MultistartOptimization
MultistartOptimization.MinimizationProblem — Typestruct MinimizationProblem{F, T}Wrapper for a minimization problem.
Fields
objectiveThe function to be minimized.
lower_boundsLower bounds (a vector of real numbers).
upper_boundsUpper bounds (a vector of real numbers).
MultistartOptimization.LocationValue — Typestruct LocationValue{T<:(AbstractArray{#s280,1} where #s280<:Real), S<:Real}A location-value pair.
Fields
locationLocation (a vector of real numbers).
valueThe value of the objective at
location.
MultistartOptimization.NLoptLocalMethod — TypeNLoptLocalMethod(algorithm; options...)
A wrapper for algorithms supported by NLopt. Used to construct the corresponding optimization problem.
See the NLopt documentation for the options. Defaults are changed slightly.
MultistartOptimization.local_minimization — Functionlocal_minimization(local_method, minimization_problem, x)
Solve minimization_problem using local_method, starting from x. Return a LocationValue.
MultistartOptimization.TikTak — TypeTikTak(quasirandom_N; keep_ratio, θ_min, θ_max, θ_pow)
The “TikTak” multistart method, as described in Arnoud, Guvenen, and Kleineberg (2019).
This implements the multistart part, can be called with arbitrary local methods, see multistart_minimization.
Arguments
quasirandom_N: the number of quasirandom points for the first pass (using a Sobol sequence).
Keyword arguments
keep_ratio: the fraction of best quasirandom points which are keptθ_minandθ_maxclamp the weight parameter,θ_powdetermines the power it is raised to.
The defaults are from the paper cited above.
MultistartOptimization.multistart_minimization — Functionmultistart_minimization(multistart_method, local_method, minimization_problem)
Solve minimization_problem by using local_method within multistart_method.