Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dirac-fermion-mediated ferromagnetism in a topological insulator

Abstract

Topological insulators are a newly discovered class of materials in which helical conducting modes exist on the surface of a bulk insulator1,2,3,4,5,6. Recently, theoretical works have shown that breaking gauge symmetry7 or time-reversal symmetry8 in these materials produces exotic states that, if realized, represent substantial steps towards realizing new magnetoelectric effects9,10 and tools useful for quantum computing11. Here we demonstrate the latter symmetry breaking in the form of ferromagnetism arising from the interaction between magnetic impurities and the Dirac fermions12,13. Using devices based on cleaved single crystals of Mn-doped Bi2Te3−ySey, the application of both solid-dielectric and ionic-liquid gating allows us to measure the transport response of the surface states within the bulk bandgap in the presence of magnetic ions. By tracking the anomalous Hall effect we find that the surface modes support robust ferromagnetism as well as magnetoconductance that is consistent with enhanced one-dimensional edge-state transport on the magnetic domain wall. Observation of this evidence for quantum transport phenomena demonstrates the accessibility of these exotics states in devices and may serve to focus the wide range of proposed methods for experimentally realizing the quantum anomalous Hall effect8,10 and states required for quantum computing14,15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ferromagnetism in a magnetically doped topological insulator.
Figure 2: AHE and TC tuned by carrier density.
Figure 3: Sign reversal in magnetoconductivity driven by gating for device A.

Similar content being viewed by others

References

  1. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  2. Bernevig, B. A., Hughes, T. L. & Zhang, S-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  3. Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  4. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  5. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306(R) (2007).

    Article  ADS  Google Scholar 

  6. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    Article  ADS  Google Scholar 

  7. Linder, J., Tanaka, Y., Yokoyama, T., Sudbo, A. & Nagaosa, N. Unconventional superconductivity on a topological insulator. Phys. Rev. Lett. 104, 067001 (2010).

    Article  ADS  Google Scholar 

  8. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article  ADS  Google Scholar 

  9. Qi, X-L., Hughes, T. L. & Zhang, S-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  ADS  Google Scholar 

  10. Nomura, K. & Nagaosa, N. Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators. Phys. Rev. Lett. 106, 166802 (2011).

    Article  ADS  Google Scholar 

  11. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  12. Liu, Q., Liu, C-X., Xu, C., Qi, X-L. & Zhang, S-C. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009).

    Article  ADS  Google Scholar 

  13. Abanin, D. A. & Pesin, D. A. Ordering of magnetic impurities and tunable electronic properties of topological insulators. Phys. Rev. Lett. 106, 136802 (2011).

    Article  ADS  Google Scholar 

  14. Fu, L. & Kane, C. L. Probing neutral majorana fermion edge modes with charge transport. Phys. Rev. Lett. 102, 216403 (2009).

    Article  ADS  Google Scholar 

  15. Akhmerov, A., Nilsson, J. & Beenakker, C. Electrically detected interferometry of Majorana fermions in a topological insulator. Phys. Rev. Lett. 102, 216404 (2009).

    Article  ADS  Google Scholar 

  16. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5, 398–402 (2009).

    Article  ADS  Google Scholar 

  17. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 . Science 325, 178–181 (2009).

    Article  ADS  Google Scholar 

  18. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  19. Chen, Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    Article  ADS  Google Scholar 

  20. Dietl, T., Haury, A. & Merle d’ Aubigne, Y. Free carrier-induced ferromagnetism in structures of diluted magnetic semiconductors. Phys. Rev. B 55, 3347–3350(R) (1997).

    Article  ADS  Google Scholar 

  21. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  ADS  Google Scholar 

  22. Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nature Mater. 9, 125–128 (2010).

    Article  ADS  Google Scholar 

  23. Checkelsky, J. G., Hor, Y. S., Cava, R. J. & Ong, N. P. Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3 . Phys. Rev. Lett. 106, 196801 (2011).

    Article  ADS  Google Scholar 

  24. Choi, J. et al. Single crystal growth and magnetic properties of Mn-doped Bi2Se3 and Sb2Se3 . J. Magn. 9, 125–127 (2004).

    Article  Google Scholar 

  25. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

    Article  ADS  Google Scholar 

  26. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  ADS  Google Scholar 

  27. Chiba, D., Matsukura, F. & Ohno, H. Electric-field control of ferromagnetism in (Ga,Mn)As. Appl. Phys. Lett. 89, 162505 (2006).

    Article  ADS  Google Scholar 

  28. Kim, D. et al. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3 . Nature Phys. 8, 460–464 (2012).

    ADS  Google Scholar 

  29. Levy, P. M. & Zhang, S. Resistivity due to domain wall scattering. Phys. Rev. Lett. 79, 5110–5113 (1997).

    Article  ADS  Google Scholar 

  30. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Nagaosa, M. Kawasaki, F. Zhang, K. Nomura, B-J. Yang and S. Bahramy for fruitful discussions. This research is supported by the Japan Society for the Promotion of Science through the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program), initiated by the Council for Science and Technology Policy.

Author information

Authors and Affiliations

Authors

Contributions

J.G.C. and Y.O. performed the single-crystal growth and experiments. J.G.C. and J.Y. made devices and performed device experiments aided by Y.O. J.G.C. analysed the data and wrote the manuscript with contributions from all authors. Y.I. and Y.T. contributed to discussion of the results and guided the project. Y.T. conceived and coordinated the project.

Corresponding author

Correspondence to Joseph G. Checkelsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 912 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Checkelsky, J., Ye, J., Onose, Y. et al. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nature Phys 8, 729–733 (2012). https://doi.org/10.1038/nphys2388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2388

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing