Skip to main content
Log in

Fast topological pumping for the generation of large-scale Greenberger-Horne-Zeilinger states in a superconducting circuit

  • Research Article
  • Published:
View saved research
Frontiers of Physics

Abstract

Topological pumping of edge states in the finite lattice with nontrivial topological phases provides a powerful means for robust excitation transfer, requiring extremely slow evolution to follow an adiabatic transfer. Here, we propose fast topological pumping via edge channels to generate large-scale Greenberger-Horne-Zeilinger (GHZ) states in a topological superconducting circuit with a sped-up evolution process. The scheme indicates a conceptual way of designing fast topological pumping related to the instantaneous energy spectrum characteristics rather than relying on the shortcuts to adiabaticity. Based on fast topological pumping, large-scale GHZ states show greater robustness against on-site potential defects, the fluctuation of couplings and losses of the system in comparison with the conventional adiabatic topological pumping. With experimentally feasible qutrit-resonator coupling strengths and moderate decay rates of qutrits and resonators, fast topological pumping drastically improves the scalability of GHZ states with a high fidelity. Our work opens up prospects for the realization of large-scale GHZ states based on fast topological pumping in the superconducting quantum circuit system, which provides potential applications of topological matters in quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Similar content being viewed by others

References

  1. A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Uspekhi. 44(103), 131 (2001)

    Article  ADS  Google Scholar 

  2. C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)

    Article  ADS  Google Scholar 

  3. D. J. Thouless, Quantization of particle transport, Phys. Rev. B 27(10), 6083 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  4. Q. Niu and D. J. Thouless, Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction, J. Phys. Math. Gen. 17(12), 2453 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, Topological states and adiabatic pumping in quasicrystals, Phys. Rev. Lett. 109(10), 106402 (2012)

    Article  ADS  Google Scholar 

  6. M. Verbin, O. Zilberberg, Y. Lahini, Y. E. Kraus, and Y. Silberberg, Topological pumping over a photonic Fibonacci quasicrystal, Phys. Rev. B 91(6), 064201 (2015)

    Article  ADS  Google Scholar 

  7. N. Lang and H. P. Büchler, Topological networks for quantum commuication between distant qubits, npj Quantum Inf. 3, 47 (2017)

    Article  ADS  Google Scholar 

  8. F. Mei, G. Chen, L. Tian, S. L. Zhu, and S. Jia, Robust quantum state transfer via topological edge states in superconducting qubit chains, Phys. Rev. A 98(1), 012331 (2018)

    Article  ADS  Google Scholar 

  9. J. L. Tambasco, G. Corrielli, R. J. Chapman, A. Crespi, O. Zilberberg, R. Osellame, and A. Peruzzo, Quantum interference of topological states of light, Sci. Adv. 4(9), eaat3187 (2018)

    Article  ADS  Google Scholar 

  10. P. Boross, J. K. Asbóth, G. Széchenyi, L. Oroszlány, and A. Pályi, Poor man’s topological quantum gate based on the Su-Schrieffer-Heeger model, Phys. Rev. B 100(4), 045414 (2019)

    Article  ADS  Google Scholar 

  11. S. Longhi, Topological pumping of edge states via adiabatic passage, Phys. Rev. B 99(15), 155150 (2019)

    Article  ADS  Google Scholar 

  12. N. E. Palaiodimopoulos, I. Brouzos, F. K. Diakonos, and G. Theocharis, Fast and robust quantum state transfer via a topological chain, Phys. Rev. A 103(5), 052409 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  13. F. M. D’Angelis, F. A. Pinheiro, D. Guéry-Odelin, S. Longhi, and F. Impens, Fast and robust quantum state transfer in a topological Su-Schrieffer-Heeger chain with next-to-nearest-neighbor interactions, Phys. Rev. Res. 2(3), 033475 (2020)

    Article  Google Scholar 

  14. F. Mei, G. Chen, L. Tian, S. L. Zhu, and S. Jia, Topology-dependent quantum dynamics and entanglement-dependent topological pumping in superconducting qubit chains, Phys. Rev. A 98(3), 032323 (2018)

    Article  ADS  Google Scholar 

  15. J. X. Han, J. L. Wu, Y. Wang, Y. Xia, Y. Y. Jiang, and J. Song, Large-scale Greenberger-Horne-Zeilinger states through a topologically protected zero-energy mode in a superconducting qutrit-resonator chain, Phys. Rev. A 103(3), 032402 (2021)

    Article  ADS  Google Scholar 

  16. S. Das Sarma, M. Freedman, and C. Nayak, Topological quantum computation, Phys. Today 59(7), 32 (2006)

    Article  Google Scholar 

  17. M. H. Devoret, and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339(6124), 1169 (2013)

    Article  ADS  Google Scholar 

  18. J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(189), 8 (2005)

    Google Scholar 

  19. J. M. Martinis, Qubit metrdogy for building a fault-tolerant quantum computer, npj Quantum Inf. 1, 15005 (2015)

    Article  ADS  Google Scholar 

  20. C. Song, K. Xu, H. Li, Y. R. Zhang, X. Zhang, W. Liu, Q. Guo, Z. Wang, W. Ren, J. Hao, H. Feng, H. Fan, D. Zheng, D. W. Wang, H. Wang, and S. Y. Zhu, Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits, Science 365(6453), 574 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I. C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis, State preservation by repetitive error detection in a superconducting quantum circuit, Nature 519(7541), 66 (2015)

    Article  ADS  Google Scholar 

  22. J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom, S. Caldwell, N. Didier, E. S. Fried, S. Hong, P. Karalekas, C. B. Osborn, A. Papageorge, E. C. Peterson, G. Prawiroatmodjo, N. Rubin, C. A. Ryan, D. Scarabelli, M. Scheer, E. A. Sete, P. Sivarajah, R. S. Smith, N. T. A. Staley, W. J. Zeng, A. Hudson, B. R. Johnson, M. Reagor, M. P. da Silva, and C. Rigetti, Unsupervised machine learning on a hybrid quantum computer, arXiv: 1712.05771 (2017)

  23. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets, Nature 549(7671), 242 (2017)

    Article  ADS  Google Scholar 

  24. C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, A. Megrant, B. Chiaro, A. Dunsworth, K. Arya, R. Barends, B. Burkett, Y. Chen, Z. Chen, A. Fowler, B. Foxen, M. Giustina, R. Graff, E. Jeffrey, T. Huang, J. Kelly, P. Klimov, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, H. Neven, and J. M. Martinis, A blueprint for demonstrating quantum supremacy with superconducting qubits, Science 360(6385), 195 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. K. X. Wei, I. Lauer, S. Srinivasan, N. Sundaresan, D. T. McClure, D. Toyli, D. C. McKay, J. M. Gambetta, and S. Sheldon, Verifying multipartite entangled Greenberger-Horne-Zeilinger states via multiple quantum coherences, Phys. Rev. A 101(3), 032343 (2020)

    Article  ADS  Google Scholar 

  26. Y. Salathé, M. Mondal, M. Oppliger, J. Heinsoo, P. Kurpiers, A. Potočnik, A. Mezzacapo, U. Las Heras, L. Lamata, E. Solano, S. Filipp, and A. Wallraff, Digital quantum simulation of spin models with circuit quantum electrodynamics, Phys. Rev. X 5(2), 021027 (2015)

    Google Scholar 

  27. S. Hacohen-Gourgy, V. V. Ramasesh, C. De Grandi, I. Siddiqi, and S. M. Girvin, Cooling and autonomous feedback in a Bose-Hubbard chain with attractive interactions, Phys. Rev. Lett. 115(24), 240501 (2015)

    Article  ADS  Google Scholar 

  28. P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis, Scalable quantum simulation of molecular energies, Phys. Rev. X 6(3), 031007 (2016)

    Google Scholar 

  29. Y. P. Zhong, D. Xu, P. Wang, C. Song, Q. J. Guo, W. X. Liu, K. Xu, B. X. Xia, C. Y. Lu, S. Han, J. W. Pan, and H. Wang, Emulating anyonic fractional statistical behavior in a superconducting quantum circuit, Phys. Rev. Lett. 117(11), 110501 (2016)

    Article  ADS  Google Scholar 

  30. M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and A. A. Houck, Observation of a dissipative phase transition in a one-dimensional circuit QED lattice, Phys. Rev. X 7(1), 011016 (2017)

    Google Scholar 

  31. J. Q. You, X. F. Shi, X. Hu, and F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuits, Phys. Rev. B 81(1), 014505 (2010)

    Article  ADS  Google Scholar 

  32. J. Koch, A. A. Houck, K. L. Hur, and S. M. Girvin, Time-reversal-symmetry breaking in circuit-QED-based photon lattices, Phys. Rev. A 82(4), 043811 (2010)

    Article  ADS  Google Scholar 

  33. M. Hafezi, P. Adhikari, and J. M. Taylor, Engineering three-body interaction and Pfaffian states in circuit QED systems, Phys. Rev. B 90(6), 060503 (2014)

    Article  ADS  Google Scholar 

  34. E. Kapit, M. Hafezi, and S. H. Simon, Induced self-stabilization in fractional quantum Hall states of light, Phys. Rev. X 4(3), 031039 (2014)

    Google Scholar 

  35. D. I. Tsomokos, S. Ashhab, and F. Nori, Using superconducting qubit circuits to engineer exotic lattice systems, Phys. Rev. A 82(5), 052311 (2010)

    Article  ADS  Google Scholar 

  36. F. Mei, Z. Y. Xue, D. W. Zhang, L. Tian, C. Lee, and S. L. Zhu, Witnessing topological Weyl semimetal phase in a minimal circuit-QED lattice, Quantum Sci. Technol. 1(1), 015006 (2016)

    Article  ADS  Google Scholar 

  37. J. Tangpanitanon, V. M. Bastidas, S. Al-Assam, P. Roushan, D. Jaksch, and D. G. Angelakis, Topological pumping of photons in nonlinear resonator arrays, Phys. Rev. Lett. 117(21), 213603 (2016)

    Article  ADS  Google Scholar 

  38. T. Goren, K. Plekhanov, F. Appas, and K. Le Hur, Topological Zak phase in strongly coupled LC circuits, Phys. Rev. B 97(4), 041106 (2018)

    Article  ADS  Google Scholar 

  39. V. V. Ramasesh, E. Flurin, M. Rudner, I. Siddiqi, and N. Y. Yao, Direct probe of topological invariants using Bloch oscillating quantum walks, Phys. Rev. Lett. 118(13), 130501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  40. E. Flurin, V. V. Ramasesh, S. Hacohen-Gourgy, L. S. Martin, N. Y. Yao, and I. Siddiqi, Observing topological invariants using quantum walks in superconducting circuits, Phys. Rev. X 7(3), 031023 (2017)

    Google Scholar 

  41. M. D. Schroer, M. H. Kolodrubetz, W. F. Kindel, M. Sandberg, J. Gao, M. R. Vissers, D. P. Pappas, A. Polkovnikov, and K. W. Lehnert, Measuring a topological transition in an artificial spin-1/2 system, Phys. Rev. Lett. 113(5), 050402 (2014)

    Article  ADS  Google Scholar 

  42. P. Roushan, C. Neill, Y. Chen, M. Kolodrubetz, C. Quintana, N. Leung, M. Fang, R. Barends, B. Campbell, Z. Chen, B. Chiaro, and A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant, J. Mutus, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, A. Polkovnikov, A. N. Cleland, and J. M. Martinis, Observation of topological transitions in interacting quantum circuits, Nature 515(7526), 241 (2014)

    Article  ADS  Google Scholar 

  43. Z. Zhang, T. Wang, L. Xiang, J. Yao, J. Wu, and Y. Yin, Measuring the Berry phase in a superconducting phase qubit by a shortcut to adiabaticity, Phys. Rev. A 95(4), 042345 (2017)

    Article  ADS  Google Scholar 

  44. X. Tan, D. W. Zhang, Q. Liu, G. Xue, H. F. Yu, Y. Q. Zhu, H. Yan, S. L. Zhu, and Y. Yu, Topological Maxwell metal bands in a superconducting qutrit, Phys. Rev. Lett. 120(13), 130503 (2018)

    Article  ADS  Google Scholar 

  45. C. Song, D. Xu, P. Zhang, J. Wang, Q. Guo, W. Liu, K. Xu, H. Deng, K. Huang, D. Zheng, S. B. Zheng, H. Wang, X. Zhu, C. Y. Lu, and J. W. Pan, Demonstration of topological robustness of anyonic braiding statistics with a superconducting quantum circuit, Phys. Rev. Lett. 121(3), 030502 (2018)

    Article  ADS  Google Scholar 

  46. W. Cai, J. Han, F. Mei, Y. Xu, Y. Ma, X. Li, H. Wang, Y. P. Song, Z. Y. Xue, Z. Q. Yin, S. Jia, and L. Sun, Observation of topological magnon insulator states in a superconducting circuit, Phys. Rev. Lett. 123(8), 080501 (2019)

    Article  ADS  Google Scholar 

  47. O. Viyuela, A. Rivas, S. Gasparinetti, A. Wallraff, A. Wallraff, S. Filipp, and M. A. Martin-Delgado, Observation of topological Uhlmann phases with superconduction qubits, npj Quantum Inform. 4, 10 (2018)

    Article  ADS  Google Scholar 

  48. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, Multiphoton entanglement and interferometry, Rev. Mod. Phys. 84(2), 777 (2012)

    Article  ADS  Google Scholar 

  50. L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein, Quantum metrology with nonclassical states of atomic ensembles, Rev. Mod. Phys. 90(3), 035005 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  51. M. C. Rechtsman, Y. Lumer, Y. Plotnik, A. Perez-Leija, A. Szameit, and M. Segev, Topological protection of photonic path entanglement, Optica 3(9), 925 (2016)

    Article  ADS  Google Scholar 

  52. A. Blanco-Redondo, B. Bell, D. Oren, B. J. Eggleton, and M. Segev, Topological protection of biphoton states, Science 362(6414), 568 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. M. Wang, C. Doyle, B. Bell, M. J. Collins, E. Magi, B. J. Eggleton, M. Segev, and A. Blanco-Redondo, Topologically protected entangled photonic states, Nanophotonics 8(8), 1327 (2019)

    Article  Google Scholar 

  54. C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals between two photons by interference, Phys. Rev. Lett. 59(18), 2044 (1987)

    Article  ADS  Google Scholar 

  55. I. Brouzos, I. Kiorpelidis, F. K. Diakonos, and G. Theocharis, Fast, robust, and amplified transfer of topological edge modes on a time-varying mechanical chain, Phys. Rev. B 102(17), 174312 (2020)

    Article  ADS  Google Scholar 

  56. Y. X. Shen, L. S. Zeng, Z. G. Geng, D. G. Zhao, Y. G. Peng, and X. F. Zhu, Acoustic adiabatic propagation based on topological pumping in a coupled multicavity chain lattice, Phys. Rev. Appl. 14(1), 014043 (2020)

    Article  ADS  Google Scholar 

  57. J. L. Wu, Y. Wang, J. X. Han, Y. K. Feng, S. L. Su, Y. Xia, Y. Jiang, and J. Song, One-step implementation of Rydberg-antiblockade SWAP and controlled-SWAP gates with modified robustness, Photon. Res. 9(5), 814 (2021)

    Article  Google Scholar 

  58. X. R. Huang, Z. X. Ding, C. S. Hu, L. T. Shen, W. Li, H. Wu, and S. B. Zheng, Robust Rydberg gate via Landau-Zener control of Förster resonance, Phys. Rev. A 98(5), 052324 (2018)

    Article  ADS  Google Scholar 

  59. Q. Guo, S. B. Zheng, J. Wang, C. Song, P. Zhang, K. Li, W. Liu, H. Deng, K. Huang, D. Zheng, X. Zhu, H. Wang, C. Y. Lu, and J. W. Pan, Dephasing-insensitive quantum information storage and processing with superconducting qubits, Phys. Rev. Lett. 121(13), 130501 (2018)

    Article  ADS  Google Scholar 

  60. V. Balachandran and J. Gong, Adiabatic quantum transport in a spin chain with a moving potential, Phys. Rev. A 77(1), 012303 (2008)

    Article  ADS  Google Scholar 

  61. J. Allcock and N. Linden, Quantum communication beyond the localization length in disordered spin chains, Phys. Rev. Lett. 102(11), 110501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  62. J. L. Wu, Y. Wang, J. X. Han, S. L. Su, Y. Xia, Y. Jiang, and J. Song, Unselective ground-state blockade of Rydberg atoms for implementing quantum gates, Front. Phys. 17(2), 22501 (2022)

    Article  ADS  Google Scholar 

  63. R. R. Agundez, C. D. Hill, L. C. L. Hollenberg, S. Rogge, and M. Blaauboer, Superadiabatic quantum state transfer in spin chains, Phys. Rev. A 95(1), 012317 (2017)

    Article  ADS  Google Scholar 

  64. J. L. Wu, Y. Wang, J. X. Han, Y. Jiang, J. Song, Y. Xia, S. L. Su, and W. Li, Systematic-error-tolerant multiqubit holonomic entangling gates, Phys. Rev. Appl. 16(6), 064031 (2021)

    Article  ADS  Google Scholar 

  65. Y. Zhou, D. Y. Lü, and W. Y. Zeng, Chiral single-photon switch-assisted quantum logic gate with a nitrogen-vacancy center in a hybrid system, Photon. Res. 9(3), 405 (2021)

    Article  Google Scholar 

  66. D. M. Greenberger, M. A. Horne, and A. Zeilinger, Bell’s theorem, Quantum Theory, and Conceptions of the Universe, Kluwer Dordrecht, 1989

    Google Scholar 

  67. M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. S. Bose, V. Vedral, and P. L. Knight, Multiparticle generalization of entanglement swapping, Phys. Rev. A 57(2), 822 (1998)

    Article  ADS  Google Scholar 

  69. E. Knill, Quantum computing with realistically noisy devices, Nature 434(7029), 39 (2005)

    Article  ADS  Google Scholar 

  70. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced measurements: Beating the standard quantum limit, Science 306(5700), 1330 (2004)

    Article  ADS  Google Scholar 

  71. D. Leibfried, M. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. Itano, J. Jost, C. Langer, and D. Wineland, Toward Heisenberg-limited spectroscopy with multiparticle entangled states, Science 304(5676), 1476 (2004)

    Article  ADS  Google Scholar 

  72. C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Entangling superconducting qubits in a multi-cavity system, New J. Phys. 18(1), 013025 (2016)

    Article  ADS  Google Scholar 

  73. S. Matsuo, S. Ashhab, T. Fujii, F. Nori, K. Nagai, and N. Hatakenaka, Generation of Bell states and Green-berger-Horne-Zeilinger states in superconducting phase qubits, in: Quantum Communication, Measurement and Computing, No. 8, Ed.: O. Hirota et al., Tokyo: NICT, 2006

    Google Scholar 

  74. L. F. Wei, Y. Liu, and F. Nori, Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits, Phys. Rev. Lett. 96(24), 246803 (2006)

    Article  ADS  Google Scholar 

  75. S. L. Zhu, Z. D. Wang, and P. Zanardi, Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity, Phys. Rev. Lett. 94(10), 100502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  76. C. P. Yang, Q. P. Su, and S. Han, Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction, Phys. Rev. A 86(2), 022329 (2012)

    Article  ADS  Google Scholar 

  77. C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit, Phys. Rev. A 87(2), 022320 (2013)

    Article  ADS  Google Scholar 

  78. S. Aldana, Y. D. Wang, and C. Bruder, Greenberger-Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus, Phys. Rev. B 84(13), 134519 (2011)

    Article  ADS  Google Scholar 

  79. W. Feng, P. Wang, X. Ding, L. Xu, and X. Q. Li, Generating and stabilizing the Greenberger-Horne-Zeilinger state in circuit QED: Joint measurement, Zeno effect, and feedback, Phys. Rev. A 83(4), 042313 (2011)

    Article  ADS  Google Scholar 

  80. J. L. Wu, C. Song, J. Xu, L. Yu, X. Ji, and S. Zhang, Adiabatic passage for one-step generation of n-qubit Greenberger-Horne-Zeilinger states of superconducting qubits via quantum Zeno dynamics, Quantum Inform. Process. 15(9), 3663 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. X. T. Mo, and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)

    Article  ADS  Google Scholar 

  82. Y. H. Kang, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Deterministic conversions between Greenberger-Horne-Zeilinger states and W states of spin qubits via Lie-transform-based inverse Hamiltonian engineering, Phys. Rev. A 100(1), 012332 (2019)

    Article  ADS  Google Scholar 

  83. T. Liu, Q. P. Su, Y. Zhang, Y. L. Fang, and C. P. Yang, Generation of quantum entangled states of multiple groups of qubits distributed in multiple cavities, Phys. Rev. A 101(1), 012337 (2020)

    Article  ADS  Google Scholar 

  84. J. M. Chow, J. M. Gambetta, E. Magesan, D. W. Abraham, A. W. Cross, B. R. Johnson, N. A. Masluk, C. A. Ryan, J. A. Smolin, S. J. Srinivasan, and M. Steffen, Implementing a strand of a scalable fault-tolerant quantum computing fabric, Nat. Commun. 5(1), 4015 (2014)

    Article  ADS  Google Scholar 

  85. L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, and M. H. Girvin, S. M. Devoret, and R. J. Schoelkopf, Preparation and measurement of three-qubit entanglement in a superconduction circuit, Nature 467(7315), 574 (2010)

    Article  ADS  Google Scholar 

  86. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508(7497), 500 (2014)

    Article  ADS  Google Scholar 

  87. C. Song, K. Xu, W. Liu, C. Yang, S. B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang, Y. A. Chen, C. Y. Lu, S. Han, and J. W. Pan, 10-qubit entanglement and parallel logic operations with a superconducting circuit, Phys. Rev. Lett. 119(18), 180511 (2017)

    Article  ADS  Google Scholar 

  88. A. Cervera-Lierta, M. Krenn, A. Aspuru-Guzik, and A. Galda, Experimental high-dimensional Greenberger-Horne-Zeilinger entanglement with superconducting transmon qutrits, Phys. Rev. Appl. 17(2), 024062 (2022)

    Article  ADS  Google Scholar 

  89. X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Shortcut to adiabatic passage in two-and three-level atoms, Phys. Rev. Lett. 105(12), 123003 (2010)

    Article  ADS  Google Scholar 

  90. D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys. 91(4), 045001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  91. A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55(2), 1142 (1997)

    Article  ADS  Google Scholar 

  92. S. Ryu, and Y. Hatsugai, Topological origin of zero-energy edge states in particle-hole symmetric systems, Phys. Rev. Lett. 89(7), 077002 (2002)

    Article  ADS  Google Scholar 

  93. J. K. Asbóth, L. Oroszlány, and A. Pályi, A short course on topological insulators, Lect. Notes Phys. 919, 85 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  94. A. Coutant, V. Achilleos, O. Richoux, G. Theocharis, and V. Pagneux, Robustness of topological corner modes against disorder with application to acoustic networks, Phys. Rev. B 102(21), 214204 (2020)

    Article  ADS  Google Scholar 

  95. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Bell’s theorem without inequalities, Am. J. Phys. 58(12), 1131 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. R. Mukherjee, H. Xie, and F. Mintert, Bayesian optimal control of Greenberger-Horne-Zeilinger states in Rydberg lattices, Phys. Rev. Lett. 125(20), 203603 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  97. F. Reiter, D. Reeb, and A. S. Sørensen, Scalable dissipative preparation of many-body entanglement, Phys. Rev. Lett. 117(4), 040501 (2016)

    Article  ADS  Google Scholar 

  98. S. B. Zheng, One-step synthesis of multiatom Greenberger-Horne-Zeilinger states, Phys. Rev. Lett. 87(23), 230404 (2001)

    Article  ADS  Google Scholar 

  99. P. Mundada, G. Zhang, T. Hazard, and A. Houck, Suppression of qubit crosstalk in a tunable coupling superconducting circuit, Phys. Rev. Appl. 12(5), 054023 (2019)

    Article  ADS  Google Scholar 

  100. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Polyacetylene, Phys. Rev. Lett. 42(25), 1698 (1979)

    Article  ADS  Google Scholar 

  101. J. Pachos, and H. Walther, Quantum computation with trapped ions in an optical cavity, Phys. Rev. Lett. 89(18), 187903 (2002)

    Article  ADS  Google Scholar 

  102. A. P. M. Place, L. V. H. Rodgers, P. Mundada, B. M. Smitham, M. Fitzpatrick, Z. Leng, A. Premkumar, J. Bryon, A. Vrajitoarea, S. Sussman, G. Cheng, T. Madhavan, H. K. Babla, X. H. Le, Y. Gang, B. Jäck, A. Gyenis, N. Yao, R. J. Cava, N. P. de Leon, and A. A. Houck, New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds, Nat. Commun. 12(1), 1779 (2021)

    Article  ADS  Google Scholar 

  103. H. Zhang, S. Chakram, T. Roy, N. Earnest, Y. Lu, Z. Huang, D. K. Weiss, J. Koch, and D. I. Schuster, Universal fast-flux control of a coherent, low-frequency qubit, Phys. Rev. X 11(1), 011010 (2021)

    Google Scholar 

  104. I. M. Pop, M. Ansmann, G. Catelani, R. J. Schoelkopf, L. I. Glazman, and M. H. Devoret, Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles, Nature 508(7496), 7496 (2014)

    Article  Google Scholar 

  105. X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  106. M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, Reaching 10 ms single photon lifetimes for superconducting aluminum cavities, Appl. Phys. Lett. 102(19), 192604 (2013)

    Article  ADS  Google Scholar 

  107. M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, Quantum memory with millisecond coherence in circuit QED, Phys. Rev. B 94(1), 014506 (2016)

    Article  ADS  Google Scholar 

  108. C. Axline, M. Reagor, R. Heeres, P. Reinhold, C. Wang, K. Shain, W. Pfaff, Y. Chu, L. Frunzio, and R. J. Schoelkopf, An architecture for integrating planar and 3D cQED devices, Appl. Phys. Lett. 109(4), 042601 (2016)

    Article  ADS  Google Scholar 

  109. J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd, Josephson persistent-current qubit, Science 285(5430), 1036 (1999)

    Article  Google Scholar 

  110. C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N. Schouten, C. J. P. M. Harmans, T. P. Orlando, S. Lloyd, and J. E. Mooij, Quantum superposition of macroscopic persistent-current states, Science 290(5492), 773 (2000)

    Article  ADS  Google Scholar 

  111. B. Peropadre, P. Forn-Díaz, E. Solano, and J. J. García-Ripoll, Switchable ultrastrong coupling in circuit QED, Phys. Rev. Lett. 105(2), 023601 (2010)

    Article  ADS  Google Scholar 

  112. M. S. Allman, F. Altomare, J. D. Whittaker, K. Cicak, D. Li, A. Sirois, J. Strong, J. D. Teufel, and R. W. Simmonds, RF-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator, Phys. Rev. Lett. 104(17), 177004 (2010)

    Article  ADS  Google Scholar 

  113. M. S. Allman, J. D. Whittaker, M. Castellanos-Beltran, K. Cicak, F. da Silva, M. P. DeFeo, F. Lecocq, A. Sirois, J. D. Teufel, J. Aumentado, and R. W. Simmonds, Tunable resonant and nonresonant interactions between a phase qubit and LC resonator, Phys. Rev. Lett. 112(12), 123601 (2014)

    Article  ADS  Google Scholar 

  114. J. Bourassa, J. M. Gambetta, A. A. Abdumalikov, O. Astafiev, Y. Nakamura, and A. Blais, Ultrastrong coupling regime of cavity QED with phase-biased flux qubits, Phys. Rev. A 80(3), 032109 (2009)

    Article  ADS  Google Scholar 

  115. T. P. Orlando, J. E. Mooij, L. Tian, C. H. van der Wal, L. S. Levitov, S. Lloyd, and J. J. Mazo, Superconducting persistent-current qubit, Phys. Rev. B 60(22), 15398 (1999)

    Article  ADS  Google Scholar 

  116. Y. X. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori, Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit, Phys. Rev. Lett. 95(8), 087001 (2005)

    Article  ADS  Google Scholar 

  117. M. Devoret, B. Huard, R. Schoelkopf, and L. F. Cugliandolo, Quantum Machines: Measurement and Control of Engineered Quantum Systems, Oxford University Press, USA, 2014

    Book  MATH  Google Scholar 

  118. V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret, Fluxonium: Single Cooper-pair circuit free of charge offsets, Science 326(5949), 113 (2009)

    Article  ADS  Google Scholar 

  119. L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Demonstration of two-qubit algorithms with a superconducting quantum processor, Nature 460(7252), 240 (2009)

    Article  ADS  Google Scholar 

  120. T. Wang, Z. Zhang, L. Xiang, Z. Jia, P. Duan, Z. Zong, Z. Sun, Z. Dong, J. Wu, Y. Yin, and G. Guo, Experimental realization of a fast controlled-Z gate via a shortcut to adiabaticity, Phys. Rev. Appl. 11(3), 034030 (2019)

    Article  ADS  Google Scholar 

  121. A. A. Clerk, K. W. Lehnert, P. Bertet, J. R. Petta, and Y. Nakamura, Hybrid quantum systems with circuit quantum electrodynamics, Nat. Phys. 16(3), 257 (2020)

    Article  Google Scholar 

  122. T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nat. Phys. 6(10), 772 (2010)

    Article  Google Scholar 

  123. A. Blais, S. M. Girvin, and W. D. Oliver, Quantum information processing and quantum optics with circuit quantum electrodynamics, Nat. Phys. 16(3), 247 (2020)

    Article  Google Scholar 

  124. G. J. Mooney, G. A. L. White, C. D. Hill, and L. C. L. Hollenberg, Whole-device entanglement in a 65-qubit superconducting quantum computer, Adv. Quantum Technol. 4(10), 2100061 (2021)

    Article  Google Scholar 

  125. A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69(6), 062320 (2004)

    Article  ADS  Google Scholar 

  126. J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453(7198), 1031 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11675046), the Program for Innovation Research of Science in Harbin Institute of Technology (Grant No. A201412), and the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province (Grant No. LBH-Q15060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Lei Wu or Jie Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, JX., Wu, JL., Yuan, ZH. et al. Fast topological pumping for the generation of large-scale Greenberger-Horne-Zeilinger states in a superconducting circuit. Front. Phys. 17, 62504 (2022). https://doi.org/10.1007/s11467-022-1193-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11467-022-1193-y

Keywords