Package ‘scorecard’

February 7, 2026

Version 0.4.6
Title Credit Risk Scorecard

Description The “scorecard” package makes the development of credit risk scorecard
easier and efficient by providing functions for some common tasks,
such as data partition, variable selection, woe binning, scorecard scaling,
performance evaluation and report generation. These functions can also used
in the development of machine learning models.

The references including:

1. Refaat, M. (2011, ISBN: 9781447511199). Credit Risk Scorecard:
Development and Implementation Using SAS.
2. Siddiqi, N. (2006, ISBN: 9780471754510). Credit risk scorecards.
Developing and Implementing Intelligent Credit Scoring.

Depends R (>=3.5.0)

Imports data.table (>=1.10.0), ggplot2, gridExtra, foreach,
doParallel, parallel, openxlsx, stringi, cli, xml2, xefun (>=
0.1.3)

Suggests knitr, rmarkdown, pkgdown, testthat
License MIT + file LICENSE

URL https://github.com/ShichenXie/scorecard,

http://shichen.name/scorecard/

BugReports https://github.com/ShichenXie/scorecard/issues
LazyData true

VignetteBuilder knitr

RoxygenNote 7.3.3

Encoding UTF-8

NeedsCompilation no

Author Shichen Xie [aut, cre]

Maintainer Shichen Xie <xie@shichen.name>

Repository CRAN

Date/Publication 2026-02-07 06:20:02 UTC

https://github.com/ShichenXie/scorecard
http://shichen.name/scorecard/
https://github.com/ShichenXie/scorecard/issues

2 describe

Contents
describe L e e e 2
gains_table L e 3
germancredit L. L e 4
IV e e e 5
one_hot L e 6
Perf_Cv e e 7
perf_eva e e e 9
perf_psio 10
replace_na e e e e 12
(<] 1) 13
scorecard .. oL oL L. e e e e e 15
scorecard2 L L L e e e e e e e e 16
scorecard_ply L. e 18
scorecard_pmml L. L e e e 19
split_df 20
var_filter e e 21
var_scale L 22
VIE e 23
woebin e e e 24
woebin_adj L 27
woebin_plot e 28
woebin_ply 30

Index 32

describe Variable Describe
Description

This function provides descriptive statistic for exploratory data analysis.

Usage

describe(dt)

Arguments

dt

A data frame.

gains_table 3

Examples

library(data. table)

data("germancredit”)

dat = rbind(
setDT(germancredit),
data.table(creditability=sample(c("good”,"bad"),100,replace=TRUE)),
fil1=TRUE)

eda = describe(dat)
eda

gains_table Gains Table

Description

gains_table creates a data frame including distribution of total, negative, positive, positive rate
and rejected rate by score bins. The gains table is used in conjunction with financial and operational
considerations to make cutoff decisions.

Usage
gains_table(score, label, bin_num = 10, method = "freq"”, width_by = NULL,
breaks_by = NULL, positive = "bad|1", ...)
Arguments
score A list of credit score for actual and expected data samples. For example, score

= list(actual = scoreA, expect = scoreE).

label A list of label value for actual and expected data samples. For example, label =
list(actual = labelA, expect = labelE).

bin_num Integer, the number of score bins. Defaults to 10. If it is *'max’, then individual
scores are used as bins.

method The score is binning by equal frequency or equal width. Accepted values are
"freq’ and *width’. Defaults to *freq’.

width_by Number, increment of the score breaks when method is set as *width’. If it is
provided the above parameter bin_num will not be used. Defaults to NULL.

breaks_by The name of data set to create breakpoints. Defaults to the first data set. Or
numeric values to set breakpoints manually.

positive Value of positive class, Defaults to "badI1".

Additional parameters.

4 germancredit

Value

A data frame

See Also

perf_eva perf_psi

Examples

load germancredit data

data("germancredit”)

filter variable via missing rate, iv, identical value rate
dtvf = var_filter(germancredit, "creditability")

breaking dt into train and test
dt_list = split_df(dtvf, "creditability")
label_list = lapply(dt_list, function(x) x$creditability)

binning

bins = woebin(dt_list$train, "creditability")

scorecard

card = scorecard2(bins, dt = dt_list$train, y = 'creditability')

credit score
score_list = lapply(dt_list, function(x) scorecard_ply(x, card))

#i#HHHH gains_table examples #itHtH#

Example I, input score and label can be a vector or a list

gl = gains_table(score = unlist(score_list), label = unlist(label_list))
g2 = gains_table(score = score_list, label = label_list)

Example II, specify the bins number and type
g3 = gains_table(score = unlist(score_list), label = unlist(label_list), bin_num = 20)
g4 = gains_table(score = unlist(score_list), label = unlist(label_list), method = 'width')

germancredit German Credit Data

Description
Credit data that classifies debtors described by a set of attributes as good or bad credit risks. See
source link below for detailed information.

Usage

data(germancredit)

iv
Format
A data frame with 21 variables (numeric and factors) and 1000 observations.
Source
http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
Examples
load German credit data
data(germancredit)
structure of germancredit
str(germancredit)
summary of germancredit
lapply(germancredit, summary)
iv Information Value
Description
This function calculates information value (IV) for multiple x variables. It treats each unique value
in x variables as a group. If there is a zero number of y class, it will be replaced by 0.99 to make
sure woe/iv is calculable.
Usage
iv(dt, y, x = NULL, positive = "bad|1", order = TRUE)
Arguments
dt A data frame with both x (predictor/feature) and y (response/label) variables.
y Name of y variable.
X Name of x variables. Defaults to NULL. If x is NULL, then all columns except
y are counted as x variables.
positive Value of positive class, Defaults to "badI1".
order

Logical, Defaults to TRUE. If it is TRUE, the output will descending order via
iv.

http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

6 one_hot

Details

IV is a very useful concept for variable selection while developing credit scorecards. The formula
for information value is shown below:

DistributionPositive;

IV = Z(Distributionpositivei — DistributionNegative;) * In(DistributionNegative;”

The log component in information value is defined as weight of evidence (WOE), which is shown

as
DistributionPositive;

Weightof Evid =1 .
cightof Evidence n(DistributionNegativei

The relationship between information value and predictive power is as follows:

Information Value Predictive Power

<0.02 useless for prediction

0.02 t0 0.1 Weak predictor
0.1t0 0.3 Medium predictor
>0.3 Strong predictor

Value

A data frame with columns for variable and info_value

Examples

Load German credit data
data(germancredit)

information values
info_value = iv(germancredit, y = "creditability")

str(info_value)

one_hot One Hot Encoding

Description

One-hot encoding on categorical variables and replace missing values. It is not needed when creat-
ing a standard scorecard model, but required in models that without doing woe transformation.

Usage

one_hot(dt, var_skip = NULL, var_encode = NULL, nacol_rm = FALSE, ...)

perf_cv

Arguments

dt

var_skip

var_encode

nacol_rm

Value

A data frame

Examples

A data frame.

Name of categorical variables that will skip for one-hot encoding. Defaults to
NULL.

Name of categorical variables to be one-hot encoded, Defaults to NULL. If it is
NULL, then all categorical variables except in var_skip are counted.

Logical. One-hot encoding on categorical variable contains missing values,
whether to remove the column generated to indicate the presence of NAs. De-
faults to FALSE.

Additional parameters.

load germancredit data
data(germancredit)

library(data.table)

dat = rbind(

setDT(germancredit)[, c(sample(20,3),21)1],
data.table(creditability=sample(c("good","bad"),10,replace=TRUE)),

£i11=TRUE)

one hot encoding
keep na columns from categorical variable
dat_onehot1 = one_hot(dat, var_skip = 'creditability', nacol_rm = FALSE) # default

str(dat_onehot1)

remove na columns from categorical variable
dat_onehot2 = one_hot(dat, var_skip = 'creditability', nacol_rm = TRUE)

str(dat_onehot2)

perf_cv

Cross Validation

Description

perf_cv provides cross validation on logistic regression and other binomial classification models.

Usage

perf_cv(dt, y, x = NULL, no_folds = 5, seeds = NULL,
binomial_metric = "ks"”, positive = "bad|1", breaks_list = NULL, ...)

8 perf_cv

Arguments
dt A data frame with both x (predictor/feature) and y (response/label) variables.
y Name of y variable.
X Name of x variables. Defaults to NULL. If x is NULL, then all columns except
y are counted as x variables.
no_folds Number of folds for K-fold cross-validation. Defaults to 5.
seeds The seeds to create multiple random splits of the input dataset into training and

validation data by using split_df function. Defaults to NULL.

binomial_metric
Defaults to ks.

positive Value of positive class, defaults to "badl1".

breaks_list List of break points, defaults to NULL. If it is NULL, then using original values
of the input data to fitting model, otherwise converting into woe values based on
training data.

Additional parameters.

Value

A list of data frames of binomial metrics for each datasets.

Examples

Not run:
data("germancredit”)

dt = var_filter(germancredit, y = 'creditability')
bins = woebin(dt, y = 'creditability')
dt_woe = woebin_ply(dt, bins)

perf1 = perf_cv(dt_woe, y = 'creditability', no_folds = 5)

perf2 = perf_cv(dt_woe, y = 'creditability', no_folds = 5,
seeds = sample(1000, 10))
perf3 = perf_cv(dt_woe, y = 'creditability', no_folds = 5,

binomial_metric = c('ks', 'auc'))

End(Not run)

perf_eva 9

perf_eva Binomial Metrics

Description

perf_eva calculates metrics to evaluate the performance of binomial classification model. It can
also creates confusion matrix and model performance graphics.

Usage
perf_eva(pred, label, title = NULL, binomial_metric = c("mse", "rmse",
"logloss”, "r2", "ks", "auc", "gini"), confusion_matrix = FALSE,
threshold = NULL, show_plot = c("ks"”, "lift"), pred_desc = TRUE,
positive = "bad|1", ...)
Arguments
pred A list or vector of predicted probability or score.
label A list or vector of label values.
title The title of plot. Defaults to NULL.

binomial_metric
Defaults to c('mse’, ‘rmse’, ’logloss’, 'r2’, ’ks’, ’auc’, *gini’). If it is NULL,
then no metric will calculated.

confusion_matrix

Logical, whether to create a confusion matrix. Defaults to TRUE.

threshold Confusion matrix threshold. Defaults to the pred on maximum F1.

show_plot Defaults to c(’ks’, 'roc’). Accepted values including c(’ks’, ’lift’, *gain’, ’roc’,
1z, ’pr’, ’f1’, “density’).

pred_desc whether to sort the argument of pred in descending order. Defaults to TRUE.

positive Value of positive class. Defaults to "badl1".

Additional parameters.

Details

Accuracy = true positive and true negative/total cases

Error rate = false positive and false negative/total cases

TPR, True Positive Rate(Recall or Sensitivity) = true positive/total actual positive
PPV, Positive Predicted Value(Precision) = true positive/total predicted positive
TNR, True Negative Rate(Specificity) = true negative/total actual negative = 1-FPR
NPV, Negative Predicted Value = true negative/total predicted negative

Value

A list of binomial metric, confusion matrix and graphics

10 perf_psi

See Also

perf_psi

Examples

load germancredit data

data("germancredit”)

filter variable via missing rate, iv, identical value rate
dtvf = var_filter(germancredit, "creditability")

breaking dt into train and test
dt_list = split_df(dtvf, "creditability")
label_list = lapply(dt_list, function(x) x$creditability)

woe binning

bins = woebin(dt_list$train, "creditability")

scorecard, prob

cardprob = scorecard2(bins, dt = dt_list, y = 'creditability', return_prob = TRUE)

credit score
score_list = lapply(dt_list, function(x) scorecard_ply(x, cardprob$card))

H#iHHEHE perf_eva examples #i#t#Ht##

Example I, one datset

predicted pl

perf_eva(pred = cardprob$prob$train, label=label_list$train,
title = 'train')

predicted score

perf_eva(pred = score_list$train, label=label_list$train,

title = 'train')

Example II, multiple datsets
predicted pl
perf_eva(pred = cardprob$prob, label = label_list,
show_plot = c('ks"', 'lift', 'gain', 'roc', 'lz', 'pr', 'f1', 'density'))
predicted score
perf_eva(score_list, label_list)

perf_psi PSI

Description

perf_psi calculates population stability index (PSI) for total credit score and Characteristic Stabil-
ity Index (CSI) for variables. It can also creates graphics to display score distribution and positive
rate trends.

perf_psi 11

Usage
perf_psi(score, label = NULL, title = NULL, show_plot = TRUE,
positive = "bad|1", threshold_variable = 20, var_skip = NULL, ...)
Arguments
score A list of credit score for actual and expected data samples. For example, score

= list(expect = scoreE, actual = scoreA).

label A list of label value for actual and expected data samples. For example, label =
list(expect = labelE, actual = labelA). Defaults to NULL.

title Title of plot, Defaults to NULL.

show_plot Logical. Defaults to TRUE.

positive Value of positive class, Defaults to "badI1".

threshold_variable
Integer. Defaults to 20. If the number of unique values > threshold_variable,
the provided score will be counted as total credit score, otherwise, it is variable
score.

var_skip Name of variables that are not score, such as id column. It should be the same
with the var_kp in scorecard_ply function. Defaults to NULL.

Additional parameters.

Details

The population stability index (PSI) formula is displayed below:

Actual%

PSI = Z((Actual% — Expectedt) * (IH(W .
> 0

The rule of thumb for the PSI is as follows: Less than 0.1 inference insignificant change, no ac-
tion required; 0.1 - 0.25 inference some minor change, check other scorecard monitoring metrics;
Greater than 0.25 inference major shift in population, need to delve deeper.

Characteristic Stability Index (CSI) formula is displayed below:

CSI = Z((Actual% — Expected%) score).

Value

A data frame of psi and graphics of credit score distribution

See Also

perf_eva gains_table

12 replace_na

Examples

load germancredit data

data("germancredit”)

filter variable via missing rate, iv, identical value rate
dtvf = var_filter(germancredit, "creditability")

breaking dt into train and test
dt_list = split_df(dtvf, "creditability")
label_list = lapply(dt_list, function(x) x$creditability)

binning

bins = woebin(dt_list$train, "creditability")

scorecard

card = scorecard2(bins, dt = dt_list$train, y = 'creditability')

credit score

score_list = lapply(dt_list, function(x) scorecard_ply(x, card))

credit score, only_total_score = FALSE

score_list2 = lapply(dt_list, function(x) scorecard_ply(x, card,
only_total_score=FALSE))

#H##H#HH perf_psi examples #iH#Ht

Example I # only total psi

psil = perf_psi(score = score_list, label = label_list)

psil$psi # psi data frame

psil$pic # pic of score distribution

modify colors

perf_psi(score = score_list, label = label_list,

line_color="#FC8D59', bar_color=c('#FFFFBF', '#99D594'))

Example II # both total and variable psi

psi2 = perf_psi(score = score_list2, label = label_list)
psi2$psi # psi data frame

psi2$pic # pic of score distribution

replace_na Replace Missing Values

Description

Replace missing values with a specified value or mean/median value.

Usage

replace_na(dt, repl)

report 13

Arguments
dt A data frame or vector.
repl Replace missing values with a specified value such as -1, or the mean/median
value for numeric variable and mode value for categorical variable if repl is
mean or median.
Examples

load germancredit data
data(germancredit)

library(data. table)

dat = rbind(
setDT(germancredit)[, c(sample(20,3),21)],
data.table(creditability=sample(c("good","bad"),10,replace=TRUE)),
fil1=TRUE)

replace with -1
dat_repnal = replace_na(dat, repl = -1)
replace with median for numeric, and mode for categorical

dat_repna2 = replace_na(dat, repl = 'median')
replace with mean for numeric, and mode for categorical
dat_repna3 = replace_na(dat, repl = 'mean')
report Scorecard Modeling Report
Description

report creates a scorecard modeling report and save it as a xlIsx file.

Usage
report(dt, y, x, breaks_list, x_name = NULL, special_values = NULL,
seed = 618, save_report = "report"”, positive = "bad|1", ...)
Arguments
dt A data frame or a list of data frames that have both x (predictor/feature) and y

(response/label) variables. If there are multiple data frames are provided, only
the first data frame would be used for training, and the others would be used for

testing/validation.
y Name of y variable.
X Name of x variables. Defaults to NULL. If x is NULL, then all columns except

y are counted as x variables.

14 report

breaks_list A list of break points. It can be extracted from woebin and woebin_adj via the
argument save_breaks_list.

X_name A vector of x variables’ name.

special_values The values specified in special_values will be in separate bins. Defaults to

NULL.
seed A random seed to split input data frame. Defaults to 618. If it is NULL, input dt
will not split into two datasets.
save_report The name of xIsx file where the report is to be saved. Defaults to 'report’.
positive Value of positive class, default "badl1".

Additional parameters.

Examples

Not run:
data("germancredit”)

'creditability’

x = ¢(
"status.of.existing.checking.account”,
"duration.in.month”,

"credit.history”,

"purpose”,

"credit.amount”,
"savings.account.and.bonds"”,
"present.employment.since”,
"installment.rate.in.percentage.of.disposable.income”,
"personal.status.and.sex”,
"property”,

"age.in.years",
"other.installment.plans”,
"housing”

<
1

special_values=NULL
breaks_list=list(
status.of.existing.checking.account=c("... < @ DM%,%0 <= ... < 200 DM",
"... >= 200 DM / salary assignments for at least 1 year"”, "no checking account”),
duration.in.month=c(8, 16, 34, 44),
credit.history=c(
"no credits taken/ all credits paid back duly%,%all credits at this bank paid back duly”,
"existing credits paid back duly till now"”, "delay in paying off in the past”,
"critical account/ other credits existing (not at this bank)"),
purpose=c("retraining%,%car (used)”, "radio/television”,
"furniture/equipment%,%domestic appliances%,%business%,%repairs”,
"car (new)%,%others%,%education”),
credit.amount=c(1400, 1800, 4000, 9200),

savings.account.and.bonds=c(”... < 100 DM", "100 <= ... < 500 DM",
"500 <= ... < 1000 DM%,%... >= 1000 DM%,%unknown/ no savings account"),
present.employment.since=c("unemployed%,%... < 1 year”, "1 <= ... < 4 years”,

n

"4 <= ... < 7 years”, . >= 7 years"),

scorecard 15

installment.rate.in.percentage.of.disposable.income=c(2, 3),

personal.status.and.sex=c("male : divorced/separated”, "female : divorced/separated/married”,
"male : single”, "male : married/widowed”),
property=c("real estate”, "building society savings agreement/ life insurance”,
"car or other, not in attribute Savings account/bonds”, "unknown / no property"),
age.in.years=c(26, 28, 35, 37),
other.installment.plans=c("bank%,%stores”, "none"),
housing=c("rent”, "own", "for free")
)
Example I

input dt is a data frame

split input data frame into two

report(germancredit, y, x, breaks_list, special_values, seed=618, save_report='reportl"',
show_plot = c('ks', 'lift', 'gain', 'roc', 'lz', 'pr', 'f1', 'density'))

donot split input data
report(germancredit, y, x, breaks_list, special_values, seed=NULL, save_report='report2"')

Example II
input dt is a list
only one dataset
report(list(dt=germancredit), y, x,
breaks_list, special_values, seed=NULL, save_report='report3"')

multiple datasets
report(list(dti=germancredit[sample(1000,500)],
dt2=germancredit[sample(1000,500)]1), vy, X,
breaks_list, special_values, seed=NULL, save_report='report4')

multiple datasets

report(list(dti=germancredit[sample(1000,500)],
dt2=germancredit[sample(1000,500)],
dt3=germancredit[sample(1000,500)]1), vy, X,

breaks_list, special_values, seed=NULL, save_report='report5"')

End(Not run)

scorecard Creating a Scorecard

Description

scorecard creates a scorecard based on the results from woebin and glm.

Usage

scorecard(bins, model, points@ = 600, odds@ = 1/19, pdo = 50,
basepoints_eq@ = FALSE, digits = 0)

16 scorecard2

Arguments
bins Binning information generated from woebin function.
model A glm model object.
points@ Target points, default 600.
odds@ Target odds, default 1/19. Odds = p/(1-p).
pdo Points to Double the Odds, default 50.

basepoints_eqg@ Logical, Defaults to FALSE. If it is TRUE, the basepoints will equally distribute
to each variable.

digits The number of digits after the decimal point for points calculation. Default O.

Value

A list of scorecard data frames

See Also

scorecard2 scorecard_ply

Examples

load germancredit data

data("germancredit”)

filter variable via missing rate, iv, identical value rate
dtvf = var_filter(germancredit, "creditability")

split into train and test

dtlst = split_df(dtvf, y = 'creditability')

binning

bins = woebin(dtlst$train, "creditability")

to woe

dtlst_woe = lapply(dtlst, function(d) woebin_ply(d, bins))

1r

m = glm(creditability ~ ., family = binomial(), data = dtlst_woe$train)

scorecard

card = scorecard(bins, m)

prob = predict(m, dtlst_woe$train, type='response')

problst = lapply(dtlst_woe, function(x) predict(m, x, type='response'))

scorecard?2 Creating a Scorecard

Description

scorecard? creates a scorecard based on the results from woebin. It has the same function of
scorecard, but without model object input and provided adjustment for oversampling.

scorecard2

Usage

17

scorecard2(bins, dt, y, x = NULL, points@ = 600, odds@ = 1/19,
pdo = 50, basepoints_eq@ = FALSE, digits = @, return_prob = FALSE,

posprob_pop =

Arguments
bins
dt
y

points@
odds@
pdo

basepoints_eq@

digits

return_prob

posprob_pop

posprob_sample

positive

Value

NULL, posprob_sample = NULL, positive = "bad|1", ...)

Binning information generated from woebin function.
A data frame with both x (predictor/feature) and y (response/label) variables.
Name of y variable.

Name of x variables. If it is NULL, then all variables in bins are used. Defaults
to NULL.

Target points, default 600.
Target odds, default 1/19. Odds = p/(1-p).
Points to Double the Odds, default 50.

Logical, defaults to FALSE. If it is TRUE, the basepoints will equally distribute
to each variable.

The number of digits after the decimal point for points calculation. Default O.

Logical, defaults to FALSE. If it is TRUE, the predict probability will also re-
turn.

Positive probability of population. Accepted range: 0-1, default to NULL. If it
is not NULL, the model will adjust for oversampling.

Positive probability of sample. Accepted range: 0-1, default to the positive
probability of the input dt.

Value of positive class, default "badl1".

Additional parameters.

A list of scorecard data frames

See Also

scorecard scorecard_ply

Examples

load germancredit data

data("germancredit”)

filter variable via missing rate, iv, identical value rate
dtvf = var_filter(germancredit, "creditability")

split into train and test

dtlst = split_df(dtvf, y = 'creditability')

binning

bins = woebin(dtlst$train, "creditability")

18 scorecard_ply

train only

create scorecard

cardl = scorecard2(bins=bins, dt=dtlst$train, y='creditability')

scorecard and predicted probability

cardprobl = scorecard2(bins=bins, dt=dtlst$train, y='creditability', return_prob = TRUE)

both train and test

create scorecard

card2 = scorecard2(bins=bins, dt=dtlst, y='creditability')

scorecard and predicted probability

cardprob2 = scorecard2(bins=bins, dt=dtlst, y='creditability', return_prob = TRUE)

scorecard_ply Score Transformation

Description

scorecard_ply calculates credit score using the results from scorecard.

Usage

scorecard_ply(dt, card, only_total_score = TRUE, print_step = 0L,
replace_blank_na = TRUE, var_kp = NULL)

Arguments
dt A data frame, which is the original dataset for training model.
card A data frame or a list of data frames. It’s the scorecard generated from the

function scorecard.
only_total_score

Logical, Defaults to TRUE. If it is TRUE, then the output includes only total
credit score; Otherwise, if it is FALSE, the output includes both total and each
variable’s credit score.

print_step A non-negative integer. Defaults to 1. If print_step>0, print variable names by
each print_step-th iteration. If print_step=0, no message is print.
replace_blank_na

Logical. Replace blank values with NA. Defaults to TRUE. This argument
should be the same with woebin’s.

var_kp Name of force kept variables, such as id column. Defaults to NULL.

Value

A data frame in score values

scorecard_pmml 19

See Also

scorecard scorecard?2

Examples

load germancredit data

data("germancredit”)

filter variable via missing rate, iv, identical value rate
dtvf = var_filter(germancredit, "creditability")

split into train and test

dtlst = split_df(dtvf, y = 'creditability')

binning

bins = woebin(dtlst$train, "creditability")

scorecard

card = scorecard2(bins=bins, dt=dtlst$train, y='creditability')

credit score
Example I # only total score
scorel = scorecard_ply(germancredit, card)

Example II # credit score for both total and each variable
score2 = scorecard_ply(germancredit, card, only_total_score = FALSE)

scorecard_pmml Scorecard to PMML

Description

scorecard_pmml converts scorecard into PMML format.

Usage
scorecard_pmml(card, save_name = NULL, model_name = "scorecard”,
model_version = NULL, description = "scorecard”, copyright = NULL)
Arguments
card A data frame or a list of data frames. It’s a scorecard object generated from the
function scorecard.
save_name A string. The file name to save scorecard. Defaults to None.
model_name A name to be given to the PMML model.

model_version A string specifying the model version.
description A descriptive text for the Header element of the PMML.
copyright The copyright notice for the model.

20 split_df

Examples

data("germancredit”)

dtvf = var_filter(germancredit, y='creditability')
bins = woebin(dtvf, y='creditability')

card = scorecard2(bins, dtvf, y='creditability')

export scorecard into pmml

cardpmml = scorecard_pmml(card)

save pmml

cardpmml = scorecard_pmml(card, save_name='scorecard', model_version='1.0")

split_df Split a Data Frame

Description

Split a data frame into multiple datasets according to the specified ratios.

Usage

split_df(dt, y = NULL, ratios = c(0.7, 0.3), name_dfs = c("train",
"test"), oot = list(time_col = NULL, time_start = NULL, ratio = NULL),

seed = 618, ...)
Arguments
dt A data frame.
y Name of y variable, Defaults to NULL. The input data will split based on the

predictor vy, if it is provide.

ratios A numeric vector indicating the ratio of total rows contained in each split, de-
faults to ¢(0.7, 0.3).

name_df's Name of returned data frames. Its length should equals to the ratios’. Defaults
to train and test.

oot The out-of-time validation dataset parameters. The parameters of time_cols and
either time_start or ratio need to be supplied.

seed A random seed, Defaults to 618.

Additional parameters.

Value

A list of data frames

var_filter 21

Examples

load German credit data
data(germancredit)

Example I
dt_list = split_df(germancredit, y="creditability")

dimensions of each split data sets
lapply(dt_list, dim)

Example II
dt_list2 = split_df(germancredit, y="creditability",
ratios = c(0.5, 0.3, 0.2),
name_dfs = c('train', 'test', 'valid'))
lapply(dt_list2, dim)

var_filter Variable Filter

Description
This function filter variables base on specified conditions, such as missing rate, identical value rate,
information value.

Usage

var_filter(dt, y, x = NULL, lims = list(missing_rate = 0.95, identical_rate
= 0.95, info_value = 0.02), var_rm = NULL, var_kp = NULL,

var_rm_reason = FALSE, positive = "bad|1", ...)
Arguments
dt A data frame with both x (predictor/feature) and y (response/label) variables.
y Name of y variable.

Name of x variables. Defaults to NULL. If x is NULL, then all columns except
y are counted as x variables.

lims A list of variable filters’ thresholds.

* missing_rate The missing rate of kept variables should <= 0.95 by de-
faults.

* identical_rate The identical value rate (excluding NAs) of kept variables
should <= 0.95 by defaults.

* info_value The information value (iv) of kept variables should >=0.02 by
defaults.

var_rm Name of force removed variables, Defaults to NULL.

22 var_scale

var_kp Name of force kept variables, Defaults to NULL.
var_rm_reason Logical, Defaults to FALSE.
positive Value of positive class, Defaults to "badI1".

Additional parameters.

Value

A data frame with columns for y and selected x variables, and a data frame with columns for remove
reason if var_rm_reason is TRUE.

Examples

Load German credit data
data(germancredit)

variable filter
dt_sel = var_filter(germancredit, y = "creditability")
dim(dt_sel)

return the reason of varaible removed
dt_sel2 = var_filter(germancredit, y = "creditability”, var_rm_reason = TRUE)
lapply(dt_sel2, dim)

str(dt_sel2$dt)
str(dt_sel2$rm)

keep columns manually, such as rowid
germancredit$rowid = row.names(germancredit)

dt_sel3 = var_filter(germancredit, y = "creditability"”, var_kp = 'rowid")

remove columns manually

dt_sel4 = var_filter(germancredit, y = "creditability”, var_rm = 'rowid')
var_scale Variable Scaling
Description

scaling variables using standardization or normalization

Usage

var_scale(dt, var_skip = NULL, type = "standard”, ...)

vif 23

Arguments
dt a data frame or vector
var_skip Name of variables that will skip for scaling Defaults to NULL.
type type of scaling method, including standard or minmax.
Additional parameters.
Examples

data("germancredit”)

standardization
dts1 = var_scale(germancredit, type = 'standard')

normalization/minmax

dts2 = var_scale(germancredit, type = 'minmax')
dts2 = var_scale(germancredit, type = 'minmax', new_range = c(-1, 1))
vif Variance Inflation Factors
Description

vif calculates variance-inflation and generalized variance-inflation factors for linear, generalized
linear to identify collinearity among explanatory variables.

Usage

vif(model, merge_coef = FALSE)

Arguments
model A model object.
merge_coef Logical, whether to merge with coefficients of model summary matrix. Defaults
to FALSE.
Value

A data frame with columns for variable and gvif, or additional columns for df and gvif*(1/(2*df))
if provided model uses factor variable.

See Also

https://cran.r-project.org/package=car

https://cran.r-project.org/package=car

24 woebin

Examples

data(germancredit)

Example I

fitl = glm(creditability~ age.in.years + credit.amount +
present.residence.since, family = binomial(), data = germancredit)

vif(fit1)

vif(fitl, merge_coef=TRUE)

Example II

fit2 = glm(creditability~ status.of.existing.checking.account +
credit.history + credit.amount, family = binomial(), data = germancredit)

vif(fit2)

vif(fit2, merge_coef=TRUE)

woebin WOE Binning

Description

woebin generates optimal binning for numerical, factor and categorical variables using methods
including tree-like segmentation or chi-square merge. woebin can also customizing breakpoints
if the breaks_list was provided. The default woe is defined as In(Pos_i/Neg_i). If you prefer
In(Neg_i/Pos_i), please set the argument positive as negative value, such as ’0’ or *good’. If there
is a zero frequency class when calculating woe, the zero will replaced by 0.99 to make the woe

calculable.
Usage
woebin(dt, y, x = NULL, var_skip = NULL, breaks_list = NULL,
special_values = NULL, missing_join = "left"”, stop_limit = 0.1,
count_distr_limit = 0.05, bin_num_limit = 8, positive = "bad|1",
no_cores = 2, print_step = 0L, method = "tree"”,
ignore_const_cols = TRUE, ignore_datetime_cols = TRUE,
check_cate_num = TRUE, replace_blank_inf = TRUE, save_as = NULL, ...)
Arguments
dt A data frame with both x (predictor/feature) and y (response/label) variables.
y Name of y variable.

Name of x variables. Defaults to NULL. If x is NULL, then all columns except
y and var_skip are counted as x variables.

var_skip Name of variables that will skip for binning. Defaults to NULL.

breaks_list List of break points, Defaults to NULL. If it is not NULL, variable binning will
based on the provided breaks.

woebin 25

special_values the values specified in special_values will be in separate bins. Defaults to NULL.

missing_join missing values join with the left non-missing bin if its share is lower than the
threshold. Accepted values include ’left’ and ’right’. If it sets to NULL, the
missing values will be placed in a separate bin.

stop_limit Stop binning segmentation when information value gain ratio less than the ’stop_limit’
if using tree method; or stop binning merge when the chi-square of each neigh-
bor bins are larger than the threshold under significance level of ’stop_limit” and
freedom degree of 1 if using chimerge method. Accepted range: 0-0.5; Defaults
to 0.1. If it is ’N’, each x value is a bin.

count_distr_limit
The minimum count distribution percentage. Accepted range: 0.01-0.2; De-
faults to 0.05.

bin_num_limit Integer. The maximum number of binning. Defaults to 8.
positive Value of positive class, defaults to "badl1".

no_cores Number of CPU cores for parallel computation. Defaults to 2, if it sets to NULL
then 90 percent of total cpu cores will be used.

print_step A non-negative integer. Defaults to 1. If print_step>0, print variable names by
each print_step-th iteration. If print_step=0 or no_cores>1, no message is print.

method Four methods are provided, "tree" and "chimerge" for optimal binning that sup-
port both numerical and categorical variables, and *width’ and ’freq’ for equal
binning that support numerical variables only. Defaults to "tree".

ignore_const_cols
Logical. Ignore constant columns. Defaults to TRUE.

ignore_datetime_cols
Logical. Ignore datetime columns. Defaults to TRUE.

check_cate_num Logical. Check whether the number of unique values in categorical columns
larger than 50. It might make the binning process slow if there are too many
unique categories. Defaults to TRUE.

replace_blank_inf
Logical. Replace blank values with NA and infinite with -1. Defaults to TRUE.

save_as A string. The file name to save breaks_list. Defaults to None.

Additional parameters.

Value

A list of data frames include binning information for each x variables.

See Also

woebin_ply, woebin_plot, woebin_adj

26 woebin

Examples

load germancredit data
data(germancredit)

Example I

binning of two variables in germancredit dataset

using tree method

bins2_tree = woebin(germancredit, y="creditability",
x=c("credit.amount”,"housing"”), method="tree")

bins2_tree

Not run:

using chimerge method

bins2_chi = woebin(germancredit, y="creditability”,
x=c("credit.amount”, "housing"”), method="chimerge")

binning in equal freq/width # only supports numerical variables

numeric_cols = c("duration.in.month”, "credit.amount”,
"installment.rate.in.percentage.of.disposable.income”, "present.residence.since"”,
"age.in.years"”, "number.of.existing.credits.at.this.bank"”,
"number.of.people.being.liable.to.provide.maintenance.for")

bins_freq = woebin(germancredit, y="creditability”, x=numeric_cols, method="freq")

bins_width = woebin(germancredit, y="creditability"”, x=numeric_cols, method="width")

y can be NULL if no label column in dataset
bins_freq_noy = woebin(germancredit, y=NULL, x=numeric_cols)

Example II

setting of stop_limit

stop_limit = 0.1 (by default)

bins_x1 = woebin(germancredit, y = 'creditability', x = 'foreign.worker', stop_limit =0.1)
stop_limit = 'N', each x value is a bin

bins_x1_N = woebin(germancredit, y = 'creditability', x = 'foreign.worker', stop_limit = 'N')

Example III

binning of the germancredit dataset

bins_germ = woebin(germancredit, y = "creditability")
converting bins_germ into a data frame

bins_germ_df = data.table::rbindlist(bins_germ)

Example IV

customizing the breakpoints of binning

library(data.table)

dat = rbind(
setDT(germancredit),
data.table(creditability=sample(c("good"”, "bad"),10,replace=TRUE)),
fi11=TRUE)

breaks_list = list(
age.in.years = c(26, 35, 37, "Inf%,%missing"),
housing = c("own"”, "for free%,%rent")

)

woebin_adj 27

special_values = list(
credit.amount = c(2600, 9960, "6850%,%missing"),
purpose = c("education”, "others%,%missing"”)

)

bins_cus_brk = woebin(dat, y="creditability",

x=c("age.in.years","credit.amount”,"housing”, "purpose”),
breaks_list=breaks_list, special_values=special_values)

Example V

save breaks_list as a R file

bins2 = woebin(germancredit, y="creditability",
x=c("credit.amount”,"housing”), save_as='breaks_list')

Example VI

setting bin closed on the right

options(scorecard.bin_close_right = TRUE)

binsRight = woebin(germancredit, y = 'creditability', x = 'age.in.years')
binsRight

setting bin close on the left, the default setting
options(scorecard.bin_close_right = FALSE)

End(Not run)

woebin_adj WOE Binning Adjustment

Description

woebin_adj interactively adjust the binning breaks.

Usage
woebin_adj(dt, y, bins, breaks_list = NULL, adj_all_var = TRUE,
to = "breaks_list"”, save_as = NULL, ...)
Arguments
dt A data frame.
y Name of y variable.
bins A list of data frames. Binning information generated from woebin.

breaks_list List of break points, Defaults to NULL. If it is not NULL, variable binning will
based on the provided breaks.

adj_all_var Logical, whether to show variables have monotonic woe trends. Defaults to
TRUE

to Adjusting bins into breaks_list or bins_list. Defaults to breaks_list.

28 woebin_plot

save_as A string. The file name to save breaks_list. Defaults to None.

Additional parameters.

Value

A list of modified break points of each x variables.

See Also

woebin, woebin_ply, woebin_plot

Examples

Not run:
Load German credit data
data(germancredit)

Example I
dt = germancredit[, c("creditability”, "age.in.years"”, "credit.amount")]
bins = woebin(dt, y="creditability")
breaks_adj = woebin_adj(dt, y="creditability"”, bins)
bins_final = woebin(dt, y="creditability",
breaks_list=breaks_adj)

Example II adjust two variables' breaks in brklst

binsII = woebin(germancredit, y="creditability"”, save_as = 'breaks')

brklst = source('breaks.R')$value

update break list file

brklst_adj = woebin_adj(germancredit, "creditability"”, binsII[1:2],
breaks_list = brklst, save_as = 'breaks')

End(Not run)

woebin_plot WOE Binning Visualization

Description

woebin_plot create plots of count distribution and positive probability for each bin. The binning
informations are generates by woebin.

Usage

woebin_plot(bins, x = NULL, title = NULL, show_iv = TRUE,
line_value = "posprob", ...)

woebin_plot

Arguments
bins

X

title

show_iv

line_value

Value

29

A list of data frames. Binning information generated by woebin.

Name of x variables. Defaults to NULL. If x is NULL, then all columns except
y are counted as x variables.

String added to the plot title. Defaults to NULL.

Logical. Defaults to TRUE, which means show information value in the plot
title.

The value displayed as line. Accepted values are *posprob’ and *woe’. Defaults
to positive probability.

Additional parameters

A list of binning graphics.

See Also

woebin, woebin_ply, woebin_adj

Examples

Load German credit data
data(germancredit)

Example I

bins1 = woebin(germancredit, y="creditability"”, x="credit.amount")

p1 = woebin_plot(bins1)

print(p1)

modify line value
pl_w = woebin_plot(bins1, line_value = 'woe')

print(pl_w)

modify colors

pl_c = woebin_plot(bins1, line_color='#FC8D59"', bar_color=c('#FFFFBF', '#99D594'))

print(pl_c)

show iv, line value, bar value

pl_iv = woebin_plot(bins1, show_iv = FALSE)
print(p1_iv)

p1_lineval = woebin_plot(bins1, show_lineval = FALSE)
print(pl_lineval)

p1_barval = woebin_plot(bins1, show_barval = FALSE)
print(p1_barval)

Example II
bins = woebin(germancredit, y="creditability")

30 woebin_ply

plotlist = woebin_plot(bins)
print(plotlist$credit.amount)

save binning plot
for (i in 1:length(plotlist)) {
ggplot2::ggsave(

paste@(names(plotlist[il), ".png"), plotlist[[il],
width = 15, height = 9, units="cm")
3
woebin_ply WOE/BIN Transformation
Description

woebin_ply converts original values of input data into woe or bin based on the binning information
generated from woebin.

Usage
woebin_ply(dt, bins, to = "woe", no_cores = 2, print_step = 0L,
replace_blank_inf = TRUE, ...)
Arguments
dt A data frame.
bins Binning information generated from woebin.
to Converting original values to woe or bin. Defaults to woe.
no_cores Number of CPU cores for parallel computation. Defaults to 2, if it sets to NULL
then 90 percent of total cpu cores will be used.
print_step A non-negative integer. Defaults to 1. If print_step>0, print variable names by

each print_step-th iteration. If print_step=0 or no_cores>1, no message is print.

replace_blank_inf
Logical. Replace blank values with NA and infinite with -1. Defaults to TRUE.
This argument should be the same with woebin’s.

Additional parameters.

Value

A data frame with columns for variables converted into woe values.

See Also

woebin, woebin_plot, woebin_adj

woebin_ply 31

Examples

load germancredit data
data(germancredit)

Example I
dt = germancredit[, c("”creditability”, "credit.amount”, "purpose"”)]

binning for dt
bins = woebin(dt, y = "creditability")

converting to woe
dt_woe = woebin_ply(dt, bins=bins)
str(dt_woe)

converting to bin
dt_bin = woebin_ply(dt, bins=bins, to = 'bin')
str(dt_bin)

Example II
binning for germancredit dataset
bins_germancredit = woebin(germancredit, y="creditability")

converting the values in germancredit to woe
bins is a list which generated from woebin()
germancredit_woe = woebin_ply(germancredit, bins_germancredit)

bins is a data frame
bins_df = data.table::rbindlist(bins_germancredit)
germancredit_woe = woebin_ply(germancredit, bins_df)

Index

x data
germancredit, 4

describe, 2

gains_table, 3, 11
germancredit, 4

iv,5
one_hot, 6

perf_cv,7
perf_eva, 4,9, 11
perf_psi, 4, 10, 10

replace_na, 12
report, 13

scorecard, 15, 17, 19
scorecard2, 16, 16, 19
scorecard_ply, 16, 17,18
scorecard_pmml, 19
split_df, 20

var_filter, 21
var_scale, 22
vif, 23

woebin, 24, 28-30

woebin_adj, 25, 27, 29, 30
woebin_plot, 25, 28, 28, 30
woebin_ply, 25, 28, 29, 30

32

	describe
	gains_table
	germancredit
	iv
	one_hot
	perf_cv
	perf_eva
	perf_psi
	replace_na
	report
	scorecard
	scorecard2
	scorecard_ply
	scorecard_pmml
	split_df
	var_filter
	var_scale
	vif
	woebin
	woebin_adj
	woebin_plot
	woebin_ply
	Index

