Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hybrid single-electron transistor as a source of quantized electric current

A Corrigendum to this article was published on 30 April 2014

This article has been updated

Abstract

The basis of synchronous manipulation of individual electrons in solid-state devices was laid by the rise of single electronics about two decades ago1,2,3. Ultrasmall structures in a low-temperature environment form an ideal domain for addressing electrons one by one. In the so-called metrological triangle, voltage from the Josephson effect and resistance from the quantum Hall effect would be tested against current via Ohm’s law for a consistency check of the fundamental constants of nature, and e (ref. 4). Several attempts to create a metrological current source that would comply with the demanding criteria of extreme accuracy, high yield and implementation with not too many control parameters have been reported5,6,7,8,9,10,11. Here, we propose and prove the unexpected concept of a hybrid normal-metal–superconductor turnstile in the form of a one-island single-electron transistor with one gate, which demonstrates robust current plateaux at multiple levels of e f at frequency f.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The hybrid turnstile and its basic characteristics.
Figure 2: Measured characteristics of the SNS turnstile.
Figure 3: The frequency dependence of the SNS turnstile operation.

Similar content being viewed by others

Change history

  • 08 April 2014

    In the version of this Letter originally published, discussions of SNS and NSN transistors were reversed in the captions of Figs 1–3, with concomitant errors in the main text where those figures were referred to. The following text should have been in the caption of Fig. 1: 'In the SNS turnstile, the roles of aluminium and copper are swapped, that is the leads are superconducting and the island is normal-state.' The sentence at the top of the right column on page 123 proclaiming the absence of the parity effect in the measured SNS transistor should not have been included as the parity effect can only manifest in an NSN transistor. These errors have been corrected in the online versions of the Letter.

References

  1. Averin, D. V. & Likharev, K. K. in Mesoscopic Phenomena in Solids (eds Altshuler, B. L., Lee, P. A. & Webb, R. A.) 173–271 (North-Holland, Amsterdam, 1991).

    Book  Google Scholar 

  2. Grabert, H. & Devoret, M. H. (eds) Single Charge Tunneling—Coulomb Blockade Phenomena in Nanostructures (Plenum, New York, 1992).

  3. Devoret, M. H., Esteve, D. & Urbina, C. Single-electron transfer in metallic nanostructures. Nature 360, 547–553 (1992).

    Article  ADS  Google Scholar 

  4. Piquemal, F. et al. Fundamental electrical standards and the quantum metrological triangle. C.R. Physique 5, 857–879 (2004).

    Article  ADS  Google Scholar 

  5. Geerligs, L. J. et al. Frequency-locked turnstile device for single electrons. Phys. Rev. Lett. 64, 2691–2694 (1990).

    Article  ADS  Google Scholar 

  6. Pothier, H., Lafarge, P., Urbina, C., Esteve, D. & Devoret, M. H. Single-electron pump based on charging effects. Europhys. Lett. 17, 249–254 (1992).

    Article  ADS  Google Scholar 

  7. Keller, M. W., Martinis, J. M., Zimmerman, N. M. & Steinbach, A. H. Accuracy of electron counting using a 7-junction electron pump. Appl. Phys. Lett. 69, 1804–1806 (1996).

    Article  ADS  Google Scholar 

  8. Shilton, J. M. et al. High-frequency single-electron transport in a quasi-one-dimensional GaAs channel induced by surface acoustic waves. J. Phys. Condens. Matter 8, L531–L539 (1996).

    Article  Google Scholar 

  9. Fujiwara, A., Zimmerman, N. M., Ono, Y. & Takahashi, Y. Current quantization due to single-electron transfer in Si-wire charge-coupled devices. Appl. Phys. Lett. 84, 1323–1325 (2004).

    Article  ADS  Google Scholar 

  10. Bylander, J., Duty, T. & Delsing, P. Current measurement by real-time counting of single electrons. Nature 434, 361–364 (2005).

    Article  ADS  Google Scholar 

  11. Vartiainen, J. J., Möttönen, M., Pekola, J. P. & Kemppinen, A. Nanoampere pumping of Cooper pairs. Appl. Phys. Lett. 90, 082102 (2007).

    Article  ADS  Google Scholar 

  12. Shapiro, S. Josephson currents in superconducting tunneling: The effect of microwaves and other observations. Phys. Rev. Lett. 11, 80–82 (1963).

    Article  ADS  Google Scholar 

  13. Klitzing, v. K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  14. Paalanen, M. A., Tsui, D. C. & Gossard, A. C. Quantized Hall effect at low temperatures. Phys. Rev. B 25, 5566–5569 (1982).

    Article  ADS  Google Scholar 

  15. Zimmerman, N. M. & Keller, M. W. Electrical metrology with single electrons. Meas. Sci. Technol. 14, 1237–1242 (2003).

    Article  ADS  Google Scholar 

  16. Niskanen, A. O., Pekola, J. P. & Seppä, H. Fast and accurate single-island charge pump: Implementation of a Cooper pair pump. Phys. Rev. Lett. 91, 177003 (2003).

    Article  ADS  Google Scholar 

  17. Lotkhov, S. V., Bogoslovsky, S. A., Zorin, A. B. & Niemeyer, J. Radio-frequency-induced transport of Cooper pairs in superconducting single electron transistors in a dissipative environment. J. Appl. Phys. 95, 6325–6331 (2004).

    Article  ADS  Google Scholar 

  18. Governale, M., Taddei, F., Fazio, R. & Hekking, F. W. Adiabatic pumping in a superconductor-normal-superconductor weak link. Phys. Rev. Lett. 95, 256801 (2005).

    Article  ADS  Google Scholar 

  19. Kopnin, N. B., Mel’nikov, A. S. & Vinokur, V. M. Resonance energy and charge pumping through quantum SINIS contacts. Phys. Rev. Lett. 96, 146802 (2006).

    Article  ADS  Google Scholar 

  20. Mooij, J. E. & Nazarov, Yu. V. Superconducting nanowires as quantum phase-slip junctions. Nature Phys. 2, 169–172 (2006).

    Article  ADS  Google Scholar 

  21. Cholascinski, M. & Chhajlany, R. W. Stabilized parametric Cooper-pair pumping in a linear array of coupled Josephson junctions. Phys. Rev. Lett. 98, 127001 (2007).

    Article  ADS  Google Scholar 

  22. Blumenthal, M. D. et al. Gigahertz quantized charge pumping. Nature Phys. 3, 343–347 (2007).

    Article  ADS  Google Scholar 

  23. Lotkhov, S. V., Bogoslovsky, S. A., Zorin, A. B. & Niemeyer, J. Cooper pair cotunneling in single charge transistors with dissipative electromagnetic environment. Phys. Rev. Lett. 91, 197002 (2003).

    Article  ADS  Google Scholar 

  24. Averin, D. V. & Nazarov, Yu. V. Virtual electron diffusion during quantum tunneling of the electric charge. Phys. Rev. Lett. 65, 2446–2449 (1990).

    Article  ADS  Google Scholar 

  25. Jensen, H. D. & Martinis, J. M. Accuracy of the electron pump. Phys. Rev. B 46, 13407–13427 (1992).

    Article  ADS  Google Scholar 

  26. Hekking, F. W. J. & Nazarov, Yu. V. Subgap conductivity of a superconductor-normal-metal tunnel interface. Phys. Rev. B 49, 6847–6852 (1994).

    Article  ADS  Google Scholar 

  27. Bardas, A. & Averin, D. V. Peltier effect in normal-metal–superconductor microcontacts. Phys. Rev. B 52, 12873–12877 (1995).

    Article  ADS  Google Scholar 

  28. Joyez, P., Esteve, D. & Devoret, M. H. How is the Coulomb blockade suppressed in high-conductance tunnel junctions? Phys. Rev. Lett. 80, 1956–1959 (1998).

    Article  ADS  Google Scholar 

  29. Saira, O.-P. et al. Heat transistor: Demonstration of gate-controlled electron refrigeration. Phys. Rev. Lett. 99, 027203 (2007).

    Article  ADS  Google Scholar 

  30. Krupenin, V. A. et al. Noise in Al single electron transistors of stacked design. J. Appl. Phys. 84, 3212–3215 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Paalanen and A. Manninen for fruitful discussions and A. Kemppinen for assistance in the measurements. The work was financially supported by the Technology Industries of Finland Centennial Foundation and by the Academy of Finland. D.V.A. was supported in part by NSF grant No. DMR-0325551 and M.M. by the Finnish Cultural Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka P. Pekola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pekola, J., Vartiainen, J., Möttönen, M. et al. Hybrid single-electron transistor as a source of quantized electric current. Nature Phys 4, 120–124 (2008). https://doi.org/10.1038/nphys808

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys808

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing