bluespec

Panel: "System-Level Design and High-Level Synthesis”
ESWeek, Montreal, September 30, 2013

Rishiyur S. Nikhil, Ph.D.
CTO and co-founder, Bluespec, Inc.

~

Contents:
0. Brief background on Bluespec approach to
HLS, for context and contrast

Responses to the moderators’ three questions:
1. What works? What doesn’t?

2. Future evolution? Growth? Into new areas?
3. Future research opportunities?

A\

/

© Bluespec, Inc., 2013 www.bluespec.com

0: Background about Bluespec BSV approach to HLS

Borrow best modern ideas from programming languages,
formal verification systems, and concurrency.
Don’t be hamstrung by sequential von Neumann legacy.

: : : /Behavior spec: Guarded Atomic Transaction Rules N
Design written in BSV + cf. Guarded Commands, TLA+, UNITY, EventB, ...
language « Fundamentally parallel/concurrent
Architecture spec:
: : « cf. Haskell functional programming language
High Le_/el Synthes_|5 « strong type-checking, polymorphic types, typeclasses,
(rule analysis and scheduling, _higher-order functions, modularity, parameterization

optimization, ...)

All HL language features available in
synthesizable code (no subsetting for synthesis)

Verilog

In HW design, no fundamental separation between
1 algorithm design and architecture design
» Architecture <& cost model <& Algorithm Design

[Existing RTL-netlist synthesis tools |

« BSV approach is completely architecturally neutral
(no bias towards sequential von Neumann)

Suitable for high performance data processing and
complex control (in short: for anything for which you
might previously have used RTL)

bluespec

2 © Bluespec, Inc., 2013

Q1: What works? What doesn’t?

¢ N | soc

BSV HLS has worked well for
designing IP blocks of every kind
(expected).

BSV users don'’t (voluntarily!) go

back to RTL.
\ /

Fabric Peripheral

IP
(crypto)

Fabric (e.g. AMBA AXI + (e.g. AHB/
¥) APB) Peripheral

i s3ee0) e

(10GigE)
IP ;
, High-speed IO

Plus: several new use models for BSV HLS:
» Synthesizable models, for
 Architecture exploration
» Early firmware development and testing
« Early SW development and testing
\.* Synthesizable Verification Environments

\

J

\ 4
Why?

» Old way (simulation) is TKx — 1Mx too slow!
New way: run on FPGA =» need synthesizability
from High-Level Language

* Models need architectural credibility; not easy to
achieve in non-synthesizable language

Both points achievable with BSV

E.g., Existing CPU/SoC models in BSV:

* ARM (many versions), x86, PPC, Power, MIPS,
Sparc, Alpha, RISC-V, JVM, Itanium, ...

 All synthesized to FPGA, many of them booting
a full OS (Linux/Sparc/xBSD/...)

Only conservatism prevents wider adoption
» Risk perception (esp. for small vendor)

“Unfamiliar’ language
» Unfamiliarity with modern ideas in

programming languages (types,
_ abstraction, advanced parameterization))

bluespec

© Bluespec, Inc., 2013

Q2: Future evolution? Growth? Into new areas?

Growth opportunity

) . (limited only by
DeS|g ns conservativism)
= w. RTL

KCentraI réle in whole-SoC design, A

using FPGAs:
* Modeling and architecture exploration
* Verification

« Early SW development and testing /High-Pen‘ormance Computing

(HPC) using FPGAs

 FPGAs can be just as valuable as
GPGPUs have become for HPC
in science and engineering

~

N This cannot happen without HLS)

\This cannot happen without HLS)

bluespec

© Bluespec, Inc., 2013

Q3: Future research opportunities?

/Atomic Transaction Rules: Language, Synthesis

» Higher-level languages than BSV using Rules

+ Better, more expressive scheduling of concurrent rules

« Pay the communications piper by moving towards more
asynchronicity (GALS/GALA/latency-insensitivity/

Automatic Power Management:
* Rule semantics provides high-level
information about when circuits are

N dataflow). Rules are a natural fit for this.)

/"Libraries and IP generators: N

« BSV’s powerful parameterization and
type system permit creation of STL-like
libraries

+ BSV makes an excellent target for |P
generators. See Papamichael et. al.
(CMU) for generators for NoCs

(“CONNECT”) and Memory Hierarchies
__ (“CoRAM”) using BSV as abackend /

active/idle
e N
/ ~ Formal methods exploiting Rule semantics:
Make FPGA environments easier to » Automation of “design by refinement” from
use than GPGPUs: models to implementations
 “instant” synthesis » Formal verification
* incrementality L Formal testing, like Haskell Quickcheck)
» service APls
« full visibility)
._[No fundamental technical obstacle]) s . _ M
[Application] CPU and System Architecture
 Use Rule Semantics to change b research enabled by BSV: .
HW/SW interface: » Fast execution on FPGAs with credible accuracy
: : : e « Already happening at Intel, IBM, DARPA CRASH/
» Device drivers are notoriously difficult, SAEE proiect. S ting Cent
buggy. Perhaps because DDs are Project, stipercomputing Lenter
) g9y) P Barcelona, IIT Chennai, ...
highly reactive, concurrent programs, y
__for which C may be the wrong model.) bluespec

5 © Bluespec, Inc., 2013

bluespec

Thank you!

