
Sui Move: Modern Blockchain Programming with
Objects

Adam Welc
adam@mystenlabs.com

Mysten Labs
Palo Alto, California, USA

Sam Blackshear
sam@mystenlabs.com

Mysten Labs
Palo Alto, California, USA

Abstract
This paper presents Sui Move, a new smart contract language
for programming blockchains using objects as an abstraction.

CCS Concepts: • Software and its engineering → Spe-
cialized application languages.

Keywords: programming languages, blockchain, Move, Sui
ACM Reference Format:
AdamWelc and SamBlackshear. 2023. SuiMove:Modern Blockchain
Programming with Objects. In Companion Proceedings of the 2023
ACM SIGPLAN International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity (SPLASH Com-
panion ’23), October 22–27, 2023, Cascais, Portugal. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3618305.3623605

1 Introduction
Smart contract languages are a new category of program-
ming languages aimed at programming blockchains [10]. A
traditional blockchain (e.g., Ethereum [5]) is a persistent dis-
tributed list of blocks chained together using cryptographic
hashes. Blockchain users submit transactions to store their
data on chain, which are then sent to a set of distributed
validators, which have to agree on both validity of each trans-
action and on the ordering of transactions. Smart contracts
are programs written in a smart contract language, which
can be called by the user as part of a transaction to read the
current blockchain state and store new data on chain.

A data model supported by traditional blockchains is typi-
cally account-based – user data is read from and written into
accounts in a course of a transaction, which makes it difficult
to determine potential data access conflicts between transac-
tions. This is why traditional blockchains maintain a total
transaction order by executing all transactions sequentially.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0384-3/23/10. . . $15.00
https://doi.org/10.1145/3618305.3623605

At the same time, the emerging blockchain applications,
such as massively multi-player games, require blockchains
to scale orders of magnitude beyond what the traditional
blockchains are capable of. The Sui blockchain [11] is an
emerging platform with a novel object-based data model
designed to facilitate fine-grained parallel execution. Sui
Move [6] is a smart contract language created to safely and
effectively program Sui. Both systems are open source and
available at https://github.com/MystenLabs/sui

2 Sui and Sui Move Overview
The main data abstraction to represent user assets (e.g., on-
chain currency or NFTs [4]) in the Sui blockchain is an object.
In Sui, an object can be directly owned by an address rep-
resenting a blockchain user – more traditional blockchains
only allow a notion of indirect ownership: a smart contract
would maintain a mapping from user addresses to on-chain
data and all data manipulation would have to be mediated
by the smart contract. Without direct asset management,
traditional smart contract languages such as Solidity [2], the
most popular language to program Ethereum, could only
provide a limited set of safety features for managing assets.

SuiMove is part of a newwave of smart contract languages
that started to emerge to improve the blockchain program-
ming experience. It is a descendant of the Move language [3]
originally developed to support smart contract programming
for the Diem framework [1]. While Move was certainly a
step in the right direction, providing strong language-level
safety guarantees for asset management, it was not suited to
support Sui’s object-based data model. This led to emergence
of Sui Move, which adapts the Move language to work with
Sui objects, and attempts to make parallel programming as
ergonomic as possible while preserving the strong safety
guarantees of Move. In the following section we will use an
example of a smart contract to describe some of the unique
features of the Sui Move language, including dynamic object
fields [8] and programmable transaction blocks [7].

3 Sui Move Programming
We illustrate important features of the Sui Move language

using the example in Figure 1, which showcases implemen-
tation of a simple marketplace module in the nft package.
The code has been simplified due to space constraints (e.g.,
marketplace creation has been omitted). Sui Move strongly

53

https://doi.org/10.1145/3618305.3623605
https://doi.org/10.1145/3618305.3623605
https://github.com/MystenLabs/sui
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618305.3623605&domain=pdf&date_stamp=2023-10-22

SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal Adam Welc and Sam Blackshear

1 module nft:: marketplace {

2 use sui:: dynamic_object_field;

3 use sui::{ tx_context , object };

4 use sui::{coin , transfer };

5
6 struct Marketplace <T: key+store > has key {

7 id: object ::UID ,

8 }

9
10 struct Listing <T: key+store > has key , store {

11 id: object ::UID , ask: u64 ,

12 owner: address , item: T,

13 }

14
15 public fun list <T: key+store >(

16 marketplace: &mut Marketplace <T>,

17 item: T, ask: u64 , ctx: &mut TxContext

18) {

19 let item_id = object ::id(&item);

20 let listing = Listing {

21 ask , id: object ::new(ctx),

22 owner: tx_context :: sender(ctx), item

23 };

24 dynamic_object_field ::add(

25 &mut marketplace.id, item_id , listing

26 }}

27
28 public fun buy <T: key + store >(

29 marketplace: &mut Marketplace <T>,

30 item_id: object ::ID, paid: coin::Coin <SUI >,

31): T {

32 let Listing {

33 id, ask , owner , item

34 } = dynamic_object_field :: remove(

35 &mut marketplace.id, item_id

36);

37 assert !(ask == coin::value(&paid));

38 transfer :: public_transfer(paid , owner);

39 object :: delete(id);

40 item

41 }}

Figure 1. Marketplace contract example

advocates codemodularity and certain common functionality
related to object management is provided in the Sui frame-
work code (imported in lines 2–4 but omitted for brevity).

A Sui object is represented in Sui Move as a structwhose
first field is a unique object identifier (UID) and which has the
key modifier (a.k.a. ability), for example the Marketplace
and Listing objects (lines 6-8 and 10-13), but also the Coin
object defined in the Sui framework code. Sui Move supports
generic types to allow parameterization of object definitions.
For example the Marketplace object is parameterized with
a specific type of item T it can sell, and the Coin object is
similarly parameterized to allow creating different coin types
(in our example we use Coin<SUI>which is the main coin in
Sui). Objects, such as coins, can be owned by a given address
representing a blockchain user. Transactions operating on
different owned objects can execute in parallel, for example
a peer-to-peer trade between different users using different
coins. However, objects in Sui can also be shared, and mar-
ketplaces are intended to be shared objects. Transactions

accessing the same shared object must be totally ordered,
but transactions accessing different shared objects can still
execute in parallel. In particular, even though trading within
the same marketplace will be serialized, trading across mar-
ketplaces selling different items can proceed in parallel.

The marketplace supports two types of activity: listing an
item and buying an item. When a seller lists an item for sale,
the smart contract creates a listing object (lines 20-23) and
stores it in the marketplace (lines 24-26). The store operation
leverages the dynamic object fields [8] mechanism unique
to Sui Move, which allows creation of item collections of
unbounded size and arbitrary structure. This mechanism
allows treating any Sui object as a map from a set of unique
IDs (line 19) to a set of arbitrary objects (different listings).
When a buyer wants to purchase an item from a market-

place, it provides the item’s unique ID and a payment in
the form of a coin. The smart contract then retrieves the
item from the marketplace (line 34-36), “unpacks” its content
(lines 32-34), transfers payment to the seller (line 38), and
returns the purchased item (additional operation in line 39
is needed to inform the system that the listing object has
been “unpacked” which effectively deleted it from the chain).
If the marketplace does not contain an item with a given
ID, or if the payment does not match the asked price (line
37), the call to buy will fail, aborting the user transaction.
Returning the item from the buy function instead of, say,
transferring it to the transaction sender, is very intentional –
it increases code composability due to another mechanism
unique to Sui and Sui Move, that is programmable transaction
blocks [7] (or PTBs). Traditional blockchains can typically
process only a single action within a given transaction. On
the other hand, PTBs give Sui Move programmers the ability
to chain multiple actions (i.e., transaction blocks) together –
in particular, a call returning a purchased item may be fol-
lowed by a transfer operation (to indeed transfer the item)
or by another call (to further process the item).
In Sui Move it is also easy to understand data access pat-

terns by just looking at function signatures. It is a useful
feature both for developers (to help them avoid asset mis-
management) and for the blockchain users (to give them
clarity on what happens to their assets inside a smart con-
tract). In particular, objects passed by a mutable reference
(e.g., &mut marketplace in line 16) can be modified by a
smart contract, whereas objects passed by an immutable one
(with the mut keyword omitted) will be read-only. Addition-
ally, only owned objects can be passed by value (e.g., item to
be listed in line 17), and since the transfer function requires
its first argument to be passed by value (line 38), only these
types of objects can be transferred to other addresses. Sui
Move also preserves strong safety guarantees of the Move
language [3], such as double-spending [9] prevention.

Last but not least, we extend acknowledgments and huge
thanks to all SuiMove developers, particularly ToddNowacki,
Ashok Menon, Dario Russi, and Tim Zakian.

54

Sui Move: Modern Blockchain Programming with Objects SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal

References
[1] Diem Association. 2020. The Diem Blockchain. https://developers.

diem.com/docs/technical-papers/the-diem-blockchain-paper.
[2] The Solidity Authors. 2023. Solidity. https://docs.soliditylang.org.
[3] Sam Blackshear, Evan Cheng, David L. Dill, Victor Gao, Ben Maurer,

Todd Nowacki, Alistair Pott, Shaz Qadeer, Rain, Dario Russi, Stephane
Sezer, Tim Zakian, and Runtian Zhou. 2020. Move: A Language With
Programmable Resources. https://developers.diem.com/papers/diem-
move-a-language-with-programmable-resources/2020-05-26.pdf.

[4] Robyn Conti. 2023. What Is An NFT? Non-Fungible Tokens Ex-
plained. https://www.forbes.com/advisor/investing/cryptocurrency/
nft-non-fungible-token.

[5] Ethereum. 2023. Ethereum. https://ethereum.org.
[6] Sui Foundation. 2022. Why We Created Sui Move. https://blog.sui.io/

why-we-created-sui-move.

[7] Sui Foundation. 2023. All About Programmable Transaction Blocks.
https://blog.sui.io/programmable-transaction-blocks-explained.

[8] Sui Foundation. 2023. Dynamic Fields. https://github.com/sui-
foundation/sui-move-intro-course/blob/main/unit-four/lessons/2_
dynamic_fields.md.

[9] Jake Frankenfield. 2022. Understanding Double-Spending and How
to Prevent Attacks. https://www.investopedia.com/terms/d/
doublespending.asp.

[10] Adam Hayes. 2023. Blockchain Facts: What Is It, How It Works,
and How It Can Be Used. https://www.investopedia.com/terms/
b/blockchain.asp.

[11] The MystenLabs Team. 2023. The Sui Smart Contracts Platform. https:
//docs.sui.io/paper/sui.pdf.

Received 2023-08-15; accepted 2023-08-30

55

https://developers.diem.com/docs/technical-papers/the-diem-blockchain-paper
https://developers.diem.com/docs/technical-papers/the-diem-blockchain-paper
https://docs.soliditylang.org
https://developers.diem.com/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf
https://developers.diem.com/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf
https://www.forbes.com/advisor/investing/cryptocurrency/nft-non-fungible-token
https://www.forbes.com/advisor/investing/cryptocurrency/nft-non-fungible-token
https://ethereum.org
https://blog.sui.io/why-we-created-sui-move
https://blog.sui.io/why-we-created-sui-move
https://blog.sui.io/programmable-transaction-blocks-explained
https://github.com/sui-foundation/sui-move-intro-course/blob/main/unit-four/lessons/2_dynamic_fields.md
https://github.com/sui-foundation/sui-move-intro-course/blob/main/unit-four/lessons/2_dynamic_fields.md
https://github.com/sui-foundation/sui-move-intro-course/blob/main/unit-four/lessons/2_dynamic_fields.md
https://www.investopedia.com/terms/d/doublespending.asp
https://www.investopedia.com/terms/d/doublespending.asp
https://www.investopedia.com/terms/b/blockchain.asp
https://www.investopedia.com/terms/b/blockchain.asp
https://docs.sui.io/paper/sui.pdf
https://docs.sui.io/paper/sui.pdf

	Abstract
	1 Introduction
	2 Sui and Sui Move Overview
	3 Sui Move Programming
	References

