if a pvalue is significative or not.
method The multiple test correction method that has to be used (used only for multiple

paired samples or single samples, not used for multiple unpaired samples.)

12 pvalueFilter

Value

For RoarDataset:

The resulting dataframe will be identical to that returned by standardFilter but after gene ex-
pression filtering another step will be performed: for single samples comparisons or multiple
paired samples comparisons only genes with a corrected (with the given method) pvalue (for paired
datasets this is the combined pvalue obtained with the Fisher method) smaller than the given cut-
off will be returned, while for multiple samples a column (nUnderCutoff) will be added to the
dataframe. This column will contain an integer number representing the number of comparisons
between the samples of the two conditions that results in a nominal pvalue lower than the given
cutoff (pvalCutoff).

For RoarDatasetMultipleAPA: for each gene we select the APA choice that is associated with the
smallest p-value then proceed exactly as above.

Examples

library("GenomicAlignments”)
gene_id <- c("A_PRE", "A_POST", "B_PRE", "B_POST")
features <- GRanges(
segnames = Rle(c("chr1”, "chr1”, "chr2", "chr2")),
strand = strand(rep("+", length(gene_id))),
ranges = IRanges(
start=c(1000, 2000, 3000, 3600),
width=c(1000, 900, 600, 300)),
DataFrame(gene_id)
)
rd1 <- GAlignments("a", seqnames = Rle("chr1"”), pos = as.integer(1000), cigar = "300M", strand = strand("+"))
rd2 <- GAlignments("a", seqnames = Rle("chr1"”), pos = as.integer(2000), cigar = "300M", strand = strand("+"))
rd3 <- GAlignments("a", seqnames = Rle("chr2"), pos = as.integer(3000), cigar = "300M", strand = strand("+"))
rds <- RoarDataset(list(c(rdl,rd2)), list(rd3), features)
rds <- countPrePost(rds, FALSE)
rds <- computeRoars(rds)
rds <- computePvals(rds)
dat <- pvalueFilter(rds, 1, 0.05)

pvalueFilter Returns a dataframe with results of the analysis for a RoarDataset
object or a RoarDatasetMultipleAPA object

Description

The last step of a classical Roar analyses: it returns a dataframe containing m/M values, roar values,
pvalues and estimates of expression (a measure recalling FPKM). Only the genes with an expression
estimate bigger than a given cutoff will be considered. Also pvalues will be considered for filtering.

Usage

pvalueFilter(rds, fpkmCutoff, pvalCutoff)

RoarDataset 13

Arguments
rds The RoarDataset or the RoarDatasetMultipleAPA with all the analysis steps
(countPrePost, computeRoars, computePvals) performed. If one or more
steps hadn’t been performed they will be called automatically.
fpkmCutoff The cutoff that will be used to determine if a gene is expressed or not.
pvalCutoff The cutoff that will be used to determine if a pvalue is significative or not.
Value

For RoarDataset:

The resulting dataframe will be identical to that returned by standardFilter but after gene expres-
sion and m/M values filtering another step will be performed: for single samples comparisons only
genes with a nominal pvalue smaller than the given cutoff will be considered, while for multiple
samples a column (nUnderCutoff) will be added to the dataframe. This column will contain an
integer number representing the number of comparisons between the samples of the two conditions
that results in a nominal pvalue lower than the given cutoff (pvalCutoff). For multiple samples with
a paired design (i.e. if computePairedPvals was used) the pvalues of the requested pairings will be
listed together with the combined pvalued obtained with the Fisher method and the filtering will be
done on this pvalue.

For RoarDatasetMultipleAPA: for each gene we select the APA choice that is associated with the
smallest p-value then proceed exactly as above.

Examples

library("GenomicAlignments”)
gene_id <- c("A_PRE", "A_POST"”, "B_PRE", "B_POST")
features <- GRanges(
segnames = Rle(c("chr1”, "chr1”, "chr2", "chr2")),
strand = strand(rep(”+", length(gene_id))),
ranges = IRanges(
start=c(1000, 2000, 3000, 3600),
width=c(1000, 900, 600, 300)),
DataFrame(gene_id)
)
rd1 <- GAlignments("a", seqgnames = Rle("chr1"”), pos = as.integer(1000), cigar = "300M", strand = strand("+"))
rd2 <- GAlignments("a", seqgnames = Rle("chr1"”), pos = as.integer(2000), cigar = "300M", strand = strand("+"))
rd3 <- GAlignments("a", seqnames = Rle("chr2"), pos = as.integer(3000), cigar = "300M", strand = strand("+"))
rds <- RoarDataset(list(c(rdl,rd2)), list(rd3), features)
rds <- countPrePost(rds, FALSE)
rds <- computeRoars(rds)
rds <- computePvals(rds)
dat <- pvalueFilter(rds, 1, 0.05)

RoarDataset Creates a RoarDataset object

Description

This function creates an RoarDataset object from two lists of of GAlignments and a GRanges
containing a suitable annotation of alternative APA sites.

14

Usage

RoarDataset

RoarDataset (treatmentGappedAlign, controlGappedAlign, gtfGRanges)

Arguments

treatmentGappedAlign
A list of GALignments representing alignment of samples for the treatment con-
dition (by convention it is considered the “treated” condition: this simply means
that the package will compute roar values (ratios of the m/M) using this condi-

tion as the numerator) to be considered.

controlGappedAlign
A list of GAlignments representing alignment of samples for the control condi-

gtfGRanges

Value

tion to be considered.

A GRanges object with coordinates for the portions of transcripts that has to be

considered pertaining to the short (or long) isoform. This GRanges object must
have a character metadata column called "gene_id" that ends with "_PRE" or
"_POST" to address respectively the short and the long isoform. An element in
the annotation is considered "PRE" (i.e. common to the short and long isoform
of the transcript) if its gene_id ends with "_PRE". If it ends with "_POST" it is
considered the portion present only in the long isoform. The prefix of gene_id
should be a unique identifier for the gene and each identifier has to be associated
with only one "_PRE" and one "_POST", leading to two genomic region associ-
ated to each gene_id. The GRanges object can also contain a numeric metadata
column that represents the lengths of PRE and POST portions on the transcrip-
tome. If this is omitted the lengths on the genome are used instead. Note that

right now every gtf entry (or none of them) should have it.

A RoarDataset object ready to be analyzed via the other methods.

See Also

RoarDatasetFromFiles

Examples

library(GenomicAlignments)
gene_id <- c("A_PRE", "A_POST", "B_PRE", "B_POST")
features <- GRanges(
segnames = Rle(c("chr1”, "chr1”, "chr2", "chr2")),
strand = strand(rep(”"+", length(gene_id))),
ranges = IRanges(
start=c(1000, 2000, 3000, 3600),
width=c(1000, 900, 600, 300)),
DataFrame(gene_id)

)

rdl <- GAlignments("a", seqnames = Rle("chr1"), pos = as.integer(1000), cigar
rd2 <- GAlignments("a", segnames = Rle("chr1"), pos = as.integer(2000), cigar
rd3 <- GAlignments("a", segnames = Rle("chr2"), pos = as.integer(3000), cigar

rds <- RoarDataset(list(c(rdl,rd2)), list(rd3), features)

"300M", strand = strand("+"))
"300M", strand = strand("+"))
"300M", strand = strand("+"))

RoarDataset-class 15

RoarDataset-class Class "RoarDataset”

Description

RoarDataset - a class to perform 3’UTR shortening analyses

Objects from the Class

Objects of thiss class should be created using the functions RoarDataset or RoarDatasetFromFiles,
ideally the raw new method should never be invoked by end users. Then to perform the analysis the
user should call, in order: countPrePost, computeRoars, computePvals and one of the methods to
format results.

Slots
treatmentBams: Object of class "1ist" - a list of GappedAlignment objects for the first condition
(by convention it is considered the “treated” condition) in analysis.

controlBams: Object of class "1ist” - a list of GappedAlignment objects for the second condition
(by convention it is considered the “control” condition) in analysis.

prePostCoords: Object of class "GRanges"” - represents the APA sites coords, defining "PRE" (last
exon coords up until the alternative APA, defining the shorter isoform) and "POST" (from the
alternative APA to the “standard” one) regions of the genes.

postCoords: Object of class "GRanges" - private object.

countsTreatment: Object of class "RangedSummarizedExperiment” - private object.
countsControl: Object of class "RangedSummarizedExperiment” - private object.
pVals: Object of class "RangedSummarizedExperiment” - private object.

paired: "logical” slot - private.

step: "numeric” slot - private.

cores: "numeric” slot - private.

metadata: "list"” slot - private.

rowRanges: Object of class "GRangesORGRangesList" - private object.

colData: Object of class "DataFrame” - private object.

assays: Object of class "Assays” - private object.

Extends

Class "RangedSummarizedExperiment”, directly.

Methods
countPrePost signature(rds = "RoarDataset"”, stranded = "logical”): Counts reads falling
over PRE/POST portions of the given transcripts.

computeRoars signature(rds = "RoarDataset”): Computes m/M and roar values for this RoarDataset
object.

computePvals signature(rds = "RoarDataset"”): Computes pvalues (Fisher test) for this RoarDataset
object.

16 RoarDatasetFromFiles

totalResults signature(rds = "RoarDataset”): Returns a dataframe with results of the analysis
for a RoarDataset object.

fpkmResults signature(rds = "RoarDataset”): The last step of a classical Roar analyses: it
returns a dataframe containing m/M values, roar values, pvalues and estimates of expression
(a measure recalling FPKM).

countResults signature(rds = "RoarDataset”): The last step of a classical Roar analyses: it
returns a dataframe containing m/M values, roar values, pvalues and estimates of expression
(counts over PRE portions).

standardFilter signature(rds = "RoarDataset”, fpkmCutoff = "double"): Returns a dataframe
with results of the analysis for a RoarDataset object.

pvalueFilter signature(rds = "RoarDataset”, fpkmCutoff = "double”, pvalCutoff = "double"):

cores signature(rds = "RoarDataset”): returns the number of cores used for computation,
right now always 1.
Author(s)
Elena Grassi, PhD student in Biomedical Sciences and Oncology - Dept. of Molecular Biotech-

nologies and Health Sciences, Molecular Biotechnology Center, Torino

Examples

showClass("RoarDataset"”)

RoarDatasetFromFiles Creates a RoarDataset object

Description

This function creates an RoarDataset object from two lists and a gtf with a suitable annotation of
alternative APA sites.

Usage

RoarDatasetFromFiles(treatmentBams, controlBams, gtf)

Arguments

treatmentBams A list of filenames of bam alignments with data for the treatment condition (by
convention it is considered the “treated” condition: this simply means that the
package will compute roar values (ratios of the m/M) using this condition as the
numerator) to be considered.

controlBams A list of filenames of bam alignments with data for the control condition to be
considered.
gtf A filename of a gtf with coordinates for the portions of transcripts that has to

be considered pertaining to the short (or long) isoform. This gtf must have an
attribute called "gene_id" that ends with "_PRE" or "_POST" to address re-
spectively the short and the long isoform. A ready-to-go gtf, with coordinates

RoarDatasetMultipleAPA 17

derived from the PolyADB on the human genome (version hg19), is available in
the "examples" package directory. An element in the annotation is considered
"PRE" (i.e. common to the short and long isoform of the transcript) if its gene_id
feature in the gtf ends with "_PRE". If it ends with "_POST" it is considered
the portion present only in the long isoform. The prefix of gene_id should be
an identifier for the gene and each identifier has to be associated with only one
"_PRE" and one "_POST", leading to two genomic region associated to each
gene_id. The gtf can also contain an attribute that represents the lengths of PRE
and POST portions on the transcriptome. If this is omitted the lengths on the
genome are used instead. Note that right now every gtf entry (or none of them)
should have it.

Value

A RoarDataset object ready to be analyzed via the other methods.

See Also

RoarDataset

Examples

#rds <- RoarDatasetFromFiles(treatmentBams, controlBams, gtf)

RoarDatasetMultipleAPA
Creates a RoarDatasetMultipleAPA object

Description

This function creates an RoarDatasetMultipleAPA object from two lists of of GAlignments and a
GRanges containing a suitable annotation of alternative APA sites and gene exon structure. A Mul-
tipleAPA analysis computes several roar values and p-values for each gene: one for every possible
combination of APA-canonical end of a gene (i.e. the end of its last exon). This is more efficient
than performing several different “standard” roar analyses choosing the PRE and POST portions
corresponding to different APAs because reads overlaps are computed only once.

Usage

RoarDatasetMultipleAPA(treatmentBamsGenomicAlignments, controlBamsGenomicAlignments, gtfGRan;

Arguments

treatmentBamsGenomicAlignments
A list of GAlignments representing alignment of samples for the treatment con-
dition (by convention it is considered the “treated” condition: this simply means
that the package will compute roar values (ratios of the m/M) using this condi-
tion as the numerator) to be considered.

18 RoarDatasetMultipleAPA-class

controlBamsGenomicAlignments
A list of GAlignments representing alignment of samples for the control condi-
tion to be considered.

gtfGRanges A GRanges containing a suitable annotation of alternative APA sites and gene
exonic structure. Minimal requirements are: metadata columns called "gene",
"apa" and "type." APA should be single bases falling over one of the given genes
and need to have the metadata column "type" equal to "apa" and the "apa"
column composed of unambiguous id and the corresponding gene id pasted
together with an underscore. The "gene" metadata columns for these entries
should not be initialized. All the studied gene exons need to be reported, in this
case the metadata column "gene" should contain the gene id (the same one re-
ported for each gene APAs) while "type" should be set to "gene" and "apa" to
NA. All apa entries assigned to a gene should have coordinates that falls inside
it and every gene that appears should contain at least one APA.

Value

A RoarDatasetMultipleAPA object ready to be analyzed via the other methods.

See Also

RoarDatasetMultipleAPAFromFiles

Examples

library(GenomicAlignments)
gene <- c("A", "B", NA, NA)
type <- c("gene","gene","apa”, "apa")
apa <- c(NA, NA, "apal_A", "apa2_B")
features <- GRanges(
segnames = Rle(c("chr1”, "chr2", "chri”, "chr2")),
strand = strand(rep(”"+", length(gene))),
ranges = IRanges(
start=c(1000, 2000, 1300, 2050),
width=c(500, 900, 1, 1)),
DataFrame(gene, apa, type)
)
rd1 <- GAlignments("a", segnames = Rle("chr1"), pos = as.integer(1000), cigar = "300M", strand = strand("+"
rds <- RoarDatasetMultipleAPA(list(c(rdl1,rd1)), list(c(rdl,rd1)), features)

RoarDatasetMultipleAPA-class
Class "RoarDatasetMultipleAPA”

Description

RoarDataset - a class to perform 3’UTR shortening analyses

RoarDatasetMultipleAPA-class 19

Objects from the Class

Objects of thiss class should be created using the functions RoarDatasetMultipleAPA or RoarDatasetMultipleAPAFro
ideally the raw new method should never be invoked by end users. Then to perform the analysis

the user should call, in order: countPrePost, computeRoars, computePvals and one of the methods

to format results. This class is used to allow efficient analyses that allow to study more than one

APA site for each gene: internally it uses a RoarDataset object that stores PRE/POST counts for

all possible alternative APA choices for each gene.

Slots

treatmentBams: Object of class "1ist" - a list of GappedAlignment objects for the first condition
(by convention it is considered the “treated” condition) in analysis.

controlBams: Objectof class "1ist" - a list of GappedAlignment objects for the second condition
(by convention it is considered the “control” condition) in analysis.

geneCoords: Object of class "GRangesList"” - private object that represents the exon structures of
genes in study.

apaCoords: Object of class "GRangesList" - private object that represents the APA fallin on genes
in study.

fragments: Object of class "GRangesList" - private object used to efficiently count reads falling
on short and long isoforms.

prePostDef: Object of class "1ist” - private object representing all possible short and long iso-
forms.

roars: Object of class "1ist" - private object with a list of RoarDataset objects, each one repre-
senting all possible PRE/POST choices for a single gene.

corrTreatment: "numeric” slot - private, integer representing the mean length of reads for the
treatment samples.

corrControl: "numeric” slot - private, integer representing the mean length of reads for the con-
trol samples.

paired: "logical” slot - private.
step: "numeric” slot - private.

cores: "numeric” slot - private.

Methods

countPrePost signature(rds = "RoarDatasetMultipleAPA"”, stranded = "logical”): Counts
reads falling over all the possible PRE/POST portions of the given transcripts. WARNING:
stranded = TRUE is still unsupported and could give unpredictable results.

computeRoars signature(rds = "RoarDatasetMultipleAPA"): Computes m/M and roar values
for this RoarDatasetMultipleAPA object.

computePvals signature(rds = "RoarDatasetMultipleAPA"): Computes pvalues (Fisher test)
for this RoarDatasetMultipleAPA object.

totalResults signature(rds = "RoarDatasetMultipleAPA"): Returns a dataframe with results
of the analysis for a RoarDatasetMultipleAPA object.

fpkmResults signature(rds = "RoarDatasetMultipleAPA"): The last step of a classical Roar
analyses: it returns a dataframe containing m/M values, roar values, pvalues and estimates of
expression (a measure recalling FPKM).

20 RoarDatasetMultipleAPAFromFiles

countResults signature(rds = "RoarDatasetMultipleAPA"): The last step of a classical Roar
analyses: it returns a dataframe containing m/M values, roar values, pvalues and estimates of
expression (counts of reads falling over a gene).

standardFilter signature(rds = "RoarDatasetMultipleAPA", fpkmCutoff = "double”): Re-
turns a dataframe with results of the analysis for a RoarDatasetMultipleAPA object.

pvalueFilter signature(rds = "RoarDatasetMultipleAPA”, fpkmCutoff = "double”, pvalCutoff
= "double"): ...

cores signature(rds = "RoarDatasetMultipleAPA"): returns the number of cores used for
computation, right now always 1.

Author(s)

Elena Grassi, PhD student in Biomedical Sciences and Oncology - Dept. of Molecular Biotech-
nologies and Health Sciences, Molecular Biotechnology Center, Torino

Examples

showClass("RoarDatasetMultipleAPA™)

RoarDatasetMultipleAPAFromFiles
Creates a RoarDatasetMultipleAPA object

Description

This function creates an RoarDatasetMultipleAPA object from two lists and a gtf with a suit-
able annotation of alternative APA sites and exonic structures of genes. A MultipleAPA analysis
computes several roar values and p-values for each gene: one for every possible combination of
APA-canonical end of a gene (i.e. the end of its last exon). This is more efficient than performing
several different “standard” roar analyses choosing the PRE and POST portions corresponding to
different APAsbecause reads overlaps are computed only once.

Usage

RoarDatasetMultipleAPAFromFiles(treatmentBams, controlBams, gtf)

Arguments

treatmentBams A list of filenames of bam alignments with data for the treatment condition (by
convention it is considered the “treated” condition: this simply means that the
package will compute roar values (ratios of the m/M) using this condition as the
numerator) to be considered.

controlBams A list of filenames of bam alignments with data for the control condition to be
considered.
gtf A filename of a gtf with coordinates for alternative APA sites and gene exonic

non

structure. This gtf must have three attributes called "gene", "apa" and "type" to
distinguish different features. APA should be single bases falling over one of the
given genes and need to have the attribute "type" equal to "apa" and the "apa"
attribute composed of unambiguous id and the corresponding gene id pasted

standardFilter

Value

21

together with an underscore. The "gene" attributes for these entries should not
be initialized. All the studied gene exons need to be reported, in this case the
attribute "gene" should contain the gene id (the same one reported for each gene
APAs) while "type" should be set to "gene" and "apa" to NA. All apa entries
assigned to a gene should have coordinates that falls inside it and every gene
that appears should contain at least one APA. A ready-to-go gtf, with coordinates
derived from the PolyADB on the human genome (version hg19), is available in
the "examples" package directory.

A RoarDatasetMultipleAPA object ready to be analyzed via the other methods.

See Also

RoarDatasetMultipleAPA

Examples

#rds <- RoarDatasetMultipleAPAFromFiles(treatmentBams, controlBams, gtf)

standardFilter

Returns a dataframe with results of the analysis for a RoarDataset
object or a RoarDatasetMultipleAPA object

Description

The last step of a classical Roar analyses: it returns a dataframe containing m/M values, roar values,
pvalues and estimates of expression (a measure recalling FPKM). Only the genes with an expression
estimate bigger than a given cutoff will be considered.

Usage

standardFilter(rds, fpkmCutoff)

Arguments

rds

fpkmCutoff

Value

The RoarDataset or the RoarDatasetMultipleAPA with all the analysis steps
(countPrePost, computeRoars, computePvals) performed. If one or more
steps hadn’t been performed they will be called automatically.

The cutoff that will be used to determine if a gene is expressed or not.

For RoarDataset and RoarDatasetMultipleAPA:

The resulting dataframe will be identical to that returned by fpkmResults but it will contains rows
relative only with genes with an expression estimate (treatment or controlValue) bigger than the
given fpkmCutoff in both the conditions and with sensitive m/M and roar values (it removes neg-
ative or NA m/M values/roar - these values arise when there aren’t enough information to draw a
conclusion about the shortening/lengthening of the gene).

22 totalResults

Examples

library(GenomicAlignments)
gene_id <- c("A_PRE"”, "A_POST"”, "B_PRE", "B_POST")
features <- GRanges(
segnames = Rle(c("chr1”, "chr1”, "chr2", "chr2")),
strand = strand(rep("+", length(gene_id))),
ranges = IRanges(
start=c(1000, 2000, 3000, 3600),
width=c(1000, 900, 600, 300)),
DataFrame(gene_id)
)
rd1 <- GAlignments("a", seqnames = Rle("chr1"”), pos = as.integer(1000), cigar = "300M", strand = strand("+"))
rd2 <- GAlignments("a", seqgnames = Rle("chr1"”), pos = as.integer(2000), cigar = "300M", strand = strand("+"))
rd3 <- GAlignments("a", seqnames = Rle("chr2"), pos = as.integer(3000), cigar = "300M", strand = strand("+"))
rds <- RoarDataset(list(c(rd1,rd2)), list(rd3), features)
rds <- countPrePost(rds, FALSE)
rds <- computeRoars(rds)
rds <- computePvals(rds)
dat <- standardFilter(rds, 1)

totalResults Returns a dataframe with results of the analysis for a RoarDataset or
a RoarDatasetMultipleAPA object

Description

The last step of a classical Roar analyses: it returns a dataframe containing m/M values, roar values
and pvalues.

Usage
totalResults(rds)
Arguments
rds The RoarDataset or RoarDatasetMultipleAPA with all the analysis steps (countPrePost,
computeRoars, computePvals) performed.
Value

The RoarDataset or the RoarDatasetMultipleAPA object given as rds with all the analysis steps
performed. If one or more steps hadn’t been performed they will be called automatically. The re-
sulting dataframe will have the "gene_id" of the initial annotation as row names (without the trailing
"_PRE"/"_POST") and as columns the m/M ratio for the treatment and control conditions, the roar
value and the Fisher test pvalue (respectively: mM_treatment, mM_control, roar, pval). If more
than one sample has been given for a condition the "pval" column will contain the product of all the
comparisons pvalue and there will be other columns containing the pvalues resulting from all the
pairwise treatment vs control contrasts, with names "pvalue_X_Y" where X represent the position
of the sample in the treatment list of bam files (or GappedAlignment) and Y the position for the con-
trol list. When using RoarDatasetMultipleAPA this dataframe will report multiple results for each

totalResults 23

gene that corresponds to the pairings between every APA associated with that gene in the gtf and the
gene’s end - rownames in this case will be in the form geneid_apaid. WARNING: this method does
not filter in any way the results, therefore there will be negative m/M values/ROAR and also NA - in
these cases there aren’t enough information to draw a conclusion about the shortening/lengthening
of the gene in the given samples and thus the pvalues should not be kept in consideration. Further-
more there isn’t any filter on the expression level of the genes. See fpkmResults, standardFilter
and pvalueFilter about results filtering possibilities.

Examples

library(GenomicAlignments)
gene_id <- c("A_PRE", "A_POST"”, "B_PRE", "B_POST")
features <- GRanges(
segnames = Rle(c("chr1”, "chr1”, "chr2", "chr2")),
strand = strand(rep(”"+", length(gene_id))),
ranges = IRanges(
start=c(1000, 2000, 3000, 3600),
width=c(1000, 900, 600, 300)),
DataFrame(gene_id)
)
rdl <- GAlignments("a", seqnames = Rle("chr1"), pos = as.integer(1000), cigar
rd2 <- GAlignments("a", segnames = Rle("chr1"), pos = as.integer(2000), cigar
rd3 <- GAlignments("a", segnames = Rle("chr2"), pos = as.integer(3000), cigar
rds <- RoarDataset(list(c(rdl,rd2)), list(rd3), features)
rds <- countPrePost(rds, FALSE)
rds <- computeRoars(rds)
rds <- computePvals(rds)
dat <- totalResults(rds)

"300M", strand = strand("+"))
"300M", strand = strand("+"))
"300M", strand = strand("+"))

Index

+* RoarDatasetFromFiles
RoarDatasetFromFiles, 16
RoarDatasetMultipleAPAFromFiles,

20

+ RoarDataset
RoarDataset, 13
RoarDatasetMultipleAPA, 17

* checkStep
checkStep, 2
cores, 6

* classes
RoarDataset-class, 15
RoarDatasetMultipleAPA-class, 18

+ combineFisherMethod
combineFisherMethod, 3

* computePairedPvals
computePairedPvals, 3

* computePvals
computePvals, 4

+ computeRoars
computeRoars, 5

+ countPrePost
countPrePost, 7

+ countResults
countResults, 8

* fpkmResults
fpkmResults, 9

x getFisher
getFisher, 10

* meanAcrossAssays
meanAcrossAssays, 11

* package
roar-package, 2

* pvalueCorrectFilter
pvalueCorrectFilter, 11

* pvalueFilter
pvalueFilter, 12

+ standardFilter
standardFilter, 21

* totalResults
totalResults, 22

checkStep, 2
combineFisherMethod, 3

24

computePairedPvals, 3

computePairedPvals, RoarDataset
(computePairedPvals), 3

computePairedPvals,
RoarDatasetMultipleAPA
(computePairedPvals), 3

computePairedPvals,RoarDataset,numeric,numeric-method

(RoarDataset-class), 15

computePairedPvals,RoarDatasetMultipleAPA, numeric, numer

(RoarDatasetMultipleAPA-class),
18
computePvals, 4,8, 9,11,13,15,19, 21, 22
computePvals, RoarDataset
(computePvals), 4
computePvals, RoarDatasetMultipleAPA
(computePvals), 4
computePvals,RoarDataset-method
(RoarDataset-class), 15
computePvals,RoarDatasetMultipleAPA-method
(RoarDatasetMultipleAPA-class),
18
computeRoars, 5,8, 9, 11,13, 15,19, 21, 22
computeRoars, RoarDataset, numeric,
numeric (computeRoars), 5
computeRoars, RoarDatasetMultipleAPA,
numeric, numeric
(computeRoars), 5
computeRoars,RoarDataset-method
(RoarDataset-class), 15
computeRoars,RoarDatasetMultipleAPA-method
(RoarDatasetMultipleAPA-class),
18
cores, 6, 16, 20
cores,RoarDataset-method
(RoarDataset-class), 15
cores,RoarDatasetMultipleAPA-method
(RoarDatasetMultipleAPA-class),
18
countPrePost, 7,8, 9,11,13,15,19, 21, 22
countPrePost,RoarDataset, logical
(countPrePost), 7
countPrePost,RoarDataset,logical-method
(RoarDataset-class), 15

INDEX 25

countPrePost,RoarDataset-method pvalueFilter, RoarDatasetMultipleAPA
(RoarDataset-class), 15 (pvalueFilter), 12
countPrePost,RoarDatasetMultipleAPA pvalueFilter,RoarDataset,numeric, numeric-method
(countPrePost), 7 (RoarDataset-class), 15
countPrePost,RoarDatasetMultipleAPA, logical-methbdeFilter,RoarDatasetMultipleAPA, numeric,numeric-met
(RoarDatasetMultipleAPA-class), (RoarDatasetMultipleAPA-class),
18 18
countPrePost,RoarDatasetMultipleAPA-method
(RoarDatasetMultipleAPA-class), RangedSummarizedExperiment, 15
18 roar (roar-package), 2
countResults, 8, 16, 20 roar-package, 2
countResults’ RoarDataset RoarDataset, 2—9,]1—13, 13, 14—]7,]9, 2],
(countResults), 8 22
countResults, RoarDatasetMultipleAPA RoarDataset-class, 15
(countResults), 8 RoarDatasetFromFiles, /4, 15, 16
countResults,RoarDataset-method RoarDatasetMultipleAPA, 4-13, 17, 17,
(RoarDataset-class), 15 18-22
countResults,RoarDatasetMultipleAPA-method RoarDatasetMultipleAPA-class, 18
(RoarDatasetMultipleAPA-class), RoarDatasetMultipleAPAFromFiles, I8, 19,
18 20
fpkmResults, 4-6, 9, 16, 19, 21, 23 standardFilter, 12, 13, 16, 20, 21, 23
fpkmResults, RoarDataset (fpkmResults), standardFilter, RoarDataset
9 (standardFilter), 21
fpkmResults, RoarDatasetMultipleAPA standardFilter,
(fpkmResults), 9 RoarDatasetMultipleAPA
fpkmResults,RoarDataset-method (standardFilter), 21
(RoarDataset-class), 15 standardFilter,RoarDataset,numeric-method
fpkmResults,RoarDatasetMultipleAPA-method (RoarDataset-class), 15
(RoarDatasetMultipleAPA-class), standardFilter,RoarDatasetMultipleAPA, numeric-method
18 (RoarDatasetMultipleAPA-class),
18
GAlignments, 13, 14,17, 18
getFisher, 10 totalResults, 4-6, 9, 22
GRanges, 13, 14,17, 18 totalResults, RoarDataset
(totalResults), 22
meanAcrossAssays, 11 totalResults, RoarDatasetMultipleAPA

(totalResults), 22
totalResults,RoarDataset-method

(RoarDataset-class), 15
totalResults,RoarDatasetMultipleAPA-method

(RoarDatasetMultipleAPA-class),

18

new, /5, 19

pvalueCorrectFilter, 11
pvalueCorrectFilter, RoarDataset
(pvalueCorrectFilter), 11
pvalueCorrectFilter,
RoarDatasetMultipleAPA
(pvalueCorrectFilter), 11
pvalueCorrectFilter,RoarDataset,numeric,numeric,character-method
(RoarDataset-class), 15
pvalueCorrectFilter,RoarDatasetMultipleAPA,numeric,numeric,character-method
(RoarDatasetMultipleAPA-class),
18
pvalueFilter, 12, 16, 20, 23
pvalueFilter, RoarDataset
(pvalueFilter), 12

	roar-package
	checkStep
	combineFisherMethod
	computePairedPvals
	computePvals
	computeRoars
	cores
	countPrePost
	countResults
	fpkmResults
	getFisher
	meanAcrossAssays
	pvalueCorrectFilter
	pvalueFilter
	RoarDataset
	RoarDataset-class
	RoarDatasetFromFiles
	RoarDatasetMultipleAPA
	RoarDatasetMultipleAPA-class
	RoarDatasetMultipleAPAFromFiles
	standardFilter
	totalResults
	Index

