
Panel: “System-Level Design and High-Level Synthesis”

ESWeek, Montreal, September 30, 2013

© Bluespec, Inc., 2013 www.bluespec.com

Rishiyur S. Nikhil, Ph.D.
CTO and co-founder, Bluespec, Inc.

Contents:
0. Brief background on Bluespec approach to

HLS, for context and contrast

Responses to the moderators’ three questions:
1.  What works? What doesn’t?
2.  Future evolution? Growth? Into new areas?
3.  Future research opportunities?

© Bluespec, Inc., 2013 2

0: Background about Bluespec BSV approach to HLS

Design written in BSV
language

High Level Synthesis
(rule analysis and scheduling,

optimization, …)

Verilog •  In HW design, no fundamental separation between
algorithm design and architecture design
•  Architecture ó cost model ó Algorithm Design

•  BSV approach is completely architecturally neutral
(no bias towards sequential von Neumann)

•  Suitable for high performance data processing and
complex control (in short: for anything for which you
might previously have used RTL)

Borrow best modern ideas from programming languages,
formal verification systems, and concurrency.

Don’t be hamstrung by sequential von Neumann legacy.

Existing RTL-netlist synthesis tools

All HL language features available in
synthesizable code (no subsetting for synthesis)

Behavior spec: Guarded Atomic Transaction Rules
•  cf. Guarded Commands, TLA+, UNITY, EventB, …
•  Fundamentally parallel/concurrent

Architecture spec:
•  cf. Haskell functional programming language
•  strong type-checking, polymorphic types, typeclasses,

higher-order functions, modularity, parameterization

© Bluespec, Inc., 2013 3

Q1: What works? What doesn’t?

SoC CPU CPU DMA

Memory

IP
(wireless)

IP
(video)

IP
(crypto)

Peripheral

Peripheral

Peripheral
Fabric (e.g. AMBA AXI)

Fabric
(e.g. AHB/

APB)

High-speed IO
(PCIe)

High-speed IO
(10GigE)

BSV HLS has worked well for
designing IP blocks of every kind
(expected).

BSV users don’t (voluntarily!) go
back to RTL.

Plus: several new use models for BSV HLS:
•  Synthesizable models, for

•  Architecture exploration
•  Early firmware development and testing
•  Early SW development and testing

•  Synthesizable Verification Environments

Only conservatism prevents wider adoption
•  Risk perception (esp. for small vendor)
•  “Unfamiliar” language
•  Unfamiliarity with modern ideas in

programming languages (types,
abstraction, advanced parameterization)

E.g., Existing CPU/SoC models in BSV:
•  ARM (many versions), x86, PPC, Power, MIPS,

Sparc, Alpha, RISC-V, JVM, Itanium, …
•  All synthesized to FPGA, many of them booting

a full OS (Linux/Sparc/xBSD/…)

Why?
•  Old way (simulation) is 1Kx – 1Mx too slow!

New way: run on FPGA è need synthesizability
from High-Level Language

•  Models need architectural credibility; not easy to
achieve in non-synthesizable language

Both points achievable with BSV

© Bluespec, Inc., 2013 4

Q2: Future evolution? Growth? Into new areas?

Growth opportunity
(limited only by
conservativism) Designs

w. RTL
Designs
w. HLS

Central rôle in whole-SoC design,
using FPGAs:
•  Modeling and architecture exploration
•  Verification
•  Early SW development and testing

This cannot happen without HLS
High-Performance Computing
(HPC) using FPGAs
•  FPGAs can be just as valuable as

GPGPUs have become for HPC
in science and engineering

This cannot happen without HLS

© Bluespec, Inc., 2013 5

Q3: Future research opportunities?

Formal methods exploiting Rule semantics:
•  Automation of “design by refinement” from

models to implementations
•  Formal verification
•  Formal testing, like Haskell Quickcheck

Make FPGA environments easier to
use than GPGPUs:
•  “instant” synthesis
•  incrementality
•  service APIs
•  full visibility)
[No fundamental technical obstacle]

Atomic Transaction Rules: Language, Synthesis
•  Higher-level languages than BSV using Rules
•  Better, more expressive scheduling of concurrent rules
•  Pay the communications piper by moving towards more

asynchronicity (GALS/GALA/latency-insensitivity/
dataflow). Rules are a natural fit for this.

[Application] CPU and System Architecture
research enabled by BSV:
•  Fast execution on FPGAs with credible accuracy
•  Already happening at Intel, IBM, DARPA CRASH/

SAFE project, Supercomputing Center
Barcelona, IIT Chennai, …

Automatic Power Management:
•  Rule semantics provides high-level

information about when circuits are
active/idle

Libraries and IP generators:
•  BSV’s powerful parameterization and

type system permit creation of STL-like
libraries

•  BSV makes an excellent target for IP
generators. See Papamichael et. al.
(CMU) for generators for NoCs
(“CONNECT”) and Memory Hierarchies
(“CoRAM”) using BSV as a back end

Use Rule Semantics to change
HW/SW interface:
•  Device drivers are notoriously difficult,

buggy. Perhaps because DDs are
highly reactive, concurrent programs,
for which C may be the wrong model.

Thank you!

