Skip to main content
Log in

A proof of the mock theta conjectures

  • Published:
View saved research
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • [A1] Andrews, G.E.: Applications of basic hypergeometric functions. SIAM Rev.16, 441–484 (1974)

    Google Scholar 

  • [A2] Andrews, G.E.: An introduction to Ramanujan's “Lost” Notebook. Am. Math. Mon.86, 89–108 (1979)

    Google Scholar 

  • [A3] Andrews, G.E.: Hecke modular forms and the Kac-Peterson identities. Trans. Am. Math. Soc.283, 451–458 (1984)

    Google Scholar 

  • [A4] Andrews, G.E.: The fifth and seventh order mock theta functions. Trans. Am. Math. Soc.293, 113–134 (1986)

    Google Scholar 

  • [A5] Andrews, G.E.: Ramanujan's fifth order mock theta functions as constant terms. In: “Ramanujan Revisited: Proc. of the Centenary Conference, Univ. of Illinois at Urbana-Champaign, June 1–5, 1987”. San Diego: Acad. Press 1988

    Google Scholar 

  • [A-A] Andrews, G.E., Askey, R.: A simple proof of Ramanujan's summation of the1ψ1. Aequationes Math.18, 333–337 (1978)

    Google Scholar 

  • [A-G] Andrews, G.E., Garvan, F.G.: Ramanujan's “Lost” Notebook VI: The mock theta conjectures, Dept. of Math. Research Report no. 87007, The Pennsylvania State Univ., University Park, PA 16802; to appear in Adv. Math.

  • [A-S] Atkin, A.O.L., Swinnerton-Dyer, P.: Some properties of partitions. Proc. London Math. Soc. (3)4, 84–106 (1954)

    Google Scholar 

  • [G] Garvan, F.G.: New combinatorial interpretations of Ramanujan's partition congruences mod 5, 7, and 11. Trans. Am. Math. Soc.305, 47–77 (1988)

    Google Scholar 

  • [H-W] Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 4th edition. London: Oxford Univ. Press 1968

    Google Scholar 

  • [R1] Ramanujan, S.: Collected Papers. Hardy, G.H., Seshu Aiyar, P.V., Wilson, B.M. (eds.): London: Cambridge Univ. Press 1927; repritned New York: Chelsea Publ. Cy., 1962

    Google Scholar 

  • [R2] Ramanujan, S.: The lost notebook and other unpublished papers. New Delhi: Narosa Publishing House 1988

    Google Scholar 

  • [S] Selberg, A.: Über die Mock-Thetafunktionen siebenter Ordnung. Arch. Math. Naturvidenskab41, 3–15 (1938)

    Google Scholar 

  • [W1] Watson, G.N.: The final problem: an account of the mock theta functions. J. London Math. Soc.11, 55–80 (1936)

    Google Scholar 

  • [W2] Watson, G.N.: The mock theta functions (2). Proc. London Math. Soc. (2)42, 274–304 (1937)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hickerson, D. A proof of the mock theta conjectures. Invent Math 94, 639–660 (1988). https://doi.org/10.1007/BF01394279

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1007/BF01394279