
腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第1 共531页

腾讯云可观测平台

云压测

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第2 共531页

【版权声明】

©2013-2026 腾讯云版权所有

本文档（含所有文字、数据、图片等内容）完整的著作权归腾讯云计算（北京）有限责任公司单独所有，未经腾讯云

事先明确书面许可，任何主体不得以任何形式复制、修改、使用、抄袭、传播本文档全部或部分内容。前述行为构成

对腾讯云著作权的侵犯，腾讯云将依法采取措施追究法律责任。

【商标声明】

及其它腾讯云服务相关的商标均为腾讯云计算（北京）有限责任公司及其关联公司所有。本文档涉及的第三方主体的

商标，依法由权利人所有。未经腾讯云及有关权利人书面许可，任何主体不得以任何方式对前述商标进行使用、复

制、修改、传播、抄录等行为，否则将构成对腾讯云及有关权利人商标权的侵犯，腾讯云将依法采取措施追究法律责

任。

【服务声明】

本文档意在向您介绍腾讯云全部或部分产品、服务的当时的相关概况，部分产品、服务的内容可能不时有所调整。

您所购买的腾讯云产品、服务的种类、服务标准等应由您与腾讯云之间的商业合同约定，除非双方另有约定，否则，

腾讯云对本文档内容不做任何明示或默示的承诺或保证。

【联系我们】

我们致力于为您提供个性化的售前购买咨询服务，及相应的技术售后服务，任何问题请联系 4009100100或

95716。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第3 共531页

文档目录

云压测

云压测概述

控制台操作指南

简单模式压测

脚本模式压测

脚本概述

脚本示例

基础语法

HTTP

WebSocket

常用函数

HTTP 协议压测

基本用法

配置选项

gRPC 协议压测

Protobuf 协议压测

WebSocket 协议压测

多脚本压测

SQL 数据库压测

Socket.IO 框架压测

TCP/UDP 协议压测

Redis 压测

设置检查点

三方包引用

设置全局 Options

运行时元数据

JMeter 模式压测

JMeter 模式概述

JMeter 配置 RPS 限制

JMeter 使用 CSV 参数文件

JMeter 多线程组

JMeter 进行 WebSocket 压测

JMeter 请求和检查点日志打印

管理项目

项目概述

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第4 共531页

新建项目

编辑项目

删除项目

管理场景

场景概述

施压配置

文件管理

使用参数文件

使用请求文件

使用协议文件

SLA 配置

高级配置

域名解析

压测指标导出

压测指标导出使用指南

压测指标文档

响应数据提取

复制场景

调试场景

流量录制

浏览器流量录制

环境管理

定时压测

压测报告

解读报告

下载报告

访问控制

概述

策略授予

策略语法

告警管理

告警联系人

告警历史

标签管理

标签概述

使用限制

绑定标签

使用标签

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第5 共531页

错误代码手册

实践教程

使用 Prometheus 观测性能压测指标

使用云压测回放 GoReplay 录制的请求

JavaScript API 列表

JavaScript API 列表概述

pts/global

模块概览

open

int64

uint64

BasicAuth

Certificate

HTTP

Option

TLSConfig

TRPC

WS

Load

pts/http

模块概览

http.batch

http.delete

http.do

http.file

http.get

http.head

http.patch

http.post

http.put

BatchOption

BatchResponse

File

FormData

FormData 概览

FormData.append

FormData.body

FormData.contentType

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第6 共531页

Request

Response

Response 概览

Response.json

pts

模块概览

pts.check

pts.metadata

pts.step

pts.sleep

Metadata

pts/dataset

模块概览

dataset.add

dataset.forEach

dataset.get

dataset.random

Item

Item 概览

Item.delete

pts/grpc

模块概览

Client

Client 概览

Client.load

Client.connect

Client.invoke

Client.close

DialOption

InvokeOption

Response

pts/jsonpath

模块概览

jsonpath.get

pts/protobuf

模块概览

protobuf.load

protobuf.marshal

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第7 共531页

protobuf.unmarshal

pts/sql

模块概览

Database

Database 概览

Database.exec

Database.query

Result

pts/url

模块概览

URL

URL 概览

URL.hash

URL.setHash

URL.host

URL.setHost

URL.hostname

URL.setHostname

URL.href

URL.setHref

URL.origin

URL.pathname

URL.setPathname

URL.password

URL.setPassword

URL.port

URL.setPort

URL.protocol

URL.setProtocol

URL.search

URL.setSearch

URL.searchParams

URL.username

URL.setUsername

URL.toJSON

URL.toString

URLSearchParams

URLSearchParams 概览

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第8 共531页

URLSearchParams.append

URLSearchParams.delete

URLSearchParams.entries

URLSearchParams.forEach

URLSearchParams.get

URLSearchParams.getAll

URLSearchParams.has

URLSearchParams.keys

URLSearchParams.set

URLSearchParams.toString

URLSearchParams.values

pts/util

模块概览

util.base64Encoding

util.base64Decoding

util.cloudAPISignatureV3

util.md5Sum

util.sloginEncrypt

util.toArrayBuffer

util.uuid

CloudAPISignatureV3Param

pts/ws

模块概览

ws.connect

Response

Socket

Socket 概览

Socket.close

Socket.on

Socket.ping

Sokcet.send

Socket.sendBinary

Socket.setInterval

Socket.setLoop

Socket.setTimeout

pts/redis

模块概览

Client

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第9 共531页

Client 概览

Client.get

Client.set

Client.del

Client.lPush

Client.rPush

Client.lPop

Client.rPop

Client.lRange

Client.lIndex

Client.lLen

Client.lSet

Client.lRem

Client.hSet

Client.hGet

Client.hDel

Client.hLen

Client.sAdd

Client.sRem

Client.sIsMember

Client.sMembers

Client.sRandMember

Client.sPop

pts/socketio

模块概览

socketio.connect

Option

socketio

socketio.close

socketio.emit

socketio.on

socketio.setInterval

socketio.setLoop

socketio.setTimeout

Response

pts/socket

模块概览

conn

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第10 共531页

Conn 概览

Conn.send

Conn.recv

Conn.close

常见问题

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第11 共531页

云压测

云压测概述
最近更新时间：2024-11-08 15:33:22

云压测（Performance Testing Service, PTS）是一款分布式性能测试服务，可模拟海量用户的真实业务场

景，全方位验证系统可用性和稳定性。支持按需发起压测任务，提供百万并发多地域流量发起能力。提供流量录制、

场景编排、流量定制、高级脚本定制等功能，可快速根据业务模型定义压测场景，真实还原应用大规模业务访问场

景，帮助用户提前识别应用性能问题。

产品背景

从逻辑复杂的大型单体服务到简单模块化的微服务，每个后台应用搭载的业务逻辑逐步简化，但整个分布式后台

的系统结构却变得更加复杂。企业越来越重视如何保证整个系统的服务可用性。

在企业迅速增长过程或者突发流量（运营/大促活动，例如618、双11等），如何提前评估系统是否可用，稳定性

如何，容量是否合理？

如何在快速开发迭代过程中，保持系统都是可靠运行？

新系统上线如何验证系统性能，及可承受的最大流量？

自研压测工具，成本太高？遇到技术瓶颈无法实现？

PTS 模拟实际应用的软硬件环境及用户使用过程的系统负荷，长时间或超大负荷地运行应用系统，验证应用系统的

性能、可靠性、稳定性等。

产品功能

高并发性能测试

提供百万并发多地域流量发起能力，设置不同地域用户每秒内发起的请求数。

支持根据业务模型自定义压测场景

需要发起一次性能压测，首先需要创建一个压测场景，进行业务场景编排。PTS 支持创建多种模式测试场景和多协

议场景编排，您可以快速根据业务模型自定义压测场景。

专业性能测试报告

包括并发用户数、RPS、吞吐量、响应时延、请求总数等多维度统计，客观反映用户体验。

支持自定义可视化展示压测性能指标。

支持多指标历史数据对比，排查应用性能问题。

产品优势

配置灵活

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第12 共531页

提供灵活的压测场景配置，您可以通过 UI 配置压测用例，也可以通过脚本编写复杂的组合场景。

海量流量施压

依托于云服务算力，您可以动态调整流量，PTS 最大支持百万并发流量发起。

多协议支持

支持 HTTP、WebSocket、gRPC 等协议压测场景编排，可根据业务模型定义压测场景。

流量地域定制

可按比例分配流量，支持指定腾讯云全球地域同时发起施压流量，更加真实反映用户在各地域的体验。

资源按需分配

您无需提前准备压测资源，系统会根据用户的施压配置模式，自动计算资源用量，进行动态伸缩，按需创建压测资

源。随用随建，为您节约测试成本。

专业报告分析

提供专业性能测试报告，系统将会进行 RPS 吞吐量、响应时延、资源使用等多维度统计，您也可以基于历史报告设

定基线，进行多维度对比分析。

监控及 SLA 防护

支持根据压测 SLA 自动启停压测，消息触达通知，结合云上监控工具（例如：应用性能监控等），方便您实时分析

压测数据，排除性能问题。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第13 共531页

控制台操作指南

简单模式压测
最近更新时间：2024-08-20 16:12:31

前言

简单模式压测主要使用交互式 UI 组合 GET、POST、PUT、PATCH、 DELETE 等请求来压测场景，本文将详

细介绍它的基本用法。

创建简单模式压测场景

1. 登录 。腾讯云可观测平台

2. 在左侧菜单栏中单击云压测 > 测试场景。

3. 在测试场景页面单击新建场景。

4. 在创建测试场景页面选择“简单模式”压测类型，并单击开始，创建压测场景。创建完成后，可进行下列操作。

添加 HTTP 请求

在场景编排模块，输入请求描述和请求地址，即可添加 HTTP 请求。

构建 HTTP 请求

基本信息

以一个 HTTP Get 请求为例，您可以配置其 URL、请求参数（URL query string）、认证方式、请求头、检查

点等。

https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第14 共531页

使用变量

在构建请求时，除了直接输入数据，您也可以先创建出“可用变量”，然后再在请求中引用该变量。

您可使用以下几种类型的变量：

自定义变量：在请求的“自定义变量”中输入变量名和变量值，则新建请求后，请求的“可用变量”栏会展示该

变量，供您在需要输入参数的地方，以 ${xx} 的形式引用。

在设置自定义变量值时，除了直接输入数据，还可以用 {{xx}} 的形式，由函数计算得来。支持原生 JS 对象

及函数调用，具体可参考 。例如引用 Math 生成随机数，如下图所示：JS 原生内置对象

从参数文件中获取：上传 csv 文件，并从中获取“可用变量”，供您在需要输入参数的地方，以 ${xx} 的形

式引用。关于参数文件的上传和使用，请参见 。使用参数文件

从前序请求中获取：可以从前序请求的响应中提取相关字段，生成可用变量，在后序请求的参数中引用该变量。

例如：第一个请求的响应体为 JSON 格式，响应内容如下：

 {

 "args": {},

 "headers": {

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
https://cloud.tencent.com/document/product/248/87340

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第15 共531页

 "Accept": "*/*",

 "Accept-Encoding": "gzip",

 "Connection": "keep-alive",

 "Host": "mockhttpbin.pts.svc.cluster.local",

 "User-Agent": "PTSEngine",

 "X-Pts-Request-Id": "a19df018-555c-45a3-9eae-cc3cfc1d539a"

 },

 "origin": "127.0.0.1",

 "url": "http://mockhttpbin.pts.svc.cluster.local/get"

 }

提取响应体中的 headers.Host，作为一个变量，变量名为 myHost，在下一个请求中使用。

则在后序请求中，即可以在请求的任意地方，以 ${xx} 的形式引用该变量。例如，在请求参数与请求 URL 中

引用变量：

在请求参数中引用变量：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第16 共531页

在请求 URL 中引用变量：

检查点配置

通过检查点可以校验请求响应内容是否符合预期。例如有一个请求，response status code 为 200， 响应内容

如下：

{

 "args": {},

 "headers": {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第17 共531页

 "Accept": "*/*",

 "Accept-Encoding": "gzip",

 "Connection": "keep-alive",

 "Host": "mockhttpbin.pts.svc.cluster.local",

 "User-Agent": "PTSEngine",

 "X-Pts-Request-Id": "a19df018-555c-45a3-9eae-cc3cfc1d539a"

 },

 "origin": "127.0.0.1",

 "url": "http://mockhttpbin.pts.svc.cluster.local/get"

 }

检查 response status code 是否为 200：

检查响应体某个字段是否符合预期：

如果检查响应体为 JSON 格式，校验响应体的 headers.Host 字段是否等于

"mockhttpbin.pts.svc.cluster.local"

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第18 共531页

单击右上角保存并运行启动压测后，在生成的压测历史报告中，您就可以观测到检查点的情况：

文件依赖

在压测场景里，您可上传以下几种类型的文件，提供压测执行时的状态数据：

参数文件：以 csv 文件的形式，动态提供测试数据。也即，场景被每个并发用户（VU）执行时，会获取参数文

件里的每行数据，作为测试数据的值，供脚本里的变量引用。具体使用方法参见： 。使用参数文件

请求文件：构建您的请求所需的文件，如需要上传的文件。具体使用方法参见： 。使用请求文件

协议文件：请求序列化所需要用到的文件。具体使用方法参见： 。使用协议文件

https://cloud.tencent.com/document/product/248/87340
https://cloud.tencent.com/document/product/248/87341
https://cloud.tencent.com/document/product/248/87342

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第19 共531页

模式切换

若需看到场景详情，您可一键切换到脚本视图，该视图为只读模式：

若需直接修改脚本，可单击切换到脚本模式，编辑脚本内容。

注意：

切换到脚本模式后，无法再回退到简单模式。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第20 共531页

脚本模式压测

脚本概述
最近更新时间：2024-07-05 11:48:11

PTS 兼容 JavaScript ES2015(ES6)+ 语法，并提供额外函数，帮助您在脚本模式下，快速编排压测场景。

您可在控制台的在线编辑器里，用 JavaScript 代码描述您的压测场景所需的请求编排、变量定义、结果断言、通

用函数等逻辑。（详细的 API 文档请参见： ）PTS API

PTS 还提供了各种类型的脚本模板（如各种协议的常见用法、以及一些常用函数等），在控制台脚本编辑器右侧的

脚本常用模板示例里，供您参考以编写自己的脚本。

脚本结构

一个 PTS 场景脚本可由导入依赖模块、定义全局变量、定义全局选项 Options、定义函数、定义检查点组成，详

细脚本内容请参考下文。

导入依赖模块

将所需模块导入后，才能使用模块中的 API。

定义全局变量

如果需要全局变量，可定义在函数外部。例如：

const globalVar = "var"

const globalObj = {

 "k": "v",

}

export default function () {

 console log globalVar // var. ();

 console log globalObj k // v. (.);

};

定义全局选项 Options

通过全局选项您可以控制引擎的默认行为。

https://cloud.tencent.com/document/product/248/88555

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第21 共531页

export const option = {

 http: {

 http2: true,

 maxIdleConns: 50,

 basicAuth: {

 username: 'user',

 password: 'passwd',

 }

 },

 tlsConfig: {

 'localhost': {

 insecureSkipVerify: false,

 //需要用户在场景中上传请求文件ca.crt

 rootCAs: open 'ca.crt'[()],

 //需要用户在场景中上传请求文件client.crt, client.key

 certificates: cert: open 'client.crt' key:

open 'client.key'

[{ (),

()}]

 }

 }

}

定义函数

每个并发用户（VU）每次迭代执行的逻辑，定义在主函数（default 函数）里。

除了主函数，您还可以定义预处理（setup）和后处理（teardown）函数，示例如下：

预处理函数在每次压测开始后运行一次。

后处理函数在每次压测结束前运行一次。

// 全局变量，定义在函数外

const global = stage: "global" { };

// 用 setup 函数做预处理，可返回自定义的键值对

export function setup () {

 return stage: "setup" { };

}

// 主函数（入参可接收 setup 函数返回的键值对）

export default function data () {

 console log JSON stringify global // {"stage":"global"}. (. ());

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第22 共531页

 console log JSON stringify data // {"stage":"setup"}. (. ());

}

// 用 teardown 函数做后处理

export function teardown data () {

 console log JSON stringify global // {"stage":"global"}. (. ());

 console log JSON stringify data // {"stage":"setup"}. (. ());

}

定义检查点

配置检查点可以从业务角度判断请求是否成功。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 // get request with headers and parameters

 const resp1 = http get 'http://httpbin.org/get' . (, {

 headers: {

 Connection: 'keep-alive',

 'User-Agent': 'pts-engine',

 },

 query: {

 name1: 'value1',

 name2: 'value2',

 },

 });

 console log resp1 json args name1 // 'value1'. (. (). .);

 check 'status is 200' => resp1 statusCode === 200(, () .);

 check 'body.args.name1 equals value1' => resp1 json args name1

=== 'value1'

(, () . (). .

);

}

生命周期

预处理（setup）和后处理（teardown）函数：每台压测机运行一次。

定义全局变量（global）的代码：每个 VU 运行一次。一些静态的文件读取等操作建议放到 global 中定义，这

样一个并发仅需读取一次文件。避免场景迭代重复打开文件。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第23 共531页

主函数（default）代码：每个 VU 的每次迭代运行一次，且每个 VU 在达到本次压测配置的时长上限或迭代上

限之前，会持续不断地迭代执行。

例如：在一台压测机上，当有两个 VU 时的流程图如下：

说明：

关于 VU 的概念介绍，请参见 。常见问题

https://cloud.tencent.com/document/product/248/87369

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第24 共531页

脚本示例

基础语法
最近更新时间：2025-12-01 16:56:01

本文档介绍在云压测脚本模式中常用的 JavaScript 基础语法，包括变量声明、条件语句、错误处理

（try/catch）、循环语句和数组操作等。这些基础语法是编写压测脚本的基础，掌握这些内容有助于构建更强大的

压测脚本。

变量声明

在压测脚本中，可以使用 var 、 let 或 const 声明变量：

var ：函数作用域变量（不推荐使用）。

let ：块作用域变量，可以重新赋值。

const ：块作用域常量，声明后不能重新赋值。

使用前提

所有代码需放在 export default function() 函数中执行。

变量名需符合 JavaScript 标识符规范。

建议使用 const 声明不会改变的变量，使用 let 声明需要重新赋值的变量。

示例

示例1：变量声明和使用

本示例演示如何声明和使用变量，适用于需要在脚本中存储和操作数据的场景。

import http from 'pts/http';

export default function () {

 // 使用 const 声明常量

 const baseUrl = 'http://example.com/api';

 const apiKey = 'your-api-key';

 // 使用 let 声明可变变量

 let requestCount = 0;

 let lastResponse = null;

 // 使用变量构建请求

 const resp = http get `${baseUrl}/users` . (, {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第25 共531页

 headers: {

 'Authorization': `Bearer ${apiKey}`

 }

 });

 // 更新变量值

 requestCount++;

 lastResponse = resp;

 console log `请求次数: ${requestCount}`. ();

 console log `响应状态: ${lastResponse.statusCode}`. ();

}

示例2：变量作用域

本示例演示变量的作用域，适用于需要理解变量可见性的场景。

export default function () {

 // 函数作用域变量

 const globalVar = 'I am global in this function';

 if true () {

 // 块作用域变量

 const blockVar = 'I am in block scope';

 let mutableVar = 'I can be changed';

 console log globalVar // 可以访问. ();

 console log blockVar // 可以访问. ();

 mutableVar = 'Changed value';

 }

 // console.log(blockVar); // 错误：blockVar 不可访问

 // console.log(mutableVar); // 错误：mutableVar 不可访问

}

条件语句

函数说明

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第26 共531页

条件语句用于根据不同的条件执行不同的代码，在压测脚本中常用于：

根据响应状态码执行不同逻辑。

根据数据内容进行分支处理。

实现错误处理和重试机制。

控制脚本执行流程。

使用前提

所有代码需放在 export default function() 函数中执行。

条件表达式需返回布尔值或可转换为布尔值的值。

语法说明

if (condition) { ... } ：单条件判断。

if (condition) { ... } else { ... } ：双分支判断。

if (condition1) { ... } else if (condition2) { ... } else { ... } ：多分支判断。

switch (value) { case ...: ... break; default: ... } ：多值判断。

示例

示例1：基本条件判断

本示例演示如何使用 if/else 进行条件判断，适用于根据响应状态执行不同逻辑的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 const resp = http get 'http://example.com/api/user'. ();

 // 根据状态码执行不同逻辑

 if resp statusCode === 200 (.) {

 console log '请求成功'. ();

 const data = resp json. ();

 console log '用户数据:' data. (,);

 else if resp statusCode === 404 } (.) {

 console log '用户不存在'. ();

 else if resp statusCode === 401 } (.) {

 console log '未授权，需要登录'. ();

 else } {

 console log '请求失败，状态码:' resp statusCode. (, .);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第27 共531页

 }

 // 使用三元运算符

 const message = resp statusCode === 200 ? '成功' : '失败'. ;

 console log '请求结果:' message. (,);

}

示例2：使用 switch 语句

本示例演示如何使用 switch 语句处理多个值的情况，适用于需要根据特定值执行不同操作的场景。

import http from 'pts/http';

export default function () {

 const resp = http get 'http://example.com/api/status'. ();

 const status = resp json status. (). ;

 switch status () {

 case 'active':

 console log '状态：活跃'. ();

 // 执行活跃状态相关操作

 break;

 case 'inactive':

 console log '状态：非活跃'. ();

 // 执行非活跃状态相关操作

 break;

 case 'pending':

 console log '状态：待处理'. ();

 // 执行待处理状态相关操作

 break;

 default:

 console log '未知状态:' status. (,);

 }

}

示例3：复杂条件判断

本示例演示如何进行复杂的条件判断，适用于需要组合多个条件的场景。

import http from 'pts/http';

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第28 共531页

import check from 'pts'{ } ;

export default function () {

 const resp = http get 'http://example.com/api/data'. ();

 // 组合多个条件

 if resp statusCode === 200 && resp body (. .) {

 const data = resp json. ();

 if data success === true && data items && data items length >

0

(. . . .

) {

 console log '数据获取成功，共' data items length '条记录'. (, . . ,);

 else } {

 console log '数据为空或格式不正确'. ();

 }

 else } {

 console log '请求失败或响应为空'. ();

 }

 // 使用逻辑运算符

 const isValid = resp statusCode >= 200 && resp statusCode < 300. . ;

 const hasData = resp body && resp body length > 0. . . ;

 if isValid && hasData () {

 check '响应有效' => true(, ());

 }

}

错误处理（try/catch）

函数说明

try/catch 语句用于捕获和处理代码执行过程中可能出现的错误，在压测脚本中常用于：

捕获 JSON 解析错误。

处理网络请求异常。

处理数据格式错误。

实现优雅的错误处理和日志记录。

防止脚本因单个错误而中断执行。

使用前提

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第29 共531页

所有代码需放在 export default function() 函数中执行

try 块中可能抛出错误的代码。

catch 块用于捕获和处理错误。

语法说明

try { ... } catch (error) { ... } ：基本错误捕获

error.message ：获取错误消息。

error.stack ：获取错误堆栈信息（如果可用）。

示例

示例1：捕获 JSON 解析错误

本示例演示如何使用 try/catch 捕获 JSON 解析错误，适用于处理可能格式不正确的响应数据。

import http from 'pts/http';

export default function () {

 const resp = http get 'http://example.com/api/data'. ();

 try {

 // 尝试解析 JSON，如果格式不正确会抛出异常

 const data = JSON parse resp body. (.);

 console log '解析成功:' data. (,);

 // 使用解析后的数据

 if data items (.) {

 console log '数据项数量:' data items length. (, . .);

 }

 catch error } () {

 // 捕获解析错误

 console error 'JSON 解析失败:' error message. (, .);

 console log '原始响应体:' resp body. (, .);

 }

}

示例2：处理 HTTP 请求错误

本示例演示如何使用 try/catch 处理 HTTP 请求可能出现的错误，适用于需要优雅处理网络异常的场景。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第30 共531页

import http from 'pts/http';

export default function () {

 try {

 const resp = http get 'http://example.com/api/user'. ();

 if resp statusCode === 200 (.) {

 const userData = resp json. ();

 console log '用户信息:' userData. (,);

 else } {

 console log '请求失败，状态码:' resp statusCode. (, .);

 }

 catch error } () {

 console error '请求处理出错:' error message. (, .);

 // 可以在这里实现重试逻辑或记录错误日志

 }

}

示例3：多层错误处理

本示例演示如何进行多层错误处理，适用于需要区分不同类型错误的场景。

import http from 'pts/http';

export default function () {

 try {

 const resp = http get 'http://example.com/api/data'. ();

 try {

 const data = resp json. ();

 try {

 // 访问可能不存在的嵌套属性

 const value = data user profile email. . . ;

 console log '邮箱:' value. (,);

 catch error } () {

 console error '访问嵌套属性失败:' error message. (, .);

 // 使用默认值

 console log '使用默认邮箱'. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第31 共531页

 }

 catch error } () {

 console error 'JSON 解析失败:' error message. (, .);

 }

 catch error } () {

 console error '请求失败:' error message. (, .);

 }

}

示例4：错误处理和重试机制结合

本示例演示如何将错误处理与重试机制结合，适用于需要自动重试失败请求的场景。

import http from 'pts/http';

import sleep from 'pts'{ } ;

export default function () {

 const maxRetries = 3;

 let lastError = null;

 for let attempt = 1 attempt <= maxRetries attempt++ (; ;) {

 try {

 console log `尝试第 ${attempt} 次请求`. ();

 const resp = http get 'http://example.com/api/data'. ();

 if resp statusCode === 200 (.) {

 const data = resp json. ();

 console log '请求成功:' data. (,);

 lastError = null // 清除错误;

 break // 成功则退出循环;

 else } {

 // 状态码不是 200，记录错误信息

 lastError = new Error `HTTP 状态码: ${resp.statusCode}`();

 console error `第 ${attempt} 次尝试失败:`

lastError message

. (,

.);

 }

 catch error } () {

 lastError = error;

 console error `第 ${attempt} 次尝试失败:` error message. (, .);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第32 共531页

 }

 if lastError && attempt < maxRetries () {

 console log `等待 1 秒后重试...`. ();

 sleep 1();

 }

 }

 if lastError () {

 console error '所有重试均失败，最后错误:' lastError message. (, .);

 }

}

循环语句

函数说明

循环语句用于重复执行代码，在压测脚本中常用于：

遍历数组或对象。

批量发送请求。

实现重试机制。

处理列表数据。

使用前提

所有代码需放在 export default function() 函数中执行。

循环条件需能正确终止，避免无限循环。

注意循环性能，避免在循环中进行耗时操作。

语法说明

for (init; condition; increment) { ... } ：传统 for 循环。

for (item of array) { ... } ：for...of 循环（遍历数组）。

for (key in object) { ... } ：for...in 循环（遍历对象）。

while (condition) { ... } ：while 循环。

array.forEach((item, index) => { ... }) ：数组 forEach 方法。

示例

示例1：for 循环遍历数组

本示例演示如何使用 for 循环遍历数组，适用于需要逐个处理数组元素的场景。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第33 共531页

import http from 'pts/http';

export default function () {

 // 定义用户 ID 数组

 const userIds = '1001' '1002' '1003' '1004' '1005'[, , , ,];

 // 使用传统 for 循环

 for let i = 0 i < userIds length i++ (; . ;) {

 const userId = userIds i[];

 const resp = http get `http://example.com/api/users/${userId}`. ();

 console log `用户 ${userId} 信息:` resp json. (, . ());

 }

}

示例2：for...of 循环

本示例演示如何使用 for...of 循环遍历数组，适用于需要简洁语法的场景。

import http from 'pts/http';

import sleep from 'pts'{ } ;

export default function () {

 const endpoints = [

 '/api/users',

 '/api/products',

 '/api/orders'

];

 // 使用 for...of 循环

 for const endpoint of endpoints () {

 const resp = http get `http://example.com${endpoint}`. ();

 console log `请求 ${endpoint}，状态码:` resp statusCode. (, .);

 sleep 1 // 每次请求间隔 1 秒();

 }

}

示例3：forEach 方法

本示例演示如何使用 forEach 方法遍历数组，适用于需要对每个元素执行操作的场景。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第34 共531页

import http from 'pts/http';

export default function () {

 const products = [

 id: 1 name: 'Product A' { , },

 id: 2 name: 'Product B' { , },

 id: 3 name: 'Product C' { , }

];

 // 使用 forEach 方法

 products forEach product, index => . (() {

 console log `处理产品 ${index + 1}:` product name. (, .);

 const resp = http post 'http://example.com/api/products' . (, {

 body: JSON stringify product. ()

 });

 console log `产品 ${product.id} 创建结果:` resp statusCode. (, .);

 });

}

示例4：while 循环实现重试

本示例演示如何使用 while 循环实现重试机制，适用于需要重试失败请求的场景。

import http from 'pts/http';

import sleep from 'pts'{ } ;

export default function () {

 let retryCount = 0;

 const maxRetries = 3;

 let resp = null;

 // 使用 while 循环实现重试

 while retryCount < maxRetries () {

 resp = http get 'http://example.com/api/data'. ();

 if resp statusCode === 200 (.) {

 console log '请求成功'. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第35 共531页

 break // 成功则退出循环;

 }

 retryCount++;

 console log `请求失败，第 ${retryCount} 次重试`. ();

 sleep 1 // 等待 1 秒后重试();

 }

 if resp && resp statusCode !== 200 (.) {

 console log '重试失败，最终状态码:' resp statusCode. (, .);

 }

}

数组操作

函数说明

数组是 JavaScript 中常用的数据结构，在压测脚本中常用于：

存储多个数据项。

批量处理数据。

参数化测试数据。

收集和处理响应数据。

使用前提

所有代码需放在 export default function() 函数中执行。

数组索引从0开始。

数组可以包含任意类型的元素。

常用方法

array.length ：获取数组长度。

array.push(item) ：向数组末尾添加元素。

array.pop() ：移除并返回数组最后一个元素。

array.shift() ：移除并返回数组第一个元素。

array.unshift(item) ：向数组开头添加元素。

array.map(fn) ：映射数组元素。

array.filter(fn) ：过滤数组元素。

array.find(fn) ：查找数组元素。

array.includes(item) ：检查数组是否包含元素。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第36 共531页

示例

示例1：数组声明和基本操作

本示例演示如何声明数组并进行基本操作，适用于需要存储和操作多个数据的场景。

import http from 'pts/http';

export default function () {

 // 声明数组的多种方式

 const numbers = 1 2 3 4 5[, , , ,];

 const strings = 'apple' 'banana' 'orange'[, ,];

 const mixed = 1 'hello' true key: 'value' [, , , { }];

 // 访问数组元素

 console log '第一个数字:' numbers 0 // 输出: 1. (, []);

 console log '数组长度:' numbers length // 输出: 5. (, .);

 // 修改数组元素

 numbers 0 = 10[] ;

 console log '修改后的数组:' numbers. (,);

 // 添加元素

 numbers push 6. ();

 console log '添加元素后:' numbers. (,);

}

示例2：数组遍历和处理

本示例演示如何遍历数组并处理每个元素，适用于批量处理数据的场景。

import http from 'pts/http';

export default function () {

 // 定义用户 ID 数组

 const userIds = '1001' '1002' '1003'[, ,];

 const results = [];

 // 遍历数组并处理

 for const userId of userIds () {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第37 共531页

 const resp = http get `http://example.com/api/users/${userId}`. ();

 if resp statusCode === 200 (.) {

 const userData = resp json. ();

 results push. ({

 userId: userId,

 name: userData name. ,

 status: 'success'

 });

 else } {

 results push. ({

 userId: userId,

 status: 'failed',

 statusCode: resp statusCode.

 });

 }

 }

 console log '处理结果:' results. (,);

 console log '成功数量:' results filter r => r status ===

'success' length

. (, . (.

).);

}

示例3：数组方法的使用

本示例演示如何使用数组的高级方法，适用于需要转换、过滤和查找数据的场景。

import http from 'pts/http';

export default function () {

 // 原始数据

 const products = [

 id: 1 name: 'Product A' price: 100 { , , },

 id: 2 name: 'Product B' price: 200 { , , },

 id: 3 name: 'Product C' price: 150 { , , }

];

 // 使用 map 转换数组

 const productNames = products map p => p name. (.);

 console log '产品名称:' productNames. (,);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第38 共531页

 // 使用 filter 过滤数组

 const expensiveProducts = products filter p => p price > 150. (.);

 console log '高价产品:' expensiveProducts. (,);

 // 使用 find 查找元素

 const product = products find p => p id === 2. (.);

 console log '找到的产品:' product. (,);

 // 使用 includes 检查元素

 const hasProductA = productNames includes 'Product A'. ();

 console log '是否包含 Product A:' hasProductA. (,);

}

示例4：动态构建数组

本示例演示如何动态构建数组，适用于需要根据条件或循环生成数据的场景。

import http from 'pts/http';

import util from 'pts/util';

export default function () {

 // 动态生成用户 ID 数组

 const userIds = [];

 for let i = 1 i <= 10 i++ (; ;) {

 userIds push `user_${i}`. ();

 }

 console log '生成的用户 ID:' userIds. (,);

 // 从响应中提取数据构建数组

 const resp = http get 'http://example.com/api/users'. ();

 const users = resp json users || . (). [];

 // 提取用户 ID 数组

 const extractedIds = users map user => user id. (.);

 console log '提取的用户 ID:' extractedIds. (,);

 // 使用数组存储请求结果

 const requestResults = [];

 for const userId of userIds slice 0 5 // 只处理前 5 个(. (,)) {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第39 共531页

 const userResp =

http get `http://example.com/api/users/${userId}`. ();

 requestResults push. ({

 userId: userId,

 statusCode: userResp statusCode. ,

 success: userResp statusCode === 200.

 });

 }

 console log '请求结果统计:' . (, {

 total: requestResults length. ,

 success: requestResults filter r => r success length. (.). ,

 failed: requestResults filter r => !r success length. (.).

 });

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第40 共531页

HTTP
最近更新时间：2025-12-01 16:56:01

本文档提供了在云压测脚本模式中使用 HTTP 协议进行压测的完整示例。所有示例均基于 模块提供的

HTTP 请求方法。

pts/http

前置条件

在使用 HTTP 请求功能前，请确保：

导入模块：在脚本开头使用 import http from 'pts/http' 导入 HTTP 模块。

脚本结构：所有请求代码需放在 export default function() 函数中执行。

URL 格式：确保目标 URL 格式正确，支持 http:// 和 https:// 协议。

网络连通性：确保压测环境能够访问目标服务器。

注意事项

错误处理：建议使用 check() 函数验证响应状态码和内容，确保请求成功。

超时设置：对于可能响应较慢的接口，建议设置合理的 timeout 值。

响应体大小：如果响应体很大且不需要检查内容，可以设置 discardResponseBody: true 以节省内存。

Content-Type：发送 POST/PUT/PATCH 请求时，务必根据请求体格式设置正确的 Content-Type 。

文件上传：使用 FormData 上传文件时，文件必须提前上传到压测场景中，并使用 open() 函数读取。

并发控制：批量请求时，注意合理设置 parallel 值，避免对目标服务器造成过大压力。

URL 编码：查询参数和表单数据会自动进行 URL 编码，无需手动编码。

重定向：默认会跟随重定向，可以通过 maxRedirects 控制最大重定向次数。

HTTP GET 请求

函数说明

http.get() 用于发起 HTTP GET 请求，适用于获取资源、查询数据等场景。该方法在脚本模式的压测场景中

使用，支持设置请求头、查询参数等配置。

函数签名

http get url: string options?: Request : Response. (,)

参数说明

url (string，必填)：目标请求的完整 URL 地址，支持 http:// 和 https:// 协议。

options (，可选)：请求配置对象，包含以下可选字段：Request

https://cloud.tencent.com/document/product/248/88563
https://cloud.tencent.com/document/product/248/88748

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第41 共531页

headers (Record<string, string>)：自定义请求头，如 {'User-Agent': 'pts-engine', 'Co

nnection': 'keep-alive'} 。

query (Record<string, string>)：URL 查询参数，会自动拼接到 URL 后面。

timeout (number)：请求超时时间，单位为毫秒，包括连接时间、任何重定向和读取响应正文的时间。

maxRedirects (number)：最大重定向跳转次数。

discardResponseBody (boolean)：是否丢弃响应体，适用于响应体太大且不需要进行 check 的场

景。

service (string)：服务标识，用于在报表中将不同 URL 的请求归类到同一个服务下。

basicAuth (BasicAuth)：基础鉴权配置。

chunked (function)：分块传输回调函数，函数签名为 (body: string) => void ，当数据以一系

列分块的形式进行发送时，会按行读取响应体并进行回调函数的运行。

contentLength (number)：记录关联内容的长度。-1表示长度未知，>=0表示可以从 body 中读取给

定的字节数。

返回值说明

返回 对象，包含以下属性：Response

statusCode (number)：HTTP 状态码，如200、404、500等。

status (string)：HTTP 状态消息，如 "200 OK"。

body (string)：响应体内容，原始字符串格式。

headers (Record<string, string>)：响应头信息。

contentLength (number)：服务器响应体长度。

proto (string)：协议，如 "HTTP/1.0"。

request ()：为获得此响应而发送的请求。Request

responseTimeMS (number)：请求的响应时间，单位为毫秒。

json() (方法)：将响应体反序列化为 JSON 对象，仅当响应体为有效的 JSON 字符串时使用。

使用限制

URL 必须包含完整的协议前缀（ http:// 或 https:// ）。

查询参数值必须是字符串类型。

如果响应体不是有效的 JSON 格式，调用 json() 方法会抛出异常。

示例

示例1：简单 GET 请求

本示例演示如何发起最简单的 GET 请求，并检查响应状态码和解析 JSON 响应体。

https://cloud.tencent.com/document/product/248/88750
https://cloud.tencent.com/document/product/248/88748

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第42 共531页

import http from 'pts/http';

import check sleep from 'pts'{ , } ;

export default function () {

 // 发起简单的 GET 请求

 const resp1 =

http get 'http://mockhttpbin.pts.svc.cluster.local/get'. ();

 // 输出原始响应体

 console log resp1 body. (.);

 // 如果响应体是 JSON 格式，使用 json() 方法转换为对象

 console log resp1 json. (. ());

 // 检查响应状态码是否为 200

 check 'status is 200' => resp1 statusCode === 200(, () .);

 // 等待 1 秒

 sleep 1();

}

示例2：带请求头和查询参数的 GET 请求

本示例演示如何设置自定义请求头和 URL 查询参数，适用于需要传递特定头部信息或查询条件的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 // GET 请求，包含自定义请求头和查询参数

 const resp2 =

http get 'http://mockhttpbin.pts.svc.cluster.local/get' . (, {

 headers: {

 'Connection': 'keep-alive',

 'User-Agent': 'pts-engine',

 'Accept': 'application/json'

 },

 query: {

 'name1': 'value1',

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第43 共531页

 'name2': 'value2',

 }

 });

 // 从 JSON 响应中提取查询参数值

 console log resp2 json args name1 // 输出: 'value1'. (. (). .);

 // 验证响应中的查询参数值

 check 'body.args.name1 equals value1' => resp2 json args name1

=== 'value1'

(, () . (). .

);

}

示例 3：带超时和重定向配置的 GET 请求

本示例演示如何设置请求超时时间和最大重定向次数，适用于需要控制请求行为的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 const resp =

http get 'http://mockhttpbin.pts.svc.cluster.local/get' . (, {

 headers: {

 'User-Agent': 'pts-engine'

 },

 query: {

 'page': '1',

 'size': '10'

 },

 timeout: 5000 // 设置超时时间为 5 秒,

 maxRedirects: 3 // 最大允许 3 次重定向

 });

 check 'request success' => resp statusCode === 200(, () .);

}

HTTP POST 请求（JSON 格式）

函数说明

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第44 共531页

http.post() 用于发起 HTTP POST 请求，适用于创建资源、提交数据等场景。当请求体为对象时，默认会序

列化为 JSON 格式发送。

函数签名

http post url: string body?: string | object | Record<string string>

options?: Request : Response

. (, , ,

)

参数说明

url (string，必填)：目标请求的完整 URL 地址

body (string | object | Record<string, string>，可选)：请求体内容。

如果为对象，会自动序列化为 JSON 字符串，并设置 Content-Type: application/json 。

如果为字符串，直接作为请求体发送。

如果为 Record<string, string> ，可以用于表单编码等场景。

options (，可选)：请求配置对象，字段同 http.get() 方法，可设置 headers、query、

timeout、maxRedirects、discardResponseBody、service 等。

Request

返回值说明

返回 对象，结构同 http.get() 方法。Response

使用限制

当 body 为对象时，系统会自动序列化为 JSON 字符串并设置 Content-Type: application/json 请求

头，也可以手动设置。

如果响应体不是有效的 JSON 格式，调用 json() 方法会抛出异常。

示例

示例1：发送 JSON 格式的 POST 请求

本示例演示如何发送 JSON 格式的 POST 请求，适用于调用 RESTful API 创建或更新资源的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 // 发送 POST 请求，body 为对象会自动序列化为 JSON

 const resp = http post. (

 'http://mockhttpbin.pts.svc.cluster.local/post',

 {

https://cloud.tencent.com/document/product/248/88748
https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第45 共531页

 user_id: '12345',

 username: 'testuser',

 email: 'test@example.com'

 },

 {

 headers: {

 'Content-Type': 'application/json',

 },

 }

);

 // 解析响应 JSON 并提取数据

 console log resp json json user_id // 输出: 12345. (. (). .);

 // 验证响应数据

 check 'body.json.user_id equals 12345' =>

resp json json user_id === '12345' resp

(, ()

. (). . ,);

}

示例 2：发送字符串格式的 POST 请求

本示例演示如何发送字符串格式的请求体，适用于需要发送原始字符串数据的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 // 发送字符串格式的 POST 请求

 const resp = http post. (

 'http://mockhttpbin.pts.svc.cluster.local/post',

 'raw string data',

 {

 headers: {

 'Content-Type': 'text/plain',

 },

 }

);

 check 'request success' => resp statusCode === 200(, () .);

 console log resp json data // 输出: 'raw string data'. (. ().);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第46 共531页

}

HTTP POST 请求（x-www-form-urlencoded 格式）

函数说明

当需要发送表单数据时，可以使用 application/x-www-form-urlencoded 格式。这种格式适用于传统的

HTML 表单提交场景。

参数说明

url (string，必填)：目标请求的完整 URL 地址。

body (object，必填)：表单数据对象，键值对会被编码为 URL 编码格式。

options (，必填)：请求配置对象，必须设置 Content-Type: application/x-www-form-ur

lencoded 请求头。

Request

使用限制

必须显式设置 Content-Type: application/x-www-form-urlencoded 请求头，否则服务器可能无法

正确解析表单数据。

body 对象中的值必须是字符串类型，非字符串值会被转换为字符串。

示例：发送表单编码的 POST 请求

本示例演示如何发送 application/x-www-form-urlencoded 格式的 POST 请求，适用于提交 HTML 表单

数据的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 // 发送表单编码格式的 POST 请求

 const resp = http post. (

 'http://mockhttpbin.pts.svc.cluster.local/post',

 {

 user_id: '12345',

 action: 'login',

 timestamp: '1234567890'

 },

 {

 headers: {

 'Content-Type': 'application/x-www-form-urlencoded',

https://cloud.tencent.com/document/product/248/88748

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第47 共531页

 },

 }

);

 // 验证 Content-Type 请求头

 console log resp json headers 'Content-Type' // 输出:

application/x-www-form-urlencoded

. (. (). []);

 // 从响应中提取表单数据

 console log resp json form user_id // 输出: 12345. (. (). .);

 // 验证表单数据

 check 'body.form.user_id equals 12345' =>

resp json form user_id === '12345' resp

(, ()

. (). . ,);

}

HTTP POST 请求（multipart/form-data 格式）

函数说明

http.FormData 用于构造 multipart/form-data 格式的请求体，适用于需要上传文件或同时发送文本和文

件的场景。通过 new http.FormData() 创建实例，使用 append() 方法添加字段，最后通过 body() 方法

获取请求体。

相关函数

new http.FormData()：创建 FormData 实例。

formData.append(key, value)：向 FormData 中添加字段，value 可以是字符串或 http.file() 返

回的 File 对象。

formData.body()：返回 FormData 的请求体内容（ArrayBuffer 格式），调用后不能再进行 append 操

作。

formData.contentType()：返回 FormData 的 Content-Type 值，包含 boundary 信息。

http.file(data, name?, contentType?)：创建文件对象，用于上传文件。

data (string | ArrayBuffer，必填)：文件内容，通常使用 open() 函数的返回值。

name (string，可选)：文件名，默认为纳秒级时间戳。

contentType (string，可选)：文件内容类型，默认为 application/octet-stream 。

使用限制

调用 formData.body() 后不能再调用 append() 方法。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第48 共531页

必须使用 formData.contentType() 返回的值设置 Content-Type 请求头。

文件数据必须通过 open() 函数读取或使用 ArrayBuffer 格式。

示例

示例1：上传文本和文件

本示例演示如何同时上传文本字段和文件，适用于文件上传表单的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

// 读取文件内容（文件需提前上传到压测场景中）

const fileData = open "./sample/tmp.js"();

export default function () {

 // 创建 FormData 实例

 const formData = new http.FormData();

 // 添加文本字段

 formData append 'data' 'some data'. (,);

 formData append 'description' 'This is a test file'. (,);

 // 添加文件字段，使用 http.file() 创建文件对象

 formData append 'file' http file fileData. (, . ());

 // 发送 POST 请求，使用 formData.body() 作为请求体

 const resp =

http post 'http://mockhttpbin.pts.svc.cluster.local/post'

formData body

. (,

. (), {

 headers: {

 'Content-Type': formData contentType // 必须使用

formData.contentType() 返回的值

. ()

 }

 });

 // 验证 Content-Type 包含 multipart/form-data

 console log resp json headers 'Content-Type' // 输出:

multipart/form-data; boundary=xxxxx

. (. (). []);

 // 验证文本字段

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第49 共531页

 console log resp json form data // 输出: some data. (. (). .);

 // 验证文件大小

 console log resp json files file length // 输出文件字节数，如: 801. (. (). . .);

 // 检查表单数据

 check 'body.form.data equals some data' => resp json form data

=== 'some data'

(, () . (). .

);

}

示例2：上传多个文件

本示例演示如何上传多个文件，适用于需要同时上传多个文件的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

const file1 = open "./sample/file1.txt"();

const file2 = open "./sample/file2.jpg"();

export default function () {

 const formData = new http.FormData();

 // 添加多个文件，可以指定文件名和内容类型

 formData append 'document' http file file1 'document.txt'

'text/plain'

. (, . (, ,

));

 formData append 'image' http file file2 'photo.jpg'

'image/jpeg'

. (, . (, ,

));

 formData append 'category' 'uploads'. (,);

 const resp =

http post 'http://mockhttpbin.pts.svc.cluster.local/post'

formData body

. (,

. (), {

 headers: {

 'Content-Type': formData contentType. ()

 }

 });

 check 'upload success' => resp statusCode === 200(, () .);

 console log 'Document size:' resp json files document length. (, . (). . .);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第50 共531页

 console log 'Image size:' resp json files image length. (, . (). . .);

}

HTTP PUT 请求

函数说明

http.put() 用于发起 HTTP PUT 请求，适用于完整更新资源的场景。PUT 请求通常需要提供完整的资源数

据。

函数签名

http put url: string body?: string | object | Record<string string>

options?: Request : Response

. (, , ,

)

参数说明

参数与 http.post() 方法相同。

返回值说明

返回 对象，结构同 http.get() 方法。Response

示例：更新资源

本示例演示如何使用 PUT 请求更新资源，适用于 RESTful API 中更新完整资源的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 // 使用 PUT 请求更新资源

 const resp = http put. (

 'http://mockhttpbin.pts.svc.cluster.local/put',

 {

 id: '12345',

 name: 'Updated Name',

 status: 'active'

 },

 {

 headers: {

 'Content-Type': 'application/json',

https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第51 共531页

 },

 }

);

 check 'update success' => resp statusCode === 200(, () .);

 console log resp json json name // 输出: Updated Name. (. (). .);

}

HTTP DELETE 请求

函数说明

http.delete() 用于发起 HTTP DELETE 请求，适用于删除资源的场景。

函数签名

http delete url: string options?: Request : Response. (,)

参数说明

url (string，必填)：目标请求的完整 URL 地址。

options (，可选)：请求配置对象，字段同 http.get() 方法，可设置 headers、query、

timeout、maxRedirects、discardResponseBody、service 等。

Request

返回值说明

返回 对象，结构同 http.get() 方法。Response

示例：删除资源

本示例演示如何使用 DELETE 请求删除资源，适用于 RESTful API 中删除资源的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 // 使用 DELETE 请求删除资源

 const resp =

http delete 'http://mockhttpbin.pts.svc.cluster.local/delete' . (, {

 headers: {

 'Authorization': 'Bearer token123'

 },

https://cloud.tencent.com/document/product/248/88748
https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第52 共531页

 query: {

 'id': '12345'

 }

 });

 check 'delete success' => resp statusCode === 200 ||

resp statusCode === 204

(, () .

.);

}

HTTP PATCH 请求

函数说明

http.patch() 用于发起 HTTP PATCH 请求，适用于部分更新资源的场景。PATCH 请求只需要提供需要更

新的字段。

函数签名

http patch url: string body?: string | object | Record<string string>

options?: Request : Response

. (, , ,

)

参数说明

参数与 http.post() 方法相同。

返回值说明

返回 对象，结构同 http.get() 方法。Response

示例：部分更新资源

本示例演示如何使用 PATCH 请求部分更新资源，适用于只需要更新部分字段的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 // 使用 PATCH 请求部分更新资源

 const resp = http patch. (

 'http://mockhttpbin.pts.svc.cluster.local/patch',

 {

 status: 'inactive' // 只更新 status 字段

https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第53 共531页

 },

 {

 headers: {

 'Content-Type': 'application/json',

 },

 }

);

 check 'patch success' => resp statusCode === 200(, () .);

}

HTTP HEAD 请求

函数说明

http.head() 用于发起 HTTP HEAD 请求，只获取响应头信息，不返回响应体。适用于检查资源是否存在、获

取资源元信息等场景。

函数签名

http head url: string options?: Request : Response. (,)

参数说明

参数与 http.get() 方法相同。

返回值说明

返回 对象，但 body 为空。可以通过 headers 属性获取响应头信息。Response

示例：检查资源

本示例演示如何使用 HEAD 请求检查资源是否存在，适用于不需要响应体内容的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 // 使用 HEAD 请求检查资源

 const resp =

http head 'http://mockhttpbin.pts.svc.cluster.local/get' . (, {

 headers: {

https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第54 共531页

 'User-Agent': 'pts-engine'

 }

 });

 // 检查状态码

 check 'resource exists' => resp statusCode === 200(, () .);

 // 获取响应头信息

 console log 'Content-Type:' resp headers 'Content-Type'. (, . []);

 console log 'Content-Length:' resp headers 'Content-Length'. (, . []);

}

HTTP 基础鉴权（Basic Authentication）

函数说明

HTTP 基础鉴权可以通过两种方式实现：

1. 在 URL 中包含用户名和密码： http://username:password@host/path 。

2. 使用 basicAuth 配置项（需配合 http.do() 方法使用）。

使用限制

URL 中的用户名和密码会以 Base64 编码形式发送。

仅适用于支持 HTTP Basic Authentication 的服务器。

生产环境建议使用更安全的认证方式。

示例：使用 URL 进行基础鉴权

本示例演示如何在 URL 中包含用户名和密码进行基础鉴权，适用于需要简单认证的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 // 在 URL 中包含用户名和密码

 const user = 'user';

 const passwd = 'passwd';

 const resp =

http get `http://${user}:${passwd}@mockhttpbin.pts.svc.cluster.local/bas

ic-auth/user/passwd`

. (

);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第55 共531页

 // 验证认证结果

 console log resp json authenticated // 输出: true. (. ().);

 check 'body.authenticated equals true' =>

resp json authenticated === true

(, ()

. ().);

}

HTTP Cookie 使用

函数说明

可以通过在请求头中设置 Cookie 字段来发送 Cookie，适用于需要维护会话状态的场景。

使用限制

Cookie 值必须是字符串格式

多个 Cookie 可以使用分号分隔，如： cookie1=value1; cookie2=value2

如果需要自动管理 Cookie，建议使用 http.do() 方法配合相关配置

示例：发送 Cookie

本示例演示如何在请求中发送 Cookie，适用于需要传递会话信息的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 // 在请求头中设置 Cookie

 const resp =

http get 'http://mockhttpbin.pts.svc.cluster.local/cookies' . (, {

 headers: {

 cookie: 'k=v; session_id=abc123; user_id=456'

 }

 });

 // 验证 Cookie 是否正确传递

 console log resp json cookies k // 输出: v. (. (). .);

 console log resp json cookies session_id // 输出: abc123. (. (). .);

 check 'body.cookies.k equals v' => resp json cookies k ===

'v'

(, () . (). .

);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第56 共531页

通用请求方法 http.do()

函数说明

http.do() 是一个通用的 HTTP 请求方法，可以发送任意 HTTP 方法的请求。适用于需要更灵活控制请求参数

或使用高级功能的场景。

函数签名

http do request: Request : Response. ()

参数说明

request (，必填)：请求配置对象，包含以下字段：Request

method (string，必填)：HTTP 方法，如 'GET'、'POST'、'PUT'、'DELETE'、'PATCH'、'HEAD'

等。

url (string，必填)：目标请求的完整 URL 地址。

body (string | object | ArrayBuffer，可选)：请求体内容，在使用 http.do 方法时才需要指定。

headers (Record<string, string>，可选)：请求头。

query (Record<string, string>，可选)：URL 查询参数。

timeout (number，可选)：请求超时时间（毫秒），包括连接时间、任何重定向和读取响应正文的时间。

maxRedirects (number，可选)：最大重定向跳转次数。

discardResponseBody (boolean，可选)：是否丢弃响应体，适用于响应体太大且不需要进行 check 的

场景。

service (string，可选)：服务标识，用于在报表中将不同 URL 的请求归类到同一个服务下。

basicAuth (BasicAuth，可选)：基础鉴权配置。

chunked (function，可选)：分块传输回调函数，当数据以一系列分块的形式进行发送时，如果指定了

chunked 函数，会按行读取响应体并进行回调函数的运行。函数签名为 (body: string) => void 。

contentLength (number，可选)：记录关联内容的长度。-1表示长度未知，>=0表示可以从 body 中读取

给定的字节数。

host (string，可选)：host 或 host:port，通常不需要单独指定，使用 url 即可。

path (string，可选)：路径，相对路径省略前导斜杠，通常不需要单独指定，使用 url 即可。

scheme (string，可选)：协议，填写 "http" 或 "https"，通常不需要单独指定，使用 url 即可。

返回值说明

返回 对象，结构同其他 HTTP 方法。Response

使用限制

https://cloud.tencent.com/document/product/248/88748
https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第57 共531页

method 和 url 字段为必填项。

当使用 body 字段时，需要根据内容类型设置相应的 Content-Type 请求头。

host 、 path 、 scheme 字段通常不需要单独指定，直接使用完整的 url 即可。

chunked 回调函数仅在响应体以分块形式传输时才会被调用。

示例：使用 http.do() 发送请求

本示例演示如何使用 http.do() 方法发送请求，适用于需要完整控制请求参数的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 // 使用 http.do() 发送 POST 请求

 const req = {

 method: 'post',

 url: 'http://mockhttpbin.pts.svc.cluster.local/post',

 headers: {

 'Content-Type': 'application/json'

 },

 query: {

 a: '1'

 },

 body: {

 user_id: '12345'

 },

 timeout: 5000,

 maxRedirects: 3

 };

 const resp = http do req. ();

 // 验证查询参数

 console log resp json args a // 输出: 1. (. (). .);

 // 验证请求体

 console log resp json json user_id // 输出: 12345. (. (). .);

 check 'request success' => resp statusCode === 200(, () .);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第58 共531页

}

批量请求 http.batch()

函数说明

http.batch() 用于批量发起多个 HTTP 请求，支持并行执行，适用于需要同时发起多个请求的场景，可以提高

压测效率。

函数签名

http batch requests: Request options?: BatchOption : BatchResponse. ([],) []

参数说明

requests ([]，必填)：请求配置对象数组，每个元素的结构与 http.do() 方法的参数相同，必须

包含 method 和 url 字段。

Request

options (BatchOption，可选)：批量请求配置选项。

parallel (number，可选)：并行执行数，默认值为 20。

返回值说明

返回 BatchResponse[] 数组，每个元素包含以下字段：

error (string)：错误信息，不为空则表示请求出错。

response ()：请求结果，包含 statusCode、body、headers 等属性。Response

使用限制

批量请求的数量建议控制在合理范围内，避免过多请求导致性能问题。

并行数 parallel 的值会影响请求的并发度，需要根据实际情况调整。

示例：批量发送请求

本示例演示如何使用 http.batch() 批量发送多个请求，适用于需要同时测试多个接口的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 // 批量发送多个请求

 const responses = http batch. (

 [

https://cloud.tencent.com/document/product/248/88748
https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第59 共531页

 {

 method: 'GET',

 url: 'http://mockhttpbin.pts.svc.cluster.local/get?a=1',

 headers: 'User-Agent': 'pts-engine' { },

 query: b: '2' { },

 },

 {

 method: 'POST',

 url: 'http://mockhttpbin.pts.svc.cluster.local/post',

 headers: 'Content-Type': 'application/json' { },

 body: user_id: '12345' { },

 },

 {

 method: 'GET',

 url: 'http://mockhttpbin.pts.svc.cluster.local/get?c=3',

 headers: 'Authorization': 'Bearer token123' { },

 },

],

 // 批量请求配置选项

 {

 parallel: 3 // 并行执行 3 个请求,

 }

);

 // 处理每个响应

 responses forEach resp, index => . (() {

 if resp error (.) {

 console log `Request ${index + 1} error:` resp error. (, .);

 else } {

 console log `Request ${index + 1} status:`

resp response statusCode

. (,

. .);

 check `Request ${index + 1} success` =>

resp response statusCode === 200

(, ()

. .);

 }

 });

 // 输出所有响应

 console log JSON stringify responses. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第60 共531页

Response 对象常用方法

json() 方法

Response.json() 方法用于将响应体反序列化为 JSON 对象。

函数签名

json : any()

返回值

返回代表 Response.body 的 JavaScript 对象。

使用限制

仅当响应体为有效的 JSON 字符串时才能使用。

如果响应体不是 JSON 格式，调用此方法会抛出异常。

建议在使用前先检查响应体的 Content-Type 是否为 application/json 。

示例：解析 JSON 响应

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 const resp =

http get 'http://mockhttpbin.pts.svc.cluster.local/get' . (, {

 query: key: 'value' { }

 });

 // 检查响应是否为 JSON 格式

 const contentType = resp headers 'Content-Type' || ''. [] ;

 if contentType includes 'application/json' (. ()) {

 const data = resp json. ();

 console log 'Parsed JSON:' data. (,);

 check 'has args' => data args !== undefined(, () .);

 else } {

 console log 'Response body:' resp body. (, .);

 }

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第61 共531页

WebSocket
最近更新时间：2025-12-01 16:56:01

本文档提供了在云压测脚本模式中使用 WebSocket 协议进行压测的完整示例。所有示例均基于 pts/ws 模块提

供的 WebSocket 连接和消息处理方法。

前置条件

在使用 WebSocket 功能前，请确保：

导入模块：在脚本开头使用 import ws from 'pts/ws' 导入 WebSocket 模块。

脚本结构：所有连接和消息处理代码需放在 export default function() 函数中执行。

URL 格式：确保目标 WebSocket URL 格式正确，支持 ws:// 和 wss:// 协议。

网络连通性：确保压测环境能够访问目标 WebSocket 服务器。

理解执行机制：WebSocket 脚本的执行机制与 HTTP 脚本不同：

HTTP 脚本的每个 VU（虚拟用户）会持续迭代主函数，直到压测结束。

WebSocket 脚本的每个 VU 不会持续迭代主函数，因为主函数会被 ws.connect 方法阻塞，直到连接

关闭。

在连接建立后的回调函数中，会持续监听和处理异步事件，直到压测结束。

注意事项

连接生命周期：WebSocket 连接建立后，主函数会被阻塞，直到连接关闭。所有业务逻辑都应在 ws.conne

ct() 的回调函数中实现。

事件监听顺序：应在连接建立后立即注册所有需要的事件监听器，确保不会遗漏任何消息。

消息发送时机：虽然可以在回调函数的任何位置调用 send() ，但应在 open 事件触发后或确认连接已建立后

再发送消息。

资源清理：使用 setTimeout 、 setInterval 和 setLoop 时，注意在连接关闭时清理这些定时器，避免

资源泄漏。

消息格式：根据服务器要求选择正确的消息格式（文本或二进制），并使用相应的方法发送。

连接保持：对于长连接场景，建议定期发送 ping 消息或心跳消息，防止连接因超时被关闭。

并发控制：在压测场景中，每个 VU 会建立独立的 WebSocket 连接，注意控制并发连接数，避免对服务器造

成过大压力。

状态码检查：连接建立后，应检查 res.status 是否为101，确认连接成功建立。

WebSocket 连接

函数说明

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第62 共531页

ws.connect() 用于建立 WebSocket 连接，是 WebSocket 压测的基础方法。该方法在脚本模式的压测场景

中使用，支持建立持久连接并进行双向通信。连接建立后，主函数会被阻塞，直到连接关闭。

函数签名

ws connect url: string callback: socket: Socket => void headers?:

Record<string string> : Response

. (, () ,

,)

参数说明

url (string，必填)：目标 WebSocket 服务器的完整 URL 地址，支持 ws:// 和 wss:// 协议。

callback (function，必填)：连接建立成功后的回调函数，接收一个 Socket 对象作为参数。

回调函数会在连接建立后立即执行。

在回调函数中定义所有的消息发送和事件监听逻辑。

回调函数执行完成后， ws.connect 才会返回。

headers (Record<string, string>，可选)：请求连接时的 headers 配置，用于设置自定义请求头。

返回值说明

返回 Response 对象，包含以下属性：

status (number)：HTTP 状态码，WebSocket 连接成功时状态码为 101（Switching Protocols）。

body (string)：响应包体内容。

headers (Record<string, string>)：响应头参数。

url (string)：请求地址。

使用限制

URL 必须包含完整的协议前缀（ ws:// 或 wss:// ）。

回调函数是必需的，所有 Socket 操作都必须在回调函数中进行。

连接建立后，主函数会被阻塞，直到连接关闭或回调函数执行完成。

连接失败时， status 不是 101，需要检查连接状态。

示例

示例1：基本连接和消息收发

本示例演示如何建立 WebSocket 连接、发送消息和接收消息，适用于基本的 WebSocket 通信场景。

import ws from 'pts/ws';

import check from 'pts'{ } ;

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第63 共531页

export default function () {

 // 建立 WebSocket 连接

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 // 监听连接建立事件

 socket on 'open' => . (, () {

 console log 'WebSocket connected'. ();

 });

 // 监听接收文本消息事件

 socket on 'message' data => . (, () {

 console log 'Message received:' data. (,);

 });

 // 监听连接关闭事件

 socket on 'close' => . (, () {

 console log 'WebSocket disconnected'. ();

 });

 // 发送文本消息

 socket send 'Hello, WebSocket!'. ();

 });

 // 检查连接状态码是否为 101（WebSocket 协议切换成功）

 check 'status is 101' => res status === 101(, () .);

}

示例2：带错误处理的连接

本示例演示如何处理连接错误，适用于需要健壮错误处理的场景。

import ws from 'pts/ws';

import check from 'pts'{ } ;

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 socket on 'open' => . (, () {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第64 共531页

 console log 'Connected successfully'. ();

 });

 socket on 'message' data => . (, () {

 console log 'Received:' data. (,);

 });

 socket on 'close' => . (, () {

 console log 'Connection closed'. ();

 });

 socket send 'Test message'. ();

 });

 // 验证连接成功

 check 'connection successful' => res status === 101(, () .);

 // 连接失败时输出错误信息

 if res status !== 101 (.) {

 console error 'Connection failed with status:' res status. (, .);

 }

}

示例3：带自定义请求头的连接

本示例演示如何在建立连接时设置自定义请求头，适用于需要传递认证信息或自定义头部字段的场景。

import ws from 'pts/ws';

import check from 'pts'{ } ;

export default function () {

 // 定义自定义请求头

 const headers = {

 'X-MyApplication': 'PTS',

 'X-MyScript': 'WebSocket',

 'Authorization': 'Bearer token123'

 };

 // 建立连接并传入 headers

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第65 共531页

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 socket on 'open' => . (, () {

 console log 'Connected with custom headers'. ();

 });

 socket on 'message' data => . (, () {

 console log 'Received:' data. (,);

 });

 socket on 'close' => . (, () {

 console log 'Disconnected'. ();

 });

 socket send 'Hello'. ();

 headers},);

 check 'connection successful' => res status === 101(, () .);

}

Socket 对象事件监听

函数说明

socket.on() 用于监听 WebSocket 连接的各种事件，是处理异步消息和连接状态变化的核心方法。该方法在

ws.connect() 的回调函数中使用，用于注册事件处理函数。

函数签名

socket on event: string callback: ...args: any[] => void : void. (, (()))

参数说明

event (string，必填)：事件名称，支持以下事件：

open ：建立连接时触发，无参数。

close ：关闭连接时触发，无参数。

message ：接收文本消息时触发，回调函数接收消息内容作为参数。

binaryMessage ：接收二进制消息时触发，回调函数接收 ArrayBuffer 作为参数。

ping ：接收 ping 消息时触发，无参数。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第66 共531页

pong ：接收 pong 消息时触发，无参数。

error ：发生错误时触发，回调函数接收错误对象作为参数，错误对象包含 error() 方法用于获取错误

信息。

callback (function，必填)：事件回调函数，根据事件类型接收不同的参数。

返回值说明

无返回值（void）。

使用限制

必须在 ws.connect() 的回调函数中调用。

同一个事件可以注册多个监听器，都会被执行。

事件监听器应该在发送消息之前注册，以确保能接收到所有消息。

message 和 binaryMessage 事件回调函数的参数类型不同，需要根据消息类型选择正确的事件。

示例

示例1：监听所有事件类型

本示例演示如何监听 WebSocket 支持的所有事件类型，适用于需要全面监控连接状态的场景。

import ws from 'pts/ws';

import check from 'pts'{ } ;

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 // 监听连接建立

 socket on 'open' => . (, () {

 console log 'Connection opened'. ();

 });

 // 监听文本消息

 socket on 'message' data => . (, () {

 console log 'Text message received:' data. (,);

 });

 // 监听二进制消息

 socket on 'binaryMessage' data => . (, () {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第67 共531页

 console log 'Binary message received, length:'

data byteLength

. (,

.);

 });

 // 监听 ping 消息

 socket on 'ping' => . (, () {

 console log 'Ping received'. ();

 });

 // 监听 pong 消息

 socket on 'pong' => . (, () {

 console log 'Pong received'. ();

 });

 // 监听连接关闭

 socket on 'close' => . (, () {

 console log 'Connection closed'. ();

 });

 // 监听错误事件

 socket on 'error' e => . (, () {

 console log 'Error happened:' e error. (, . ());

 });

 // 发送测试消息

 socket send 'Hello'. ();

 });

 check 'connection successful' => res status === 101(, () .);

}

示例2：处理不同类型的消息

本示例演示如何区分处理文本消息和二进制消息，适用于需要处理多种消息格式的场景。

import ws from 'pts/ws';

import check from 'pts'{ } ;

export default function () {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第68 共531页

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 socket on 'open' => . (, () {

 console log 'Connected'. ();

 // 发送文本消息

 socket send 'Text message'. ();

 // 发送二进制消息

 socket sendBinary new ArrayBuffer 8. (());

 });

 // 处理文本消息

 socket on 'message' data => . (, () {

 console log 'Received text:' data. (,);

 // 可以在这里进行文本消息的业务处理

 if data === 'ping' () {

 socket send 'pong'. ();

 }

 });

 // 处理二进制消息

 socket on 'binaryMessage' data => . (, () {

 console log 'Received binary, size:' data byteLength. (, .);

 // 可以在这里进行二进制消息的业务处理

 const view = new Uint8Array data();

 console log 'First byte:' view 0. (, []);

 });

 socket on 'close' => . (, () {

 console log 'Disconnected'. ();

 });

 });

 check 'connection successful' => res status === 101(, () .);

}

发送文本消息

函数说明

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第69 共531页

socket.send() 用于向 WebSocket 服务器发送文本消息，是 WebSocket 双向通信中客户端向服务器发送

数据的主要方法。该方法在连接建立后的回调函数中使用。

函数签名

socket send msg: string : void. ()

参数说明

msg (string，必填)：要发送的文本消息内容。

返回值说明

无返回值（void）。

使用限制

必须在连接建立后（ open 事件触发后）调用，否则消息无法发送。

消息内容必须是字符串类型，非字符串值会被转换为字符串。

连接已关闭时，调用此方法不会报错，但消息不会发送。

应在 open 事件回调中或确认连接已建立后再发送消息。

示例

示例1：发送简单文本消息

本示例演示如何发送简单的文本消息，适用于基本的消息发送场景。

import ws from 'pts/ws';

import check from 'pts'{ } ;

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 socket on 'open' => . (, () {

 console log 'Connected'. ();

 // 连接建立后立即发送消息

 socket send 'Hello, Server!'. ();

 });

 socket on 'message' data => . (, () {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第70 共531页

 console log 'Echo received:' data. (,);

 });

 socket on 'close' => . (, () {

 console log 'Disconnected'. ();

 });

 });

 check 'connection successful' => res status === 101(, () .);

}

示例2：发送 JSON 格式消息

本示例演示如何发送 JSON 格式的文本消息，适用于需要发送结构化数据的场景。

import ws from 'pts/ws';

import check from 'pts'{ } ;

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 socket on 'open' => . (, () {

 // 构造 JSON 对象并转换为字符串发送

 const message = {

 type: 'chat',

 user: 'testuser',

 content: 'Hello from WebSocket',

 timestamp: Date now. ()

 };

 socket send JSON stringify message. (. ());

 });

 socket on 'message' data => . (, () {

 try {

 // 解析接收到的 JSON 消息

 const msg = JSON parse data. ();

 console log 'Received message:' msg. (,);

 catch e } () {

 console log 'Received non-JSON message:' data. (,);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第71 共531页

 }

 });

 socket on 'close' => . (, () {

 console log 'Disconnected'. ();

 });

 });

 check 'connection successful' => res status === 101(, () .);

}

示例3：定时发送消息

本示例演示如何定时发送消息，适用于需要周期性发送数据的场景。

import ws from 'pts/ws';

import check sleep from 'pts'{ , } ;

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 let messageCount = 0;

 socket on 'open' => . (, () {

 console log 'Connected, starting to send messages'. ();

 });

 socket on 'message' data => . (, () {

 console log 'Received:' data. (,);

 });

 // 使用 setInterval 定时发送消息

 socket setInterval function . (() {

 messageCount++;

 const msg = `Message #${messageCount}`;

 socket send msg. ();

 console log 'Sent:' msg. (,);

 1000 // 每秒发送一条消息},);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第72 共531页

 // 10 秒后关闭连接

 socket setTimeout function . (() {

 console log 'Closing connection after 10 seconds'. ();

 socket close. ();

 10000},);

 socket on 'close' => . (, () {

 console log 'Disconnected'. ();

 });

 });

 check 'connection successful' => res status === 101(, () .);

}

发送二进制消息

函数说明

socket.sendBinary() 用于向 WebSocket 服务器发送二进制消息，适用于需要传输二进制数据（如图片、

文件、协议数据等）的场景。该方法在连接建立后的回调函数中使用。

函数签名

socket sendBinary msg: ArrayBuffer : void. ()

参数说明

msg (ArrayBuffer，必填)：要发送的二进制数据，必须是 ArrayBuffer 类型。

返回值说明

无返回值（void）。

使用限制

必须在连接建立后调用。

参数必须是 ArrayBuffer 类型，不能是其他类型（如 Uint8Array、Buffer 等）。

从其他格式转换为 ArrayBuffer 时，使用 util.toArrayBuffer() 进行转换。

二进制消息的接收需要使用 binaryMessage 事件，而不是 message 事件。

示例

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第73 共531页

示例1：发送简单二进制数据

本示例演示如何发送简单的二进制数据，适用于基本的二进制消息发送场景。

import ws from 'pts/ws';

import check from 'pts'{ } ;

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 socket on 'open' => . (, () {

 console log 'Connected'. ();

 // 创建一个包含 8 字节的 ArrayBuffer

 const buffer = new ArrayBuffer 8();

 const view = new Uint8Array buffer();

 // 填充一些测试数据

 for let i = 0 i < view length i++ (; . ;) {

 view i = i[] ;

 }

 // 发送二进制数据

 socket sendBinary buffer. ();

 console log 'Binary message sent, size:'

buffer byteLength

. (,

.);

 });

 // 监听二进制消息

 socket on 'binaryMessage' data => . (, () {

 console log 'Binary message received, size:'

data byteLength

. (,

.);

 const view = new Uint8Array data();

 console log 'First 4 bytes:' view slice 0 4. (, . (,));

 });

 socket on 'close' => . (, () {

 console log 'Disconnected'. ();

 });

 });

 check 'connection successful' => res status === 101(, () .);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第74 共531页

}

示例2：发送字符串转二进制

本示例演示如何将字符串转换为二进制数据发送，适用于需要以二进制格式传输文本的场景。

import ws from 'pts/ws';

import check from 'pts'{ } ;

import util from 'pts/util';

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 socket on 'open' => . (, () {

 // 使用 PTS 的 util.toArrayBuffer 将字符串转换为 ArrayBuffer

 const text = 'Hello, Binary World!';

 const buffer = util toArrayBuffer text. ();

 socket sendBinary buffer. ();

 console log 'Sent binary data from string:' text. (,);

 });

 socket on 'binaryMessage' data => . (, () {

 // 读取二进制数据的字节信息

 console log 'Received binary message, size:'

data byteLength

. (,

.);

 // 使用 Uint8Array 读取字节

 const view = new Uint8Array data();

 console log 'First 5 bytes:' Array from view slice 0 5. (, . (. (,)));

 // 将 ArrayBuffer 转换为字符串：使用 base64 编码/解码

 // 注意：仅适用于 ArrayBuffer 内容是 UTF-8 编码文本的场景

 const base64 = util base64Encoding data. ();

 const text = util base64Decoding base64. ();

 console log 'Decoded text:' text. (,);

 });

 socket on 'close' => . (, () {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第75 共531页

 console log 'Disconnected'. ();

 });

 });

 check 'connection successful' => res status === 101(, () .);

}

关闭连接

函数说明

socket.close() 用于主动关闭 WebSocket 连接，适用于需要控制连接生命周期的场景。调用此方法后，连

接会正常关闭，并触发 close 事件。

函数签名

socket close : void. ()

返回值说明

无返回值（void）。

使用限制

可以在连接建立后的任何时候调用

调用后连接会立即关闭，无法再发送或接收消息

关闭连接会触发 close 事件

连接已经关闭时，再次调用此方法不会报错，但不会有任何效果

示例

示例1：定时关闭连接

本示例演示如何在指定时间后关闭连接，适用于需要限制连接时长的场景。

import ws from 'pts/ws';

import check from 'pts'{ } ;

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第76 共531页

 socket on 'open' => . (, () {

 console log 'Connected'. ();

 socket send 'Hello'. ();

 });

 socket on 'message' data => . (, () {

 console log 'Received:' data. (,);

 });

 // 5 秒后关闭连接

 socket setTimeout function . (() {

 console log '5 seconds passed, closing connection'. ();

 socket close. ();

 5000},);

 socket on 'close' => . (, () {

 console log 'Connection closed'. ();

 });

 });

 check 'connection successful' => res status === 101(, () .);

}

示例2：收到特定消息后关闭

本示例演示如何在收到特定消息后关闭连接，适用于需要根据服务器响应决定是否关闭连接的场景。

import ws from 'pts/ws';

import check from 'pts'{ } ;

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 socket on 'open' => . (, () {

 console log 'Connected'. ();

 socket send 'start'. ();

 });

 socket on 'message' data => . (, () {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第77 共531页

 console log 'Received:' data. (,);

 // 收到 "close" 消息时关闭连接

 if data === 'close' || data === 'bye' () {

 console log 'Received close signal, closing

connection'

. (

);

 socket close. ();

 else } {

 // 继续发送消息

 socket send 'continue'. ();

 }

 });

 socket on 'close' => . (, () {

 console log 'Connection closed'. ();

 });

 });

 check 'connection successful' => res status === 101(, () .);

}

发送 Ping 消息

函数说明

socket.ping() 用于向服务器发送 WebSocket ping 消息，用于保持连接活跃和检测连接状态。服务器通常

会响应 pong 消息。该方法在连接建立后的回调函数中使用。

函数签名

socket ping : void. ()

返回值说明

无返回值（void）。

使用限制

必须在连接建立后调用

ping 消息是 WebSocket 协议层面的控制消息，不会触发 message 事件

服务器响应 pong 消息时，会触发 pong 事件

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第78 共531页

定期发送 ping 可以保持连接活跃，防止因超时被关闭

示例：定期发送 Ping 保持连接

本示例演示如何定期发送 ping 消息来保持连接活跃，适用于需要维持长连接的场景。

import ws from 'pts/ws';

import check from 'pts'{ } ;

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 socket on 'open' => . (, () {

 console log 'Connected'. ();

 });

 // 监听 pong 响应

 socket on 'pong' => . (, () {

 console log 'Received pong from server'. ();

 });

 // 每 500 毫秒发送一次 ping

 socket setInterval function . (() {

 socket ping. ();

 console log 'Sent ping'. ();

 500},);

 socket on 'message' data => . (, () {

 console log 'Received message:' data. (,);

 });

 // 30 秒后关闭连接

 socket setTimeout function . (() {

 console log 'Closing connection'. ();

 socket close. ();

 30000},);

 socket on 'close' => . (, () {

 console log 'Disconnected'. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第79 共531页

 });

 });

 check 'connection successful' => res status === 101(, () .);

}

设置定时器

函数说明

socket.setTimeout() 用于在 WebSocket 连接上设置一个定时器，在指定时间后执行回调函数。适用于需

要在特定时间后执行某些操作（如关闭连接、发送消息等）的场景。

函数签名

socket setTimeout callback: => void intervalMs: number : void. ((()),)

参数说明

callback (function，必填)：定时器到期后执行的回调函数，无参数。

intervalMs (number，必填)：定时器延迟时间，单位为毫秒。

返回值说明

无返回值（void）。

使用限制

必须在连接建立后的回调函数中调用。

定时器是单次执行的，执行一次后不会自动重复。

需要重复执行时，可以在回调函数中再次调用 setTimeout ，或使用 setInterval 。

连接在定时器到期前关闭时，定时器不会执行。

示例

示例1：延迟发送消息

本示例演示如何使用定时器延迟发送消息，适用于需要延迟操作的场景。

import ws from 'pts/ws';

import check from 'pts'{ } ;

export default function () {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第80 共531页

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 socket on 'open' => . (, () {

 console log 'Connected'. ();

 // 2 秒后发送第一条消息

 socket setTimeout function . (() {

 socket send 'First message after 2 seconds'. ();

 2000},);

 // 5 秒后发送第二条消息

 socket setTimeout function . (() {

 socket send 'Second message after 5 seconds'. ();

 5000},);

 });

 socket on 'message' data => . (, () {

 console log 'Received:' data. (,);

 });

 // 10 秒后关闭连接

 socket setTimeout function . (() {

 console log 'Closing connection'. ();

 socket close. ();

 10000},);

 socket on 'close' => . (, () {

 console log 'Disconnected'. ();

 });

 });

 check 'connection successful' => res status === 101(, () .);

}

示例2：超时自动关闭

本示例演示如何使用定时器实现超时自动关闭连接，适用于需要限制连接时长的场景。

import ws from 'pts/ws';

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第81 共531页

import check from 'pts'{ } ;

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 let isClosed = false;

 socket on 'open' => . (, () {

 console log 'Connected, will close after 5 seconds'. ();

 socket send 'Hello'. ();

 });

 socket on 'message' data => . (, () {

 console log 'Received:' data. (,);

 });

 // 5 秒后自动关闭连接

 socket setTimeout function . (() {

 if !isClosed () {

 console log 'Timeout reached, closing connection'. ();

 isClosed = true;

 socket close. ();

 }

 5000},);

 socket on 'close' => . (, () {

 console log 'Connection closed'. ();

 isClosed = true;

 });

 });

 check 'connection successful' => res status === 101(, () .);

}

设置轮询函数

函数说明

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第82 共531页

socket.setInterval() 用于在 WebSocket 连接上设置一个轮询函数，按照指定的时间间隔重复执行。适用

于需要周期性执行某些操作（如定期发送消息、定期 ping 等）的场景。

函数签名

socket setInterval callback: => void intervalMs: number : void. ((()),)

参数说明

callback (function，必填)：每次轮询时执行的回调函数，无参数。

intervalMs (number，必填)：轮询间隔时间，单位为毫秒。

返回值说明

无返回值（void）。

使用限制

必须在连接建立后的回调函数中调用

轮询会持续执行，直到连接关闭

回调函数执行时间超过间隔时间时，会影响定时精度

应在回调函数中避免耗时操作，或使用异步处理

示例

示例1：定期发送消息

本示例演示如何使用轮询函数定期发送消息，适用于需要周期性发送数据的场景。

import ws from 'pts/ws';

import check from 'pts'{ } ;

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 let messageCount = 0;

 socket on 'open' => . (, () {

 console log 'Connected, starting periodic messages'. ();

 });

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第83 共531页

 socket on 'message' data => . (, () {

 console log 'Received:' data. (,);

 });

 // 每 1 秒发送一条消息

 socket setInterval function . (() {

 messageCount++;

 const msg = `Periodic message #${messageCount}`;

 socket send msg. ();

 console log 'Sent:' msg. (,);

 1000},);

 // 10 秒后关闭连接

 socket setTimeout function . (() {

 console log 'Closing connection'. ();

 socket close. ();

 10000},);

 socket on 'close' => . (, () {

 console log 'Disconnected'. ();

 });

 });

 check 'connection successful' => res status === 101(, () .);

}

示例2：定期发送心跳

本示例演示如何使用轮询函数定期发送心跳消息，适用于需要保持连接活跃的场景。

import ws from 'pts/ws';

import check from 'pts'{ } ;

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 socket on 'open' => . (, () {

 console log 'Connected'. ();

 });

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第84 共531页

 socket on 'message' data => . (, () {

 console log 'Received:' data. (,);

 });

 // 每 2 秒发送一次心跳消息

 socket setInterval function . (() {

 const heartbeat = {

 type: 'heartbeat',

 timestamp: Date now. ()

 };

 socket send JSON stringify heartbeat. (. ());

 console log 'Sent heartbeat'. ();

 2000},);

 // 30 秒后关闭连接

 socket setTimeout function . (() {

 console log 'Closing connection'. ();

 socket close. ();

 30000},);

 socket on 'close' => . (, () {

 console log 'Disconnected'. ();

 });

 });

 check 'connection successful' => res status === 101(, () .);

}

设置循环执行函数

函数说明

socket.setLoop() 用于在 WebSocket 连接上设置一个循环执行函数，该函数会持续执行直到连接关闭。与

setInterval 不同， setLoop 的执行频率由函数内部的 sleep() 调用控制，提供了更灵活的执行控制。

函数签名

socket setLoop callback: => void : void. ((()))

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第85 共531页

参数说明

callback (function，必填)：循环执行的回调函数，无参数。函数内部应包含 sleep() 调用来控制执行频率。

返回值说明

无返回值（void）。

使用限制

必须在连接建立后的回调函数中调用

循环会持续执行，直到连接关闭

回调函数内部必须调用 sleep() 来控制执行频率，否则会无限快速执行

建议在回调函数中使用 sleep() 来避免 CPU 占用过高

示例

示例 1：循环发送消息

本示例演示如何使用循环函数持续发送消息，适用于需要持续发送数据的场景。

import ws from 'pts/ws';

import check sleep from 'pts'{ , } ;

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 let messageCount = 0;

 socket on 'open' => . (, () {

 console log 'Connected, starting loop'. ();

 });

 socket on 'message' data => . (, () {

 console log 'Received:' data. (,);

 });

 // 设置循环，每 0.5 秒发送一条消息

 socket setLoop function . (() {

 messageCount++;

 socket send `Loop message #${messageCount}`. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第86 共531页

 console log 'Sent loop message #' + messageCount. ();

 // 必须调用 sleep 来控制执行频率

 sleep 0.5();

 });

 // 10 秒后关闭连接

 socket setTimeout function . (() {

 console log 'Closing connection'. ();

 socket close. ();

 10000},);

 socket on 'close' => . (, () {

 console log 'Disconnected'. ();

 });

 });

 check 'connection successful' => res status === 101(, () .);

}

示例 2：循环处理业务逻辑

本示例演示如何在循环中处理复杂的业务逻辑，适用于需要持续处理业务的场景。

import ws from 'pts/ws';

import check sleep from 'pts'{ , } ;

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 let state = 'idle';

 socket on 'open' => . (, () {

 console log 'Connected'. ();

 state = 'active';

 });

 socket on 'message' data => . (, () {

 console log 'Received:' data. (,);

 // 根据接收到的消息更新状态

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第87 共531页

 if data === 'start' () {

 state = 'running';

 else if data === 'stop' } () {

 state = 'stopped';

 }

 });

 // 循环处理业务逻辑

 socket setLoop function . (() {

 if state === 'running' () {

 // 业务逻辑：发送数据

 const data = {

 action: 'process',

 timestamp: Date now. ()

 };

 socket send JSON stringify data. (. ());

 console log 'Sent process data'. ();

 else if state === 'stopped' } () {

 console log 'State is stopped, waiting...'. ();

 }

 // 控制循环频率：每 1 秒执行一次

 sleep 1();

 });

 // 30 秒后关闭连接

 socket setTimeout function . (() {

 console log 'Closing connection'. ();

 socket close. ();

 30000},);

 socket on 'close' => . (, () {

 console log 'Disconnected'. ();

 state = 'closed';

 });

 });

 check 'connection successful' => res status === 101(, () .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第88 共531页

综合示例：完整的 WebSocket 压测场景

本示例演示一个完整的 WebSocket 压测场景，包含连接建立、消息收发、心跳保持、错误处理和连接关闭等完整

流程。

import ws from 'pts/ws';

import check sleep from 'pts'{ , } ;

export default function () {

 const res =

ws connect 'ws://mockwebsocket.pts.svc.cluster.local/echo' function

socket

. (,

() {

 let messageCount = 0;

 let isActive = true;

 // 监听连接建立

 socket on 'open' => . (, () {

 console log 'WebSocket connection established'. ();

 check 'connection opened' => true(, ());

 });

 // 监听文本消息

 socket on 'message' data => . (, () {

 messageCount++;

 console log `Message #${messageCount} received:` data. (,);

 // 验证消息内容

 if data includes 'echo' (. ()) {

 check 'message contains echo' =>

data includes 'echo'

(, ()

. ());

 }

 });

 // 监听二进制消息

 socket on 'binaryMessage' data => . (, () {

 console log 'Binary message received, size:'

data byteLength

. (,

.);

 });

 // 监听 pong 响应

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第89 共531页

 socket on 'pong' => . (, () {

 console log 'Pong received from server'. ();

 });

 // 监听连接关闭

 socket on 'close' => . (, () {

 console log 'WebSocket connection closed'. ();

 isActive = false;

 });

 // 连接建立后立即发送欢迎消息

 socket send 'Hello from WebSocket client'. ();

 // 定期发送 ping 保持连接

 socket setInterval function . (() {

 if isActive () {

 socket ping. ();

 console log 'Sent ping'. ();

 }

 2000},);

 // 循环发送业务消息

 socket setLoop function . (() {

 if isActive () {

 const message = {

 type: 'data',

 sequence: messageCount + 1,

 timestamp: Date now. (),

 data: `Message content ${messageCount + 1}`

 };

 socket send JSON stringify message. (. ());

 console log 'Sent business message:' message sequence. (, .);

 }

 sleep 1 // 每 1 秒发送一次();

 });

 // 30 秒后关闭连接

 socket setTimeout function . (() {

 if isActive () {

 console log 'Closing connection after 30 seconds'. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第90 共531页

 socket close. ();

 }

 30000},);

 });

 // 验证连接状态

 check 'WebSocket connection successful' => res status === 101(, () .);

 if res status !== 101 (.) {

 console error 'WebSocket connection failed with status:'

res status

. (,

.);

 }

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第91 共531页

常用函数
最近更新时间：2025-11-28 11:15:42

本文档介绍在云压测脚本模式中常用的 JavaScript 原生函数和 PTS 扩展库函数的使用方法。这些函数可用于数

据处理、时间计算、随机数生成、字符串匹配等场景，帮助您构建更强大的压测脚本。

JS 公共库

云压测脚本模式支持 JavaScript 原生语法，详情请参见 。以下为常用函数的说明和

示例。

JavaScript 标准内置对象

Date 对象

函数说明

Date 对象用于处理日期和时间，在压测脚本中常用于：

生成时间戳用于请求参数。

计算请求耗时。

格式化时间字符串用于日志记录。

实现时间相关的业务逻辑。

前提条件

所有代码需放在 export default function() 函数中执行

日期字符串格式需符合 ISO 8601 标准或 JavaScript 支持的格式

函数签名

new Date value?: string | number : Date()

常用方法

Date.now() ：返回当前时间戳（毫秒数）。

getTime() ：返回时间戳（毫秒数）。

toISOString() ：返回 ISO 8601 格式的字符串。

getFullYear() 、 getMonth() 、 getDate() 等：获取日期各部分。

使用限制

时区默认为 UTC+8（中国标准时间）。

日期字符串解析可能因格式不同而产生差异。

https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Global_Objects

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第92 共531页

示例1：创建日期对象并格式化

本示例演示如何创建日期对象并获取不同格式的时间信息，适用于需要在请求中使用时间参数的场景。

import http from 'pts/http';

export default function () {

 // 创建日期对象

 const date1 = new Date '1995-12-17T03:24:00'();

 console log date1 // Sun Dec 17 1995 11:24:00 GMT+0800 (CST). ();

 // 获取当前时间

 const now = new Date();

 console log now toISOString // 2024-01-01T12:00:00.000Z. (. ());

 // 获取时间戳（毫秒）

 const timestamp = Date now. ();

 console log timestamp // 1704096000000. ();

 // 在 HTTP 请求中使用时间戳作为参数

 const resp = http get 'http://example.com/api' . (, {

 query: {

 'timestamp': timestamp toString. ()

 }

 });

}

示例2：计算请求耗时

本示例演示如何使用 Date 对象计算请求耗时，用于性能监控和调试。

import http from 'pts/http';

export default function () {

 // 记录开始时间

 const startTime = Date now. ();

 // 发起请求

 const resp = http get 'http://example.com/api'. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第93 共531页

 // 计算耗时

 const endTime = Date now. ();

 const duration = endTime - startTime;

 console log `请求耗时: ${duration} 毫秒`. ();

 // 检查响应状态

 if resp statusCode === 200 (.) {

 console log '请求成功'. ();

 }

}

JSON 对象

函数说明

JSON 对象提供 parse() 和 stringify() 方法，在压测脚本中用于：

解析 HTTP 响应体中的 JSON 数据。

将 JavaScript 对象序列化为 JSON 字符串用于请求体。

处理嵌套的 JSON 数据结构。

数据格式转换。

前提条件

JSON.parse() 要求输入字符串必须是有效的 JSON 格式，否则会抛出异常。

JSON.stringify() 可以处理对象、数组、字符串、数字、布尔值、null 等类型。

函数、undefined、Symbol 等类型在序列化时会被忽略或转换为 null。

函数签名

JSON parse text: string reviver?: function : any. (,)

JSON stringify value: any replacer?: function | array space?: number |

string : string

. (, ,

)

参数说明

JSON.parse()

text (string，必填)：要解析的 JSON 字符串。

reviver (function，可选)：转换函数，用于在返回之前转换解析结果。

JSON.stringify()

value (any，必填)：要序列化的值。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第94 共531页

replacer (function | array，可选)：用于控制序列化过程的函数或数组。

space (number | string，可选)：用于缩进的空格数或字符串。

返回值说明

JSON.parse() ：返回解析后的 JavaScript 对象或值。

JSON.stringify() ：返回 JSON 字符串。

使用限制

JSON.parse() 遇到无效 JSON 会抛出 SyntaxError 异常，建议使用 try-catch 处理。

循环引用的对象无法使用 JSON.stringify() 序列化。

undefined 、函数、Symbol 等类型在序列化时会被忽略。

示例1：解析响应 JSON 数据

本示例演示如何解析 HTTP 响应中的 JSON 数据并提取字段，适用于处理 API 响应的场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 // 发起请求获取 JSON 响应

 const resp = http get 'http://example.com/api/user'. ();

 // 解析 JSON 响应体

 const jsonData = JSON parse resp body. (.);

 console log jsonData name // 输出用户名称. (.);

 // 检查响应数据

 check '用户 ID 存在' => jsonData id !== undefined(, () .);

 check '用户名称不为空' => jsonData name && jsonData name length >

0

(, () . . .

);

}

示例2：构建 JSON 请求体

本示例演示如何将 JavaScript 对象序列化为 JSON 字符串用于 POST 请求，适用于需要发送复杂数据结构的场

景。

import http from 'pts/http';

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第95 共531页

export default function () {

 // 构建请求数据对象

 const requestData = {

 name: "pts",

 language: "javascript",

 version: "1.0",

 features: "http" "websocket" "grpc"[, ,]

 };

 // 序列化为 JSON 字符串

 const jsonStr = JSON stringify requestData. ();

 console log jsonStr //

{"name":"pts","language":"javascript","version":"1.0","features":

["http","websocket","grpc"]}

. ();

 // 发送 POST 请求

 const resp = http post 'http://example.com/api/data' . (, {

 headers: {

 'Content-Type': 'application/json'

 },

 body: jsonStr

 });

 console log resp statusCode. (.);

}

示例3：处理嵌套 JSON 和错误处理

本示例演示如何处理嵌套的 JSON 结构，并使用 try-catch 处理解析错误。

import http from 'pts/http';

export default function () {

 const resp = http get 'http://example.com/api/complex'. ();

 try {

 // 解析可能包含嵌套结构的 JSON

 const data = JSON parse resp body. (.);

 // 访问嵌套字段

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第96 共531页

 if data user && data user profile (. . .) {

 console log data user profile email. (. . .);

 }

 // 处理数组

 if Array isArray data items (. (.)) {

 data items forEach item => . . ({

 console log item name. (.);

 });

 }

 catch error } () {

 console error 'JSON 解析失败:' error message. (, .);

 console log '原始响应:' resp body. (, .);

 }

}

Math 对象

函数说明

Math 对象提供数学运算方法，在压测脚本中常用于：

生成随机数用于参数化测试。

数值计算和转换。

实现随机延迟、随机选择等逻辑。

数学运算和比较。

前提条件

所有方法都是静态方法，通过 Math.方法名() 调用。

随机数生成基于伪随机算法。

常用方法

Math.random() ：返回 0 到 1 之间的随机浮点数。

Math.floor(x) ：向下取整。

Math.ceil(x) ：向上取整。

Math.round(x) ：四舍五入。

Math.pow(x, y) ：返回 x 的 y 次幂。

Math.max(...values) ：返回最大值。

Math.min(...values) ：返回最小值。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第97 共531页

返回值说明

Math.random() ：返回 [0, 1) 区间的浮点数。

其他方法根据具体功能返回相应的数值。

使用限制

Math.random() 生成的是伪随机数，不适合用于加密场景。

数值运算需注意精度问题，浮点数运算可能存在精度误差。

示例1：生成随机数用于参数化

本示例演示如何生成随机整数和浮点数，用于参数化测试场景，如随机用户 ID、随机金额等。

import http from 'pts/http';

export default function () {

 // 生成 0 到 9 之间的随机整数

 const randomInt = Math floor Math random * 10. (. ());

 console log randomInt. ();

 // 生成指定范围内的随机整数（如 100 到 999）

 const min = 100;

 const max = 999;

 const randomInRange = Math floor Math random * max - min + 1 +

min

. (. () ())

;

 console log randomInRange. ();

 // 在请求中使用随机参数

 const resp = http get 'http://example.com/api/user' . (, {

 query: {

 'userId': randomInRange toString. ()

 }

 });

}

示例2：数学运算和幂运算

本示例演示如何使用 Math 对象进行数学运算，适用于需要数值计算的场景。

export default function () {

 // 计算幂

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第98 共531页

 const result = Math pow 2 10. (,);

 console log result // 1024. ();

 // 取最大值和最小值

 const numbers = 10 20 5 30 15[, , , ,];

 const max = Math max ...numbers. ();

 const min = Math min ...numbers. ();

 console log `最大值: ${max}, 最小值: ${min}`. ();

 // 四舍五入

 const rounded = Math round 3.7. ();

 console log rounded // 4. ();

}

示例3：实现随机延迟和随机选择

本示例演示如何使用随机数实现随机延迟和随机选择逻辑，用于模拟真实用户行为。

import sleep from 'pts'{ } ;

import http from 'pts/http';

export default function () {

 // 生成 1 到 5 秒之间的随机延迟

 const randomDelay = Math floor Math random * 4000 + 1000. (. ()) ;

 sleep randomDelay / 1000 // sleep 使用秒为单位();

 // 随机选择操作

 const operations = 'read' 'write' 'delete'[, ,];

 const randomOperation = operations Math floor Math random *

operations length

[. (. ()

.)];

 console log `执行操作: ${randomOperation}`. ();

 // 根据随机选择执行不同请求

 if randomOperation === 'read' () {

 http get 'http://example.com/api/read'. ();

 else if randomOperation === 'write' } () {

 http post 'http://example.com/api/write' . (, {

 body: JSON stringify data: 'test' . ({ })

 });

 }

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第99 共531页

}

RegExp 对象

函数说明

RegExp 对象用于正则表达式匹配，在压测脚本中常用于：

从响应中提取特定数据。

验证数据格式。

字符串替换和转换。

模式匹配和验证。

前提条件

正则表达式语法需符合 JavaScript 标准。

可以使用字面量形式 /pattern/ 或构造函数 new RegExp() 。

函数签名

/pattern/flags

new RegExp pattern: string flags?: string : RegExp(,)

常用方法

test(str) ：测试字符串是否匹配，返回布尔值。

exec(str) ：执行匹配，返回匹配结果数组或 null。

match(regexp) ：字符串方法，返回匹配结果。

replace(regexp, replacement) ：字符串方法，替换匹配内容。

search(regexp) ：字符串方法，返回匹配位置索引。

返回值说明

test() ：返回 true 或 false 。

exec() ：返回匹配结果数组（包含匹配内容和捕获组）或 null 。

match() ：返回匹配结果数组或 null 。

replace() ：返回替换后的新字符串。

search() ：返回匹配位置的索引或 -1 。

使用限制

复杂正则表达式可能影响性能，建议优化表达式。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第100 共531页

全局标志 g 会影响 exec() 和 test() 的行为。

需注意特殊字符的转义。

示例1：从响应中提取数据

本示例演示如何使用正则表达式从 HTTP 响应中提取特定数据，如提取 token、ID 等。

import http from 'pts/http';

export default function () {

 const resp = http get 'http://example.com/api/data'. ();

 // 使用正则表达式提取邮箱地址

 const emailRegex = /\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]

{2,}\b/g;

 const emails = resp body match emailRegex. . ();

 if emails () {

 console log '找到邮箱:' emails. (,);

 }

 // 提取数字 ID

 const idRegex = /"id":\s*(\d+)/;

 const match = resp body match idRegex. . ();

 if match () {

 const id = match 1[];

 console log '提取的 ID:' id. (,);

 }

}

示例2：字符串替换和格式化

本示例演示如何使用正则表达式进行字符串替换，适用于数据格式转换场景。

export default function () {

 // 替换姓名格式：从 "John Smith" 转换为 "Smith, John"

 let re = /(\w+)\s(\w+)/;

 let str = "John Smith";

 let newStr = str replace re "$2, $1". (,);

 console log newStr // Smith, John. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第101 共531页

 // 移除字符串中的空格

 const text = "Hello World Test";

 const noSpaces = text replace /\s/g "". (,);

 console log noSpaces // HelloWorldTest. ();

 // 格式化电话号码

 const phone = "13812345678";

 const formatted = phone replace /(\d{3})(\d{4})(\d{4})/

"$1-$2-$3"

. (,

);

 console log formatted // 138-1234-5678. ();

}

示例3：数据验证和检查

本示例演示如何使用正则表达式验证数据格式，适用于参数校验场景。

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 // 验证邮箱格式

 const emailRegex = /^[^\s@]+@[^\s@]+\.[^\s@]+$/;

 const email = "user@example.com";

 const isValidEmail = emailRegex test email. ();

 check '邮箱格式正确' => isValidEmail(, ());

 // 验证手机号格式（11位数字）

 const phoneRegex = /^1[3-9]\d{9}$/;

 const phone = "13812345678";

 const isValidPhone = phoneRegex test phone. ();

 check '手机号格式正确' => isValidPhone(, ());

 // 在请求中使用验证后的数据

 if isValidEmail && isValidPhone () {

 const resp = http post 'http://example.com/api/register' . (, {

 body: JSON stringify. ({

 email: email,

 phone: phone

 })

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第102 共531页

 });

 }

}

PTS 扩展库

PTS 扩展库提供了额外的工具函数，用于增强脚本功能。使用前需通过 import util from 'pts/util' 导

入模块。

Base64编码解码

函数说明

util.base64Encoding() 和 util.base64Decoding() 用于 Base64 编码和解码，在压测脚本中常用

于：

对请求参数进行 Base64 编码。

解码响应中的 Base64 数据。

处理二进制数据的文本传输。

实现认证和加密相关功能。

前提条件

需先导入 pts/util 模块： import util from 'pts/util' 。

所有代码需放在 export default function() 函数中执行。

编码输入可以是字符串或 ArrayBuffer。

解码输出可以是字符串或 ArrayBuffer（通过 mode 参数控制）。

函数签名

base64Encoding input: string | ArrayBuffer encoding?: "std" | "rawstd"

| "url" | "rawurl" : string

(,

)

base64Decoding input: string encoding?: "std" | "rawstd" | "url" |

"rawurl" mode?: "b" : string | ArrayBuffer

(,

,)

参数说明

util.base64Encoding()

input (string | ArrayBuffer，必填)：要编码的字符串或字节数组。

encoding (string，可选)：编码方式，可选值：

"std" ：标准 Base64编码（默认），符合 RFC 4648标准。

"rawstd" ：标准原始编码，无填充字符。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第103 共531页

"url" ：URL 安全编码，适用于 URL 和文件名。

"rawurl" ：URL 安全原始编码，无填充字符。

util.base64Decoding()

input (string，必填)：要解码的 Base64 字符串。

encoding (string，可选)：编码方式，需与编码时使用的编码方式一致，默认为 "std" 。

mode (string，可选)：返回类型控制，不设置返回 string，设置为 "b" 返回 ArrayBuffer。

返回值说明

base64Encoding() ：返回 Base64 编码后的字符串。

base64Decoding() ：根据 mode 参数返回字符串或 ArrayBuffer。

使用限制

编码和解码需使用相同的 encoding 参数，否则可能无法正确解码。

URL 编码方式适用于需要在 URL 中使用的场景。

ArrayBuffer 模式适用于处理二进制数据。

示例1：基本编码解码

本示例演示基本的 Base64编码和解码操作，适用于简单的数据转换场景。

import util from 'pts/util';

export default function () {

 // Base64 编码

 const base64Encoded = util base64Encoding "Hello, world". ();

 console log base64Encoded // SGVsbG8sIHdvcmxk. ();

 // Base64 解码

 const base64Decoded = util base64Decoding base64Encoded. ();

 console log base64Decoded // Hello, world. ();

}

示例2：在 HTTP 请求中使用 Base64编码

本示例演示如何在 HTTP 请求中使用 Base64编码，适用于需要传递编码参数的场景，如 Basic 认证、API 签名

等。

import http from 'pts/http';

import util from 'pts/util';

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第104 共531页

export default function () {

 // 对用户名和密码进行 Base64 编码用于 Basic 认证

 const credentials = "username:password";

 const encodedCredentials = util base64Encoding credentials. ();

 // 在请求头中使用

 const resp = http get 'http://example.com/api/protected' . (, {

 headers: {

 'Authorization': `Basic ${encodedCredentials}`

 }

 });

 console log resp statusCode. (.);

}

示例3：使用不同的编码方式

本示例演示如何使用不同的 Base64编码方式，适用于不同场景的需求。

import util from 'pts/util';

export default function () {

 const text = "http://www.example.com";

 // 标准编码（默认）

 const stdEncoded = util base64Encoding text. ();

 console log '标准编码:' stdEncoded. (,);

 // URL 安全编码（适用于 URL）

 const urlEncoded = util base64Encoding text 'url'. (,);

 console log 'URL 编码:' urlEncoded. (,);

 // 解码时需使用相同的编码方式

 const urlDecoded = util base64Decoding urlEncoded 'url'. (,);

 console log 'URL 解码:' urlDecoded // http://www.example.com. (,);

}

示例 4：处理 ArrayBuffer 数据

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第105 共531页

本示例演示如何使用 ArrayBuffer 模式处理二进制数据。

import util from 'pts/util';

export default function () {

 // 编码字符串

 const encoded = util base64Encoding "Hello, world". ();

 // 解码为 ArrayBuffer

 const arrayBuffer = util base64Decoding encoded 'std' 'b'. (, ,);

 console log 'ArrayBuffer 类型:' arrayBuffer. (,);

 // 如果需要，可以将 ArrayBuffer 转换回字符串

 // 注意：实际使用时需根据具体需求处理 ArrayBuffer

}

UUID 生成

函数说明

util.uuid() 用于生成 UUID（通用唯一标识符），在压测脚本中常用于：

生成唯一的请求 ID。

创建唯一的用户标识。

生成唯一的订单号、会话 ID 等。

实现去重和追踪功能。

前提条件

需先导入 pts/util 模块： import util from 'pts/util' 。

所有代码需放在 export default function() 函数中执行。

生成的 UUID 符合 UUID v4 标准（随机 UUID）。

函数签名

uuid : string()

参数说明

无需参数。

返回值说明

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第106 共531页

返回 UUID v4 格式的字符串，格式为： xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx ，其中：

x 为十六进制数字。

y 为 8、9、a 或 b 之一。

示例： 5fbf1e59-cabf-469b-9d9f-6622e97de1ec 。

使用限制

每次调用都会生成新的 UUID，不会重复。

UUID 是随机生成的，不保证顺序性。

适用于需要唯一标识的场景，不适合用于加密。

示例1：生成唯一请求 ID

本示例演示如何生成 UUID 作为请求的唯一标识，适用于需要追踪和日志记录的场景。

import http from 'pts/http';

import util from 'pts/util';

export default function () {

 // 生成唯一请求 ID

 const requestId = util uuid. ();

 console log '请求 ID:' requestId // 5fbf1e59-cabf-469b-9d9f-

6622e97de1ec

. (,);

 // 在请求头中传递请求 ID

 const resp = http get 'http://example.com/api/data' . (, {

 headers: {

 'X-Request-ID': requestId

 }

 });

 console log '响应状态:' resp statusCode. (, .);

}

示例2：创建唯一用户标识

本示例演示如何使用 UUID 创建唯一的用户标识，适用于模拟多用户压测场景。

import http from 'pts/http';

import util from 'pts/util';

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第107 共531页

export default function () {

 // 为每个虚拟用户生成唯一 ID

 const userId = util uuid. ();

 console log '用户 ID:' userId. (,);

 // 使用唯一用户 ID 进行注册

 const registerResp = http post 'http://example.com/api/register' . (, {

 body: JSON stringify. ({

 userId: userId,

 username: `user_${userId.substring(0, 8)}`,

 email: `user_${userId.substring(0, 8)}@example.com`

 })

 });

 // 使用该用户 ID 进行后续操作

 if registerResp statusCode === 200 (.) {

 const loginResp = http post 'http://example.com/api/login' . (, {

 body: JSON stringify. ({

 userId: userId

 })

 });

 }

}

示例3：生成唯一订单号和会话 ID

本示例演示如何使用 UUID 生成订单号、会话 ID 等业务唯一标识，适用于电商、支付等场景的压测。

import http from 'pts/http';

import util from 'pts/util';

export default function () {

 // 生成会话 ID

 const sessionId = util uuid. ();

 console log '会话 ID:' sessionId. (,);

 // 创建购物车会话

 const cartResp = http post 'http://example.com/api/cart' . (, {

 headers: {

 'X-Session-ID': sessionId

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第108 共531页

 },

 body: JSON stringify. ({

 sessionId: sessionId,

 items: []

 })

 });

 // 生成订单号

 const orderId = util uuid. ();

 console log '订单号:' orderId. (,);

 // 提交订单

 const orderResp = http post 'http://example.com/api/order' . (, {

 body: JSON stringify. ({

 orderId: orderId,

 sessionId: sessionId,

 amount: 100.00

 })

 });

 console log '订单状态:' orderResp statusCode. (, .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第109 共531页

HTTP 协议压测

基本用法
最近更新时间：2024-06-07 17:20:32

PTS 支持 HTTP 协议的 GET、POST、PUT、PATCH、OPTIONS、DELETE 和 HEAD 请求。

脚本编写

HTTP GET 请求

// Send a http get request

import http from 'pts/http';

import check sleep from 'pts'{ , } ;

export default function () {

 // simple get request

 const resp1 = http get 'http://httpbin.org/get'. ();

 console log resp1 body. (.);

 // if resp1.body is a json string, resp1.json() transfer json format

body to a json object

 console log resp1 json. (. ());

 check 'status is 200' => resp1 statusCode === 200(, () .);

 // sleep 1 second

 sleep 1();

 // get request with headers and parameters

 const resp2 = http get 'http://httpbin.org/get' . (, {

 headers: {

 'Connection': 'keep-alive',

 'User-Agent': 'pts-engine'

 },

 query: {

 'name1': 'value1',

 'name2': 'value2',

 }

 });

 console log resp2 json args name1 // 'value1'. (. (). .);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第110 共531页

 check 'body.args.name1 equals value1' => resp2 json args name1

=== 'value1'

(, () . (). .

);

};

HTTP POST 请求

// Send a post request

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 const resp = http post. (

 'http://httpbin.org/post',

 {

 user_id: '12345',

 },

 {

 headers: {

 'Content-Type': 'application/json',

 },

 }

);

 console log resp json json user_id // 12345. (. (). .);

 check 'body.json.user_id equals 12345' =>

resp json json user_id === '12345'

(, ()

. (). .);

}

文件依赖

在压测场景里，您可上传以下几种类型的文件，提供压测执行时的状态数据：

参数文件：以 csv 文件的形式，动态提供测试数据。也即，场景被每个并发用户（VU）执行时，会获取参数文

件里的每行数据，作为测试数据的值，供脚本里的变量引用。具体使用方法参见： 。使用参数文件

请求文件：构建您的请求所需的文件，如需要上传的文件。具体使用方法参见： 。使用请求文件

协议文件：请求序列化所需要用到的文件。具体使用方法参见： 。使用协议文件

https://cloud.tencent.com/document/product/248/87340
https://cloud.tencent.com/document/product/248/87341
https://cloud.tencent.com/document/product/248/87342

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第111 共531页

配置选项
最近更新时间：2024-11-08 15:33:22

PTS 支持的配置选项

HTTP 的请求配置，可在全局变量 option 中定义。PTS 支持的配置选项如下表所示：

HTTP 请求配置选项 描述

maxRedirects 重定向跳转次数

maxIdleConns 单个 VU 最大活跃连接数

maxIdleConnsPerH

ost
单个 VU 单个域名最大活跃连接数

disableKeepAlives 禁用长连接

headers 公共请求头

timeout 请求超时时间，单位毫秒

basicAuth 基本认证

http2 是否开启 http2

discardResponseB

ody
是否丢弃回包，当压测业务不关注回报，可开启此开关，提升压测性能

说明：

完整选项列表请参见 。HTTP global Options

配置 HTTP 请求的超时时间

import http from "pts/http";

export const option = {

 http: {

 timeout: 3000,

 }

}

https://cloud.tencent.com/document/product/248/88559

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第112 共531页

export default function () {

 http get "http://httpbin.org/get" // Error: Get

"http://httpbin.org/get": net/http: request canceled while waiting for

connection

. ();

}

配置 HTTP 请求的基本认证

// HTTP basic authentication

import http from 'pts/http';

import check from 'pts'{ } ;

export const option = {

 http: {

 basicAuth: {

 username: 'user',

 password: 'passwd',

 }

 }

}

export default function () {

 const resp = http get `http://httpbin.org/basic-auth/user/passwd`. ();

 console log resp json authenticated // true. (. ().);

 check 'body.authenticated equals true' =>

resp json authenticated === true

(, ()

. ().);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第113 共531页

gRPC 协议压测
最近更新时间：2024-06-07 17:20:32

本文将介绍 gRPC 协议请求的编排方法。

基本用法

使用 提供的接口，您可以创建 gRPC client，发送 gRPC 请求。pts/grpc API

协议上传

将您定义好的 proto 文件，通过云压测 > 测试场景 > 新建测试场景 > 文件管理 > 协议文件上传。

说明：

关于 PTS 支持的协议类型及使用方法，请参见 。使用协议文件

脚本编写

先创建一个 gRPC client，然后您可以使用 client 提供的以下方法编写您的逻辑：

load ：加载并解析您上传的 proto 文件。

connect ：与 gRPC 服务器建立连接。

invoke ：发起 RPC 调用并获得响应。

close ：关闭连接。

Proto 文件及场景脚本的示例如下：

// based on https://github.com/go-

kit/kit/blob/master/examples/addsvc/pb/addsvc.proto

syntax = "proto3";

package addsvc;

// The Add service definition.

service Add {

 // Sums two integers.

 rpc Sum SumRequest returns SumReply () () {}

}

// The sum request contains two parameters.

message SumRequest {

https://cloud.tencent.com/document/product/248/88769
https://cloud.tencent.com/document/product/248/87342

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第114 共531页

 int64 a = 1;

 int64 b = 2;

}

// The sum response contains the result of the calculation.

message SumReply {

 int64 v = 1;

 string err = 2;

}

场景脚本：

// GRPC API

import grpc from 'pts/grpc';

const client = new grpc.Client();

// 加载协议文件根目录中的 addsvc.proto

client load 'addsvc.proto'. ([],);

export default => () {

 client connect 'grpcb.in:9000' insecure: true . (, { });

 const rsp = client invoke 'addsvc.Add/Sum' . (, {

 a: 1,

 b: 2,

 });

 console log rsp data v // 3. (. .);

 client close. ();

};

文件依赖

在压测场景里，您可上传以下几种类型的文件，提供压测执行时的状态数据：

参数文件：以 csv 文件的形式，动态提供测试数据。也即，场景被每个并发用户（VU）执行时，会获取参数文

件里的每行数据，作为测试数据的值，供脚本里的变量引用。具体使用方法参见： 。使用参数文件

请求文件：构建您的请求所需的文件，如需要上传的文件。具体使用方法参见： 。使用请求文件

协议文件：请求序列化所需要用到的文件。具体使用方法参见： 。使用协议文件

https://cloud.tencent.com/document/product/248/87340
https://cloud.tencent.com/document/product/248/87341
https://cloud.tencent.com/document/product/248/87342

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第115 共531页

Protobuf 协议压测
最近更新时间：2024-06-12 16:22:41

本文将介绍 Protobuf 序列化协议的使用方法。

协议上传

使用 Protobuf 协议需要用户上传 Proto 协议文件，压测引擎依赖协议文件完成请求的序列化。支持用户上传文件

或目录，文件名需要保持唯一，同名文件将会被新上传的文件覆盖。如果用户上传 zip 文件，PTS 会解压文件，并

展示解压后的文件结构。如果目录或者 zip 包中包含非 Proto 文件，PTS 将忽略这些文件。

说明：

多协议文件请参见 。使用协议文件

借助您上传的 proto 文件，您可对脚本中的对象做序列化/反序列化。如果 demo.proto 依赖其他 proto 文件，

那么也需要一并上传（谷歌提供的标准 proto 文件：google/protobuf/*.proto 不需要额外上传，PTS 会自动加

载）。用户只需要加载主 pb 即可, 主 pb 依赖的其他 pb 文件，会自动递归加载。

示例

协议文件

duty.proto

syntax = "proto3";

message Duty {

 string time = 1;

https://cloud.tencent.com/document/product/248/87342

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第116 共531页

 string work = 2;

}

student.proto

syntax = "proto3";

import "duty.proto";

package student;

message Student {

 string name = 1;

 Gender gender = 2;

 message GradeInfo {

 enum Grade {

 DEFAULT = 0;

 FIRST = 1;

 SECOND = 2;

 THIRD = 3;

 }

 Grade grade = 1;

 }

 GradeInfo gradeInfo = 3;

 map<string, int32> scores = 4;

 repeated Duty duties = 5;

}

enum Gender {

 DEFAULT = 0;

 FEMALE = 1;

 MALE = 2;

}

message SearchRequest {

 string id = 1;

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第117 共531页

message SearchResponse {

 message Result {

 Student student = 1;

 }

}

service SearchService {

 rpc SearchScores SearchRequest returns SearchResponse() ();

}

脚本

import protobuf from 'pts/protobuf';

// 加载协议文件根目录中的 student.proto，同时会加载 duty.proto

protobuf load 'student.proto'. ([],);

// 加载中协议文件 dirName 目录中的 student.proto

// protobuf.load(['dirName'], 'student.proto');

export default function () {

 let bodyBuffer = protobuf marshal 'student.Student' . (, {

 'name': 'Alice',

 'gender': 1 // 或者 'FEMALE'，enum 直接设置具体值即可,

 'gradeInfo': {

 'grade': 'THIRD'

 },

 'scores': {

 'Chinese': 116,

 'Math': 120,

 'English': 106

 },

 'duties': [

 {

 'time': 'time1',

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第118 共531页

 'work': 'work1'

 },

 {

 'time': 'time2',

 'work': 'work2'

 }

]

 });

 const value = protobuf unmarshal 'student.Student' bodyBuffer. (,);

// {"name":"Alice","gender":"FEMALE","gradeInfo":

{"grade":"THIRD"},"scores":

{"Math":120,"Chinese":116,"English":106},"duties":

[{"time":"time","work":"work"}]}

 console log JSON stringify value. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第119 共531页

WebSocket 协议压测
最近更新时间：2025-08-26 11:02:52

本介绍基于 WebSocket 协议的压测脚本的编写方法。

说明：

详细的 API 文档请参见 。PTS API

概述

 是一种应用层通信协议，可在单个 TCP 连接上进行全双工通信。WebSocket

不同于 HTTP 请求的客户端发起、服务端响应的一问一答模式，WebSocket 连接一旦建立，直到连接关闭之

前，客户端、服务器之间都可源源不断地、双向地交换数据。因此，在压测场景中，基于 WebSocket 请求的

脚本与基于 HTTP 请求的脚本，其结构和作用机制有所不同：

执行 HTTP 脚本的每个 VU 会持续不断地迭代主函数（ export default function() { ... } ），

直到压测结束。

执行 WebSocket 脚本的每个 VU 不会持续迭代主函数，因为主函数会被建立连接的 ws.connect 方法

阻塞，直到连接关闭。而在连接建立后的回调函数里（ function (socket) {...} ），会持续不断地

监听和处理异步事件，直到压测结束。

脚本编写

PTS API 的 ws 模块提供了 WebSocket 协议的相关接口，请参见 。pts/ws API

基本用法

用 ws.connect 方法建立连接，并在其回调函数里定义您的业务逻辑：

ws.connect 的必传参数为 URL 和回调函数。

若连接建立成功，PTS 会将创建好的 ws.Socket 对象传入回调函数。您可在回调函数里，定义您的

WebSocket 请求逻辑。

执行完回调函数， ws.connect 会返回 ws.Response 对象。

ws.Socket 对象的常用方法：

send ：发送文本消息。

close ：关闭连接。

on ：监听事件，并用回调函数处理事件。当前 PTS 支持的事件列表如下：

事件名 事件用途

open 建立连接

close 关闭连接

https://cloud.tencent.com/document/product/248/88846
https://datatracker.ietf.org/doc/html/rfc6455
https://cloud.tencent.com/document/product/248/88846

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第120 共531页

error 发生错误

message 接收文本消息

binaryMessage 接收二进制消息

pong 接收 pong 消息

ping 接收 ping 消息

代码示例如下：

import ws from 'pts/ws';

import check sleep from 'pts'{ , } ;

export default function () {

 const res = ws connect "ws://localhost:8080/echo" function socket . (, ()

{

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'Message received: '

data

. (, () . (,

));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket send "message". ();

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

 socket close. ();

 3000},);

 socket setInterval function . (() {

 socket ping. ();

 500},);

 socket setLoop function . (() {

 sleep 0.1()

 socket send "loop message". ()

 });

 });

 check "status is 101" => res status === 101(, () .);

}

文件依赖

在压测场景里，您可上传以下几种类型的文件，提供压测执行时的状态数据：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第121 共531页

参数文件：以 csv 文件的形式，动态提供测试数据。也即，场景被每个并发用户（VU）执行时，会获取参数文

件里的每行数据，作为测试数据的值，供脚本里的变量引用。具体使用方法请参见 。使用参数文件

请求文件：构建您的请求所需的文件，如需要上传的文件。具体使用方法请参见 。使用请求文件

协议文件：请求序列化所需要用到的文件。具体使用方法请参见 。使用协议文件

https://cloud.tencent.com/document/product/248/87340
https://cloud.tencent.com/document/product/248/87341
https://cloud.tencent.com/document/product/248/87342

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第122 共531页

多脚本压测
最近更新时间：2024-08-16 15:02:21

在同一场景中，若您需要配置多个脚本，并且基于不同权重，按比例分配各脚本的 VU 数，则您可使用多脚本压测

模式，实现更灵活的脚本定制及施压配置。

基本用法

登录 ，在左侧导航栏选择云压测 >测试场景， 点击新建场景。在脚本模式的场景中，您可如下图

所示，点开多脚本导航栏，添加新的脚本：

腾讯云可观测平台

在新建脚本的页面，您需填写新脚本的名称以及权重：

若您需要修改原有脚本，可在多脚本导航栏右侧对该脚本进行编辑，还可以删除脚本。

https://console.cloud.tencent.com/monitor/overview

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第123 共531页

压力分配规则

当压测任务执行时，PTS 将计算各个脚本的权重占所有脚本总权重的百分比，来分配施压力度：

在并发模式下，各脚本的 VU 将按该脚本权重占总权重的比例分配。

在 RPS 模式下，各脚本的 RPS 将按该脚本权重占总权重的比例分配。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第124 共531页

SQL 数据库压测
最近更新时间：2024-07-15 15:26:51

本文介绍云压测 SQL 数据库的脚本编排方法，用于云压测支持 SQL 语言的关系型数据库（如 MySQL 等）。

基本用法

使用 API 提供的接口，您可创建连接 SQL 数据库的客户端，发送 DDL 和 DML 请求，对数据库做基本

的增删改查等操作。

pts/sql

数据库连接

建立数据库连接可调用 new sql.Database(driverName: string, dataSourceName: string) 方法。

其中， driverName

参数用于指定数据库驱动程序， dataSourceName 参数用于指定数据源。

脚本示例如下：

import sql from 'pts/sql';

const db = new sql.Database sql MySQL

"user:passwd@tcp(ip:port)/database"

(. ,

)

export default function () {

 // 向数据库发送请求

}

说明：

若数据库表中带有日期或时间字段，建立数据库连接时，建议在连接串中加入 parserTime 参数（例

如： user:passwd@tcp(ip:port)/database?parseTime=true ），避免时间解析出错。

建议将上述建立数据库连接的语句，作为全局变量放在主函数外部（如上述示例），以供同一个 VU 在

迭代执行主函数时能够复用连接，避免多次重复创建数据库连接，带来不必要的资源消耗。

SQL 查询

SQL 查询可调用 db.query(sql string) 方法，返回符合条件的数据库记录数组。其中， sql 参数代表传入

的 SQL 查询语句。

脚本示例如下：

import sql from 'pts/sql';

https://cloud.tencent.com/document/product/248/88788

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第125 共531页

const db = new sql.Database sql MySQL

"user:passwd@tcp(ip:port)/database"

(. ,

)

export default function () {

 let rows = db query "SELECT * FROM user". ();

 console log JSON stringify rows //

[{"id":1,"name":"zhangsan","age":23},{"id":2,"name":"lisi","age":2}]

. (. ());

}

SQL 执行

SQL 执行可调用 db.exec(sql string) 方法，传入执行语句，返回本次执行对数据库的影响（返回字段包

括：最后插入行的 ID、所有受影响的行数）。

其中， sql 参数代表传入的 SQL 执行语句。

脚本示例如下：

import sql from 'pts/sql';

const db = new sql.Database sql MySQL

"user:passwd@tcp(ip:port)/database"

(. ,

)

export default function () {

 // 修改数据

 let result = db exec "UPDATE user SET age=? WHERE name='zhangsan'"

Math floor Math random * 100

. (,

. (. ()));

 console log JSON stringify result //

{"lastInsertId":0,"rowsAffected":1}

. (. ());

 // 插入数据

 let result1 = db exec "insert into user (name, age) values

('wanger', 18)"

. (

);

 console log JSON stringify result //

{"lastInsertId":66,"rowsAffected":1}

. (. ());

}

说明：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第126 共531页

db.exec 方法支持常见的 DDL 命令（如 create、drop、alter）和常见的 DML 命令（如 insert、

update、delete）。

脚本示例

一个包含数据库基本操作及检查点使用的完整脚本示例如下：

import sql from 'pts/sql';

import sleep check from 'pts'{ , } ;

const db = new sql.Database sql MySQL

"user:passwd@tcp(ip:port)/database"

(. ,

)

export default function () {

 // 查询数据

 let rows = db query "SELECT * FROM user". ();

 console log JSON stringify rows //

[{"id":1,"name":"zhangsan","age":23},{"id":2,"name":"lisi","age":2}]

. (. ());

 // 新增数据

 let result = db exec "insert into user (name, age) values ('wanger',

18)"

. (

);

 console log JSON stringify result //

{"lastInsertId":66,"rowsAffected":1}

. (. ());

 // 删除数据

 let result1 = db exec "delete from user where id > 8". ();

 console log JSON stringify result //

{"lastInsertId":0,"rowsAffected":2}

. (. ());

 // 修改数据

 let result2 = db exec "UPDATE user SET age=? WHERE name='zhangsan'"

Math floor Math random * 100

. (,

. (. ()));

 console log JSON stringify result //

{"lastInsertId":0,"rowsAffected":1}

. (. ());

 // 设置检查点

 check "1 row returned" => result rowsAffected === 1(, () .);

 sleep 1()

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第127 共531页

}

脚本验证

若要验证脚本执行结果，可在正式压测前，先使用 PTS 调试功能，快速验证结果是否符合预期。

更多详情，可参见 。调试场景

https://cloud.tencent.com/document/product/248/87354

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第128 共531页

Socket.IO 框架压测
最近更新时间：2024-07-12 15:43:01

基本概念

Socket.IO

Socket.IO 是一个面向 Web 端即时通信技术的代码工具库，它主要基于 WebSocket 协议建立连接，同时也把

HTTP 长轮询 作为后备方案，支持即时、双向、基于事件的通信。其主要特性如下：

高性能：在大多数情况下，它使用 WebSocket 协议建立连接，在客户端和服务器之间，提供双向、低延迟的

通信通道。

可靠性：在无法建立 WebSocket 连接时（例如浏览器不支持 WebSocket 协议、或 WebSocket 连接被代

理或防火墙拦截等），它将使用 HTTP 长轮询作为替代方案。另外，如果连接丢失，客户端将自动重试连接。

可扩展：支持将应用程序部署到多个服务器，向所有连接的客户端发送事件。

WebSocket

WebSocket 是一种应用层通信协议，可在单个 TCP 连接上进行全双工通信。

不同于 HTTP 协议的客户端发起请求、服务端响应的一问一答模式，WebSocket 连接一旦建立，直到连接关闭

之前，客户端、服务器之间都可源源不断地、双向地交换数据。

HTTP 长轮询

HTTP 长轮询是一种基于 HTTP 协议的 Web 端即时通信技术。当服务器收到客户端发来的请求后，不会直接进行

响应，而是先将这个请求挂起，判断服务器端数据是否有更新：

如果有数据更新，则服务器正常返回响应。

如果一直没有数据更新，则达到服务器端设置的超时时间后返回。

客户端则会在处理完服务器返回的响应后，再次发出请求，重新建立连接。

HTTP 长轮询和 HTTP 短轮询相比较，HTTP 长轮询在无数据更新的情况下，不会频繁发送请求，减少了不必要

的请求次数、节约了资源。

Socket.IO 压测介绍

在 PTS 压测场景中，基于 Socket.IO 请求的脚本与基于 HTTP 请求的脚本，其结构和作用机制有所不同：

执行 HTTP 脚本的每个 VU 会持续不断地迭代主函数 （ export default function() { ... } ），直

到压测结束。

执行 Socket.IO 脚本的每个 VU 不会持续迭代主函数，因为主函数会被建立连接的 io.connect 方法阻

塞，直到连接关闭。而在连接建立后的回调函数里（ function (socket) {...} ），会持续不断地监听和

处理异步事件，直到压测结束。

脚本编写

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第129 共531页

PTS API 的 Socket.IO 模块提供了 Socket.IO 协议的相关接口，详情可参见 。

使用这些接口，您可以建立 Socket.IO 连接、发送/收取事件消息。

socketio API

基本用法：

用 connect 方法建立连接，并在其回调函数里定义您的业务逻辑：

该方法的必传参数为待连接服务的 URL，和连接成功后需执行的回调函数。

该方法的可选参数为调整配置的选项，包括：

protocol ：协议类型，支持 polling（HTTP 长轮询）和 websocket（WebSocket）。

headers ：请求头参数。

若连接建立成功，PTS 会将创建好的 SocketIO 对象传入回调函数。您可在回调函数里，定义您的

Socket.IO 请求逻辑，发送/收取事件消息。

执行完回调函数， connect 会返回 Response 对象，200 为成功返回码。

SocketIO 对象的常用方法：

emit ：发送事件。参数为事件名、消息数据、回调函数：

event ：自定义事件的名称。

msg ：文本消息或二进制数据。

callback : （可选）回调函数。

close ：关闭连接。

on ：监听事件，并用回调函数处理事件。PTS 支持监听的事件列表如下：

事件名 事件用途

open 建立连接

close 关闭连接

error 发生错误

message 接收文本消息

binaryMessage 接收二进制消息

setTimeout : 等待 intervalMs 毫秒后执行函数。

setInterval ：按照 intervalMs 毫秒定期执行函数。

setLoop ：循环执行函数直至 context 结束或者连接关闭。

代码示例如下：

// SocketIO API

import socketio from 'pts/socketio';

import check sleep from 'pts'{ , } ;

https://cloud.tencent.com/document/product/248/93062

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第130 共531页

import util from 'pts/util';

export default function () {

 const res = socketio connect 'http://localhost:8080' function

socket

. (,

() {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'message received: '

data

. (, () . (,

));

 socket on 'binaryMessage' data => console log 'binaryMessage

received: ' data

. (, () . (

,));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

 socket close. ();

 3000},);

 // 设置定时任务

 socket setTimeout function . (() {

 socket emit 'message' 'hello'. (,);

 socket emit 'binaryMessage' util base64Decoding 'aGVsbG8='

'std' 'b'

. (, . (,

,));

 socket emit 'ackMessage' 'hello ack' function msg . (, , () {

 console log 'ack message received: ' msg. (,)

 })

 500},);

 // 设置定期执行的任务

 socket setInterval function. ((){

 socket emit 'message' 'interval message'. (,);

 500},);

 // 设置循环执行任务，socket/context 关闭自然退出

 socket setLoop function . (() {

 sleep 0.1();

 socket emit 'message' 'loop message'. (,);

 });

 }, {

 // 支持 polling、websocket 协议

 protocol:'websocket',

 headers: {

 token: 'xxx',

 }

 });

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第131 共531页

 check 'status is 200' => res status === 200(, () .);

}

脚本验证

若要验证脚本执行结果，可在正式压测前，先使用 PTS 调试功能，快速验证结果是否符合预期。更多详情可参见

。调试场景

文件依赖

在压测场景里，您可上传以下几种类型的文件，提供压测执行时的状态数据：

参数文件：以 csv 文件的形式，动态提供测试数据。也即，场景被每个并发用户（VU）执行时，会获取参数文

件里的每行数据，作为测试数据的值，供脚本里的变量引用。具体使用方法参见： 。使用参数文件

请求文件：构建您的请求所需的文件，如需要上传的文件。具体使用方法参见： 。使用请求文件

协议文件：请求序列化所需要用到的文件。具体使用方法参见： 。使用协议文件

https://cloud.tencent.com/document/product/248/87354
https://cloud.tencent.com/document/product/248/87340
https://cloud.tencent.com/document/product/248/87341
https://cloud.tencent.com/document/product/248/87342

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第132 共531页

TCP/UDP 协议压测
最近更新时间：2024-08-16 11:52:01

Socket 基本概念

Socket 是一种操作系统提供的进程之间的通信机制。操作系统会提供一组封装了 TCP/IP 协议的 Socket 接口，

进程便可通过这些接口来使用 Socket、收发网络数据。

在使用 Socket 接口时，一个进程的 IP 地址加上端口构成一个 Socket 地址；客户端与服务器双方进程的

Socket 地址再加上传输协议（TCP 或 UDP），就构成了 Socket 五元组，标识一次网络通信。

脚本编写

PTS API 的 socket 模块提供了支持 Socket 的相关接口，详见 。Socket 概览

使用这些接口，您可以建立 Socket 实例，然后通过该实例发送或接收 TCP/UDP 数据。

基本用法：

1. 创建 Socket 实例

通过 new socket.Conn 方法，可以创建一个 Socket 实例。该方法的参数为协议名（ tcp 或 udp ）、

服务地址、服务端口。

2. 使用 Socket 实例

发送数据：通过实例的 send 方法发送数据。参数为二进制数据，返回值为发送的字节数。

接收数据：通过实例的 recv 方法接收数据。参数为接收的字节数，返回值为接收的二进制数据。

关闭连接：通过实例的 close 方法关闭连接。

使用 TCP 协议的脚本示例：

// tcp connect to send package

import socket from "pts/socket";

import util from 'pts/util';

import sleep from 'pts'{ } ;

export default function () {

 const tcp_socket = new socket.Conn 'tcp' '127.0.0.1' 80(, ,);

 const send_data = `GET /get HTTP/1.1

Host: 127.0.0.1

User-Agent: pts-engine

\r\n`;

 tcp_socket send util toArrayBuffer send_data. (. ());

 const bytes_read = tcp_socket recv 512. ();

 tcp_socket close. ();

https://cloud.tencent.com/document/product/248/88850

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第133 共531页

 console log bytes_read. ();

 sleep 1();

}

使用 UDP 协议的脚本示例：

// udp connect to send package

import socket from "pts/socket";

import util from 'pts/util';

export default function main () {

 const udp_socket = new socket.Conn 'udp' '127.0.0.1' 20001(, ,);

 const send_data = `test data`;

 udp_socket send util toArrayBuffer send_data. (. ());

 const bytes_read = udp_socket recv 1024. ();

 udp_socket close. ();

 console log bytes_read. ();

}

脚本验证

若要验证脚本执行结果，可在正式压测前，先使用 PTS 调试功能，快速验证结果是否符合预期。更多详情可参见

。调试场景

文件依赖

在压测场景里，您可上传以下几种类型的文件，提供压测执行时的状态数据：

参数文件：以 csv 文件的形式，动态提供测试数据。也即，场景被每个并发用户（VU）执行时，会获取参数文

件里的每行数据，作为测试数据的值，供脚本里的变量引用。具体使用方法参见： 。使用参数文件

请求文件：构建您的请求所需的文件，如需要上传的文件。具体使用方法参见： 。使用请求文件

协议文件：请求序列化所需要用到的文件。具体使用方法参见： 。使用协议文件

https://cloud.tencent.com/document/product/248/87354
https://cloud.tencent.com/document/product/248/87340
https://cloud.tencent.com/document/product/248/87341
https://cloud.tencent.com/document/product/248/87342

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第134 共531页

Redis 压测
最近更新时间：2025-03-24 10:32:02

本文介绍云压测 Redis 测试脚本编写方法，用于支持 Redis 数据库常用操作。

基本用法

使用 API 提供的接口，您可以创建 Redis 数据库的客户端并发送操作请求，进行数据库的基本操作。Client 概览

数据库连接

建立 Redis 数据库连接可以调用 new redis.Client(url: string) 方法。其中， url 是目标 redis 的地

址。

示例如下：

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function () {

 // ...

}

说明：

建议将上述建立数据库连接的语句，作为全局变量放在主函数外部（如示例），以供同一个 VU 在迭代执

行主函数时能够复用连接，避免多次重复创建数据库连接，带来不必要的资源消耗。

数据库操作

连接数据库之后，可以通过 redis 方法进行数据库操作，如下方示例所示。其他方法请参考 JavaScript API 文档

。pts/redis

// redis API

import redis from 'pts/redis';

// Create a redis Client instance.

let client = new redis.Client 'redis://:<password>@<host>:6379/0'();

export default function () {

https://cloud.tencent.com/document/product/248/113155
https://cloud.tencent.com/document/product/248/113155

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第135 共531页

 // set the value of the specified key.

 let resp = client set 'key' 'hello, world' 0. (, ,);

 console log `redis set ${resp}` // OK. ();

 // obtain the value of the specified key.

 let val = client get 'key'. ();

 console log `redis get ${val}` // hello, world. ();

 // delete an existing key.

 let cnt = client del 'key'. ();

 console log `redis del ${cnt}` // 1. ();

 // insert one or more values at the head of the list.

 let lpushResp = client lPush 'list' 'foo'. (,);

 console log `redis lpush ${lpushResp}` // 1. ();

 // remove and obtain the first element of the list.

 let lpopResp = client lPop 'list'. ();

 console log `redis lpop ${lpopResp}` // foo. ();

 // obtain the length of the list.

 let listLen = client lLen 'list'. ();

 console log `redis llen ${listLen}` // 0. ();

 // set the fields and values in the hash table key.

 let hashSetResp = client hSet 'myhash' 'k' 1. (, ,);

 console log `redis hset ${hashSetResp}` // 1. ();

 // obtain the value stored in the specified field of the hash table.

 let hashGetResp = client hGet 'myhash' 'k'. (,);

 console log `redis hget ${hashGetResp}` // 1. ();

 // delete one or more hash table fields.

 let hashDelResp = client hDel 'myhash' 'k'. (,);

 console log `redis hdel ${hashDelResp}` // 1. ();

 // add one or more members to the set.

 let setAddResp = client sAdd 'set' 'hello'. (,);

 console log `redis sadd ${setAddResp}` // 1. ();

 // randomly remove and return an element in the set.

 let setPopResp = client sPop 'set'. ();

 console log `redis spop ${setPopResp}` // hello. ();

}

脚本验证

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第136 共531页

若要验证脚本执行结果，可在正式压测前，先使用 PTS 调试功能，快速验证结果是否符合预期。更多详情，请参见

。调试场景

https://cloud.tencent.com/document/product/248/87354

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第137 共531页

设置检查点
最近更新时间：2024-09-25 11:42:21

概述

您可通过自定义检查点，检查请求的响应结果是否符合业务预期。检查结果会被汇总到检查点指标里，供您在压测报

告中查看明细。

此外，您还可以开启检查点与请求的关联日志，以在请求采样侧查看与该请求相关的检查点的信息。

用法

1. 检查点定义

PTS JavaScript API 提供了 check 方法来创建检查点。

check 方法的入参为：

name：检查点的名字。

callback：用于检查的函数，该函数应返回布尔类型。

response（可选）：传入被检查的请求的响应，用于开启记录检查点日志。

check 方法的返回值为布尔类型，代表本次检查的成功与否。

基本示例如下：

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 const resp =

http get 'http://mockhttpbin.pts.svc.cluster.local/get'. ();

 check 'statusCode is 200' => resp statusCode === 200 // 设置检查

点，以统计检查点指标

(, () .);

 check 'statusCode is 200' => resp statusCode === 200 resp //

设置检查点，以统计检查点指标、并记录检查点日志

(, () . ,);

};

常用检查逻辑示例如下：

import check from 'pts'{ } ;

export default function () {

 check "is empty" => "" === "" // true(, ())

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第138 共531页

 //@ts-ignore

 check "is not empty" => "str" !== "" // true(, ())

 check "equals" => 1.00 == 1 // true(, ())

 check "not equal" => 1.00 === 1 // true(, ())

 check "less than" => 1 < 2 // true(, ())

 check "less or equal" => 1 <= 1 // true(, ())

 check "greater than" => 2 > 1 // true(, ())

 check "greater or equal" => 2 >= 2 // true(, ())

 check "has key" => key:"value" hasOwnProperty "key" //

true

(, () ({ }). ())

 check "string has value" => "str" includes "s" // true(, () . ())

 check "array has value" => "a" "b" "c" includes "a" //

true

(, () [, ,]. ())

};

说明

更详细的 API 文档请参见 。PTS API check

2. 检查结果查看

指标明细

登录 ，在左侧导航栏选择测试场景，进入压测报告页面，单击检查点明细，可以观察到从所有检

查结果汇总而来的多维度指标：

腾讯云可观测平台

https://console.cloud.tencent.com/monitor/pts/projects

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第139 共531页

关联请求

调用 check 方法时，若您传入了可选的响应参数，则检查结果除了能体现在上述检查点指标里，还会被记录在请求

采样日志里，可以进入请求采样页面查看：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第140 共531页

单击选择需要查看的采样项：

再单击一条采样请求，进入详情页面，即可看到与该采样请求相关联的检查点内容：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第141 共531页

检查点及对应请求的日志打印

检查点在逻辑上和请求是分离的，请求可以对应多个检查点，而检查点也可以检查非请求的内容；同时，请求正常响

应（状态码为 200），检查点也可能不通过，这取决于用户配置的检查条件。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第142 共531页

import http from 'pts/http';

import check sleep from 'pts'{ , } ;

export default function () {

 const resp = http get 'http://mockhttpbin.pts.svc.cluster.local/get' . (,

{

 headers: {

 Connection: 'keep-alive',

 'User-Agent': 'pts-engine',

 },

 query: {

 name1: 'value1',

 name2: 'value2',

 },

 });

 // 请求可以对应多个检查点

 check 'status is 200' => resp statusCode === 200 resp(, () . ,);

 check 'body.args.name1 equals value1' => resp json args name1

=== 'value1' resp

(, () . (). .

,);

 // 请求响应 200，检查点也可能不通过（取决于用户配置的检查条件）

 check 'body.args.name1 equals value2' => resp json args name1

=== 'value2' resp

(, () . (). .

,);

 // 检查点可以检查非请求的内容

 let v = 1;

 check "v==1" => v==1(, ());

 check "v==2" => v==2(, ());

}

不过，在实际使用的过程中，检查点和请求往往组合使用，用于检查请求响应是否符合预期；因此，获取检查点和请

求的对应关系非常重要。

在前文“关联请求”中，通过设置 check 中的响应参数，可以将检查点结果记录在请求采样的日志里面，满足了

部分情况下对两者的关联需求。但在某些情况下，可能对细节有更多定制化的要求，此时可以在检查点的检查条件内

将需要的内容打印到日志中，来查看更多的内容细节：

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第143 共531页

 const resp = http get 'http://mockhttpbin.pts.svc.cluster.local/get' . (,

{

 query: {

 name1: 'value1',

 },

 });

 // 在检查点的检查条件内打印用户日志

 check 'body.args.name1 equals value2' => (, () {

 if resp json args name1 === 'value2' (. (). .) {

 return true

 };

 console log resp body. (.);

 console log `check not pass, name1 need value2 but

${resp.json().args.name1}`

. (

);

 return false;

 });

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第144 共531页

三方包引用
最近更新时间：2024-09-11 09:00:51

PTS 脚本压测模式支持原生 JavaScript ES5.1 语法以及绝大部分 ES6 语法。云压测推荐使用

 来实现您的功能。

云压测

Javascript 原生库

三方包引用作为实验功能，如果原生库不满足您的需求，您可以尝试从远端加载远程 HTTP(S) 模块作为三方包进

行引用，云压测不保证您引用的三方包语法一定能被正确解析。

压测引擎启动时，将下载三方脚本及其依赖信息，并执行用户脚本。

说明：

引入的包应当足够的轻量，确保压测脚本能够顺利执行。

PTS 不是 NodeJS，所以三方脚本中加载 NodeJS 库不会生效。

不支持 TypeScript 语法。

不支持浏览器中的函数，例如：setTimeout，XMLRequest 等。

常用搜索远程模块的网站

请单击 。模块网站

常用远程模块

crypto

详细说明请参见 。crypto-js

import crypto from 'https://cdnjs.cloudflare.com/ajax/libs/crypto-

js/4.1.1/crypto-js.js'

export default function () {

 console log crypto MD5 'Message' //

4c2a8fe7eaf24721cc7a9f0175115bd4

. (. ());

 console log crypto SHA1 'Message' //

68f4145fee7dde76afceb910165924ad14cf0d00

. (. ());

 console log crypto SHA256 'Message' //

2f77668a9dfbf8d5848b9eeb4a7145ca94c6ed9236e4a773f6dcafa5132b2f91

. (. ());

 console log crypto SHA512 'Message' //

4fb472dfc43def7a46ad442c58ac532f89e0c8a96f23b672f5fd637652eab158d4d58944

4ef7530a34e6626b40830b4e1ec5364611ae31c599bffa958e8b4c4e

. (. ());

https://cloud.tencent.com/document/product/248/93019
https://cloud.tencent.com/document/product/248/93019
https://cdnjs.com/
https://github.com/brix/crypto-js

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第145 共531页

 console log crypto SHA384 'Message' //

b526d8394134b853bd071719bc99d42b669bc9252baa82dcafabc1f322a3841c57cc0c82

f080fd331b1666112b27a329

. (. ());

 console log crypto RIPEMD160 'Message' //

85eab2fe4383a869da13d51f4b91506924b1f821

. (. ());

 console log crypto HmacMD5 'Message' 'Secret Passphrase' //

5e03d0c1b42ef0b7e61fb333f3993949

. (. (,));

 console log crypto HmacSHA1 'Message' 'Secret Passphrase' //

e90f713295ea4cc06c92c9248696ffafc5d01faf

. (. (,));

 console log crypto HmacSHA256 'Message' 'Secret Passphrase' //

32c647602ab4c4c7543e9c50ae25e567c3354e1532b11649ce308e6e2568d205

. (. (,));

 console log crypto HmacSHA512 'Message' 'Secret Passphrase' //

c03f82cd6f9d03920d95caeedfa722d4e42325a18b049942ee5560787ad2aa394be6b958

49c563ecdd37495726cd6236529a721b563b9778dd6119939bcab7e1

. (. (,));

 console log crypto HmacSHA384 'Message' 'Secret Passphrase' //

84b318cc0232a370c1f8b8746afcb575fc2debc680122c7422fd425638896d0dcf9e905b

8cd9c1d7aed8d5439a2a2328

. (. (,));

 console log crypto HmacRIPEMD160 'Message' 'Secret Passphrase'

// d1b4088aba7f4897444c1423c0b1f056605473ab

. (. (,));

 let words = crypto enc Base64 parse 'SGVsbG8sIFdvcmxkIQ=='. . . ();

 console log words // 48656c6c6f2c20576f726c6421. ();

 let base64 = crypto enc Base64 stringify words. . . ();

 console log base64 // SGVsbG8sIFdvcmxkIQ==. ();

 words = crypto enc Latin1 parse 'Hello, World!'. . . ();

 console log words // 48656c6c6f2c20576f726c6421. ();

 let latin1 = crypto enc Latin1 stringify words. . . ();

 console log latin1 // Hello, World!. ();

 words = crypto enc Hex parse '48656c6c6f2c20576f726c6421'. . . ();

 console log words // 48656c6c6f2c20576f726c6421. ();

 let hex = crypto enc Hex stringify words. . . ();

 console log hex // 48656c6c6f2c20576f726c6421. ();

 words = crypto enc Utf8 parse '?'. . . ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第146 共531页

 console log words // f094ada2. ();

 let utf8 = crypto enc Utf8 stringify words. . . ();

 console log utf8 // ?. ();

 words = crypto enc Utf16 parse 'Hello, World!'. . . ();

 console log words //

00480065006c006c006f002c00200057006f0072006c00640021

. ();

 let utf16 = crypto enc Utf16 stringify words. . . ();

 console log utf16 // Hello, World!. ();

 words = crypto enc Utf16LE parse 'Hello, World!'. . . ();

 console log words //

480065006c006c006f002c00200057006f0072006c0064002100

. ();

 utf16 = crypto enc Utf16LE stringify words. . . ();

 console log utf16 // Hello, World!. ();

}

aes

详细说明请参见 。相关文档

import aesjs from 'https://cdnjs.cloudflare.com/ajax/libs/aes-js/4.0.0-

beta.2/index.js'

export default function () {

 // An example 128-bit key (16 bytes * 8 bits/byte = 128 bits)

 var key = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16[, , , , , , , , , , , , , , ,];

 // Convert text to bytes

 var text = 'Text may be any length you wish, no padding is

required.';

 var textBytes = aesjs utils utf8 toBytes text. . . ();

 // The counter is optional, and if omitted will begin at 1

 var aesCtr = new aesjs.ModeOfOperation.ctr key new

aesjs.Counter 5

(,

());

 var encryptedBytes = aesCtr encrypt textBytes. ();

https://github.com/ricmoo/aes-js

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第147 共531页

 // To print or store the binary data, you may convert it to hex

 var encryptedHex = aesjs utils hex fromBytes encryptedBytes. . . ();

 console log encryptedHex. ();

 // "a338eda3874ed884b6199150d36f49988c90f5c47fe7792b0cf8c7f77eeffd87

 // ea145b73e82aefcf2076f881c88879e4e25b1d7b24ba2788"

 // When ready to decrypt the hex string, convert it back to bytes

 var encryptedBytes = aesjs utils hex toBytes encryptedHex. . . ();

 // The counter mode of operation maintains internal state, so to

 // decrypt a new instance must be instantiated.

 var aesCtr = new aesjs.ModeOfOperation.ctr key new

aesjs.Counter 5

(,

());

 var decryptedBytes = aesCtr decrypt encryptedBytes. ();

 // Convert our bytes back into text

 var decryptedText = aesjs utils utf8 fromBytes decryptedBytes. . . ();

 console log decryptedText. ();

 // "Text may be any length you wish, no padding is required."

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第148 共531页

设置全局 Options
最近更新时间：2024-06-07 17:20:32

若要定制压测引擎在执行压测任务时的行为（传入自定义参数值、覆盖默认配置），您可设置全局 Options，来控

制诸如 TLS/HTTP/WebSocket 通信的配置参数、预处理/后处理的超时时间等。

要设置全局 Options，您可在脚本最外层定义一个 option 对象（ export const option = {...} ），再根

据您的需求，在 option 对象中定义 tlsConfig 、 http 等字段。

说明：

参数详情可参见 PTS JavaScript API 文档： 。Option

HTTP 全局配置

通过 option 里的 http 字段，您可配置压测引擎作为 HTTP 客户端的相关参数，这些参数对本次压测任务的

所有 HTTP 请求全局生效。

常用参数如下：

headers ：设置请求头。

basicAuth ：使用 HTTP basic auth 认证时，通过该参数传入用户名和密码。

disableKeepAlives ：若要禁用长连接，可将该字段设置为 true。

discardResponseBody ：若要丢弃服务端返回的响应包体，可将该字段设置为 true。

http2 ：若要启用 HTTP2 协议，可将该字段设置为 true。

maxIdleConns ：单个 VU 的最大连接数，默认值为 100个。

maxIdleConnsPerHost ：单个 VU 针对单个 host（地址+端口）的最大连接数，默认值为 2。

maxRedirects ：重定向跳转的最大次数，默认值为 10次。

timeout ：请求超时时间，单位为毫秒，默认值为 10000（10 秒）。

脚本示例：

import http from 'pts/http';

import check from 'pts'{ } ;

export const option = {

 http: {

 maxRedirects: 10,

 maxIdleConns: 100,

 headers: {

 'key': 'value'

 }

https://cloud.tencent.com/document/product/248/88560

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第149 共531页

 }

}

export default function () {

 // get request with headers and parameters

 const resp1 = http.get 'http://httpbin.org/get', ({

 headers: {

 Connection: 'keep-alive',

 'User-Agent': 'pts-engine',

 ,}

 query: {

 name1: 'value1',

 name2: 'value2',

 ,}

 });

 console.log resp1.json .args.name1 // 'value1'(());

 check 'status is 200', => resp1.statusCode === 200(());

 check 'body.args.name1 equals value1', => resp1.json .args.name1

=== 'value1'

(() ()

);

 check 'headers.key equals value', => resp1.json .headers.key ===

'value'

(() ()

)

}

WebSocket 全局配置

通过 option 里的 ws 字段，您可配置压测引擎作为 WebSocket 客户端的相关参数，这些参数对本次压测任

务的所有 WebSocket 请求全局生效。

常用参数如下：

handshakeTimeout ：握手超时时间，单位为毫秒，默认值为 30 秒。

readTimeout ：读消息超时时间，单位为毫秒，默认不限制。

writeControlTimeout ：写控制指令超时时间，单位为毫秒，默认为 10 秒。

writeTimeout ：写消息超时时间，单位为毫秒，默认不限制。

示例：

export const option = {

 ws: {

 writeTimeout: 3000,

 readTimeout: 3000,

 }

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第150 共531页

}

TLS 全局配置

压测引擎作为客户端，在建立 TLS （Transport Layer Security/传输层安全协议）连接时，支持以下配置选

项：

insecureSkipVerify ：是否验证服务器的证书链和主机名。若设置为 true 则不验证（默认为 false）。

rootCAs ：在验证服务器证书时，使用的一组根证书颁发机构。 若为空，则默认使用主机的根 CA 集。

certificates ：在双向 TLS 认证中，客户端提供的供服务端验证的证书列表（证书文件可通过场景的 文件

管理 > 请求文件 上传）。

示例：

export const option = {

 tlsConfig: {

 'localhost': {

 insecureSkipVerify: false,

 rootCAs: open 'ca.crt' ,[()]

 certificates: cert: open 'client.crt' , key:

open 'client.key'

[{ ()

()}]

 }

 }

}

预处理与后处理配置

setupTimeoutSeconds：预处理（setup）步骤的超时时间。默认为 60 秒。 示例：

export const option = setupTimeoutSeconds: 30 { }

teardownTimeoutSeconds ：后处理（teardown）步骤的超时时间。默认为 60 秒。

export const option = {

 teardownTimeoutSeconds: 30

}

说明：

关于脚本的预处理/后处理的详情，参见： 。脚本概述

https://cloud.tencent.com/document/product/248/87318

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第151 共531页

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第152 共531页

运行时元数据
最近更新时间：2024-10-16 16:33:31

在脚本模式中，我们可以通过 metadata 模块，获取压测运行时的元数据。

元数据字段说明

元数据字段 元数据描述

userID 执行压测用户的 uin

appID 执行压测用户的 appID

scenarioID 压测任务所属场景 ID

jobID 压测任务 ID

region

引擎所属地域。各个地域 region 值如下：

广州：ap-guangzhou

上海：ap-shanghai

北京：ap-beijing

南京：ap-nanjing

成都：ap-chengdu

示例

通过调用 metadata() 获取 Metadata 对象，通过 Metadata 对象属性获取元数据。基本示例如下：

// get metadata

import metadata from 'pts'{ }

var meta = metadata()

export default function () {

 console log meta userID // 123456. (.)

 console log meta appID // 123456. (.)

 console log meta scenarioID // scenario-123456. (.)

 console log meta jobID // job-123456. (.)

 console log meta region // ap-guangzhou. (.)

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第153 共531页

说明：

更详细的 API 文档请查看 。PTS API Metadata

https://cloud.tencent.com/document/product/248/88758

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第154 共531页

JMeter 模式压测

JMeter 模式概述
最近更新时间：2024-11-08 15:33:22

PTS 支持 JMeter 模式压测，为您提供与原生 JMeter 压测一致的使用体验。PTS 目前仅支持 HTTP、

TCP/UDP、Tars、WebSocket 压测请求的报表查看。

基本用法

创建 JMeter 压测场景

1. 登录 。腾讯云可观测平台

2. 在左侧菜单栏中单击云压测 > 测试场景。

3. 在创建测试场景页面选择 JMeter 压测类型，并单击开始，创建压测场景。

上传 jmx 脚本等文件

必选：上传 jmx 压测脚本。

可选：支持上传 csv、jar 等文件，以使用 JMeter 扩展功能。

运行压测脚本

单击右上角保存并运行，开始执行压测任务、生成实时报告。

https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第155 共531页

在保存的过程中，如果出现如下弹框，用户需要检查上传文件的名称，去掉文件名中的非法特殊字符。

使用限制

从安全角度考虑，PTS 限制用户通过 BeanShell exec 执行外部命令。beanshell exec 命令会被拦截并在引擎

中输出错误提示。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第156 共531页

JMeter 配置 RPS 限制
最近更新时间：2024-08-16 15:02:21

RPS (Request Per Second)一般用来衡量服务端的吞吐量，相比于并发模式，更适合用来摸底服务端的性能。

我们可以通过使用 JMeter 原生的 来限制每个线程的RPS。Constant Throughput Timer

配置 RPS 限制

RPS 取决于压测的并发数以及服务的响应时间，并发数过高，可能压力过大压垮后端服务，并发数过低，可能压不

到指定的 RPS。

为了避免压力过大压垮后端服务以及摸底后端服务性能上限，可以通过设置 Constant Throughput timer 来限

制线程的 RPS 上限。

以下示例中：我们通过 JMeter 添加一个线程组，包含2个线程，每个线程 RPS 上限为1。

运行30s，查看最终总的 RPS 是否为 1reqs/s/thread × 2 thread = 2 reqs/s

1. 设置线程组并发数为2，运行30s。

https://jmeter.apache.org/usermanual/component_reference.html#Constant_Throughput_Timer

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第157 共531页

2. 添加HTTP sampler，模拟发送 HTTP 请求。

3. 右键单击线程组，选择 Timer > Constant Throughput Timer。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第158 共531页

4. 配置每个线程组 RPS上限为1 req/s， 即: 60req/min。

注意：

1. Target throughput 默认单位是分钟，如果想设置单线程 RPS 是 1reqs/s， 则 JMeter 表单中

必须填写60，即60req/min。

2. Calculate Throughput based on 必须设置为 this thread only，即设置单个线程的 RPS。

当用户配置的并发较大时，PTS 将压测任务切分后分发到多个 JMeter 引擎执行。其他选项仅对单

个引擎生效，无法全局生效。

3. 如果要制定全局 RPS 限制，可使用全局 RPS 除以并发数，得到单个 RPS 的限制。

5. 查看结果报告，确认是否接近2req/s。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第159 共531页

JMeter 使用 CSV 参数文件
最近更新时间：2024-06-27 14:06:51

在使用 JMeter 做压力测试的时候，我们可以使用 JMeter CSV Data Set Config 元件来实现参数化，每次请

求发送不同的测试数据，模拟更真实的用户场景。

用户可通过 CSV 文件提前构造压测数据。JMeter 线程组循环时每次从 CSV 文件中读取一行作为测试数据，每

次请求使用不同的测试用例。

使用 JMeter 配置参数文件

假设需要模拟给不同用户发送邮件的场景，我们提前准备好一份 CSV 格式文件，第一行作为表头，表示参数名。其

他行作为测试数据。

在这个文件中我们定义了2个参数：name、email。我们可以在 JMeter 请求中通过${name}, ${email} 引用参

数。

name email,

lyli lyli@test com, .

lucky lucky@test com, .

lucas lucas@test com, .

如果 CSV 文件中首行不包含参数名，则需要在 CSV Data Set Config 中额外设置参数名。

1. 右键单击测试计划，选择 Add > Threads(Users) > Thread Group。

2. 右键单击线程组，选择 Add > Config Element > CSV 数据文件设置。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第160 共531页

3. 配置 CSV Data Set Config. 在我们的案例中，导入 CSV 文件，其他的保留默认配置即可。此时默认以首行

(name, email)作为参数名，我们可以在请求中引用 name、email 变量。

注意：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第161 共531页

如果您的 CSV 文件首行不包含参数名，则需要设置参数名，配置如下：

在请求中引用 CSV Data Set Config 设置的参数

1. 右键单击线程组，选择 Sampler > HTTP Request。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第162 共531页

2. 配置 HTTP Sampler，发送 POST 请求。在 body 中使用${name}, ${email}引用 CSV 中配置的参数。

3. 右键单击线程组，选择 Listener > View Result Tree。通过 View Result Tree 我们可以查看每次请求发

送和返回的数据，来确认以上配置的 CSV Data Set Config 是否生效。

4. 运行线程组，查看 View Result Tree 中请求发送的数据。我们可以看到一共发送了两个请求，每个请求

request Body 都不一样。

第一个请求：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第163 共531页

第二个请求：

在 PTS 中使用 CSV 参数文件

1. 登录 。腾讯云可观测平台

2. 在左侧菜单栏中单击云压测 > 测试场景，再点击新建场景。

3. 在创建测试场景页面选择“JMeter”压测类型，并单击开始，创建压测场景。

https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第164 共531页

4. 上传刚配置的 Jmx 文件和 CSV 文件。

说明：

PTS 在运行压测时，会自动识别 Jmx 中配置的 CSV 文件路径，并替换成用户上传的同名文件。

例如：假设 Jmx 中配置的 CSV 文件路径为 /Users/ke/Desktop/student.csv ，在 PTS 中只

需上传 student.csv 文件即可。PTS 在运行时会自动帮您识别同名文件，无需您更改 Jmx 中引用

的文件路径。

5. CSV 文件切分：PTS 会根据用户配置的并发数，自动启动多个压测引擎，以集群化模式运行 JMeter 压测脚

本。如果您希望每个引擎执行单独的测试用例，则需要用到 CSV 文件切分功能。

5.1 假设用户上传的 CSV 文件为：

name,email

lyli,lyli@test.com

lucky,lucky@test.com

lucas,lucas@test.com

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第165 共531页

5.2 勾选切分文件选项

如果用户配置的并发数较大，需要调度2个引擎执行该压测任务，则 CSV 测试数据会在2个引擎间均分。

引擎1获取的 CSV 文件为：

name,email

lyli,lyli@test.com

lucky,lucky@test.com

引擎2获取的 CSV 文件为：

name,email

lucas,lucas@test.com

6. 单击保存并运行，即可开始压测。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第166 共531页

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第167 共531页

JMeter 多线程组
最近更新时间：2024-06-26 14:23:32

当您有多个相关的场景需要在一个脚本中运行，可以通过配置 JMeter 多线程组实现，每个线程组中配置一个用户

场景。

JMeter 支持线程组并行运行和串行运行两种模式。

JMeter 线程组并行或串行

在测试计划中可以设置多线程组并行或串行执行。

线程组串行： 勾选 Run Thread Groups consecutively (i.e. one at a time)。线程组串行，指的是测试

计划中存在多个线程组时，第一个线程组执行完成后再执行下一个线程组。

线程组并行： 不勾选 Run Thread Groups consecutively (i.e. one at a time)。线程组并行，指的是测

试计划中存在多个线程组时，多个线程组同时运行。

在 JMeter 中为线程设置循环次数

当线程组串行时，当前线程组执行完成，下一个线程组才能执行。因此我们需要为线程组设置循环次数，以便当前线

程组能够正常退出，下一个线程组获取执行时间。

以下示例中：Thread Group 1 包含 2个线程，每个线程执行1000次循环。 HTTP sample 1被执行2000次后

（每个线程执行1000次），Thread Group 1 退出，Thread Group 2 开始执行。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第168 共531页

使用 PTS 设置 JMeter 压力模型

PTS 支持 JMeter 线程组并行、线程组串行两种压力模式。

在 PTS 中配置的压力模型，会重写 JMX 文件中主线程组的配置，不会影响 setUp 和 tearDown 线程组。

PTS 配置线程组并行

压力模式勾选线程组并行，设置期望的最大并发数1000，递增步数3，压测时长10分钟。右侧会渲染出对应的压力

模型。

选择线程组并行：会覆盖 JMeter Test Plan 中的 Run Thread Groups consecutively (i.e. one at a

time)配置为不勾选，代表线程组并行。

最大并发数1000： 会在多个主线程组中按比例分配。假设用户 JMX 脚本中有两个线程组，A 线程组设置线程

数量为10，B 线程组设置线程数量是20。那么压测时，A 线程组分配的线程数为334， B 线程组分配的线程数

为667（小数向上取整）。

递增步数，递增时长，压测总时长会应用到每个主线程组。多个主线程组的压力模型合并，即等价于用户在PTS

上配置的压力模型。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第169 共531页

PTS 配置线程组串行

压力模式选择线程组串行，设置最大并发数1000，递增时长1min, 压测总时长10min，循环次数1000次。

选择线程组串行：会覆盖 JMeter Test Plan 中的 Run Thread Groups consecutively (i.e. one at a

time)配置为勾选，代表线程组串行。一个线程组执行完成后，再执行下一个线程组。

并发配置会应用到每个主线程组上。在本案例中每个主线程组的最大并发数都是1000，递增时长1min, 压测总

时长10min, 循环次数1000次。

循环次数作用于每个线程，代表每个线程执行循环的次数。循环次数和压测时长，有一个达到设置值，就会停止

当前并发。

线程组串行模式下，必须设置循环次数，以便当前线程组达到循环次数后能够退出，下个线程组获得执行时间。

一个线程组所有并发退出后，当前线程组执行完成，开始执行下一个线程组。

注意：

线程组串行模式下，必须设置循环次数，以便当前线程组达到循环次数后能够退出，下个线程组获得执

行时间。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第170 共531页

JMeter 进行 WebSocket 压测
最近更新时间：2024-06-07 17:20:32

本文介绍如何通过引入插件，使用 JMeter 进行 WebSocket 压测。

背景

WebSocket 是常见的网络通信协议，随着实时 Web 应用程序的普及，确保 WebSocket 连接的性能变得至关

重要。压测 WebSocket 协议有助于评估业务在高负载和高并发连接下的表现，确保在大量用户同时使用时仍能保

持良好的响应速度和数据传输质量。

虽然 JMeter 没有原生支持对 WebSocket 协议的压测，但 JMeter 支持通过插件扩展，额外增加对

WebSocket 协议的压测。其中最常用的插件是 WebSocket Samplers by Peter Doornbosch，该插件提

供 6 种采样器，可以满足绝大部分 WebSocket 的压测需求。

插件版本

云压测支持 WebSocket 压测，提供与原生 JMeter 压测一致的使用体验，对稳定的插件版本 jmeter-

websocket-samplers-1.2.8.jar 进行了埋点，支持压测过程中的数据上报；需注意插件版本为 1.2.8，其他版

本的插件可能会出现缺少埋点导致数据不完整的情况。插件地址：

。

https://bitbucket.org/pjtr/jmeter-

websocket-samplers/downloads/?tab=downloads

使用方法

新建 JMeter 压测场景

1. 登录 。腾讯云可观测平台

2. 在左侧菜单栏中点击云压测 > 测试场景。

3. 单击新建场景，在新建测试场景页面选择 JMeter 类型的测试场景。

https://bitbucket.org/pjtr/jmeter-websocket-samplers/downloads/?tab=downloads
https://bitbucket.org/pjtr/jmeter-websocket-samplers/downloads/?tab=downloads
https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第171 共531页

上传压测文件

1. 在本地 JMeter 中根据业务需要进行压测计划的配置；

2. 本地调试成功后，将对应的 JMX 脚本和 WebSocket 插件以及其他需要的文件上传到控制台。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第172 共531页

运行压测脚本

点击右上角的保存并运行，开始执行压测任务，并生成实时报告。

查看压测结果

云压测对 WebSocket 插件中各采样器的结果进行了埋点，压测过程中在控制台上可以看到对应不同方法的压测数

据，可以根据业务需要进行查看。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第173 共531页

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第174 共531页

JMeter 请求和检查点日志打印
最近更新时间：2024-06-24 11:46:11

在 PTS 中，请求和检查点的总体情况，可以在 的服务明细和检查点明细中查看；单个请

求的发送和接收详情，可以在控制台的请求采样中查看；具体的查看方法可以参考 中的对应内容。

云压测控制台 > 测试场景

解读报告

如果除了解读报告的内容外，对请求或检查点还有其他的查看需求，例如：

查看请求采样中未记录的其他请求细节；

查看设置的检查断言失败消息；

查看检查断言失败时的请求内容；

等等...

可以在执行过程中通过日志打印的方式，将需要查看的内容在施压机 > 日志下的引擎输出中打印出来。

注意：

在压测任务执行的过程中打印额外的日志，会占用压测机的资源，且日志的采集和展示在控制台上的速率是

有限的，如果没有必要，在正式压测的时候不建议这样使用。

请求日志

根据 JMeter 的 ，在请求采样 Sampler 之后的阶段都可以知道请求的执行情况，因此可以在 JMeter

的 Sampler 后面添加“JSR223 PostProcessor”，顾名思义，利用 JSR223 后置处理器在 Sampler 之

后，通过脚本将请求细节打印到引擎日志中查看。

执行顺序

以下是 Groovy 脚本样例，其中 prev 可以代表请求采样的结果 SampleResult，对应的方法可以参考

；如果有其他内容需要打印，用户可以自行进行数据获取和输出。

JMeter

官方文档

import java.time.LocalDateTime

// 获取 Sampler 名称

def samplerName = sampler.getName()

// 获取响应体

def responseBody = prev.getResponseDataAsString()

// 获取响应代码

def responseCode = prev.getResponseCode()

// 获取当前时间

def currentTime = LocalDateTime.now()

https://console.cloud.tencent.com/monitor/pts/scenarios/list
https://jmeter.apache.org/usermanual/test_plan.html#executionorder
https://jmeter.apache.org/api/org/apache/jmeter/samplers/SampleResult.html
https://jmeter.apache.org/api/org/apache/jmeter/samplers/SampleResult.html

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第175 共531页

// 打印日志

log.info("Current Time: " + currentTime + ", Sampler Name: " +

samplerName + ", Response Code: " + responseCode + ", Response Body: " +

responseBody)

将该 JMX 脚本在 PTS 上执行，在控制台的施压机标签的引擎输出中，可以看到我们打印出来的请求日志：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第176 共531页

如果脚本中有多个请求，但是只需要打印单个请求的细节查看，不需要全部打印，那么可以将 Post

Processor 放在对应的请求里面，如图所示：

如果需要把所有的请求细节都打印出来，那么可以将 Post Processor 放在和请求并列的位置，如图所示：

检查点日志

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第177 共531页

根据 JMeter 的 ，对于检查点的结果，不能使用 Post Processor 来进行获取，因为该阶段执行的时

候，检查断言还没有执行，只有在 Listener 阶段才能知道检查断言的结果；因此，可以使用 Listener 来通过脚本

将检查点细节打印到引擎日志中查看，使用 JSR223 Listener，以下是 Groovy 脚本样例，方法 getAssertio

nResults() 返回的 AssertionResult 可以参考 。

执行顺序

JMeter 官方文档

import org.apache.jmeter.assertions.AssertionResult;

// 获取断言结果

AssertionResult[] results = prev.getAssertionResults();

// 遍历断言结果

for (int i = 0; i < results.length; i++) {

 AssertionResult result = results[i];

 if (result.isFailure() || result.isError()) {

 // 打印断言失败或错误信息

 log.info("Assertion failed: " + result.getFailureMessage());

 }

}

将该 JMX 脚本在 PTS 上执行，在控制台的施压机标签的引擎日志中，可以看到我们打印出来的日志：

这里只打印了检查断言的结果和检查断言的 Failure Message，如果有需要，也可以参考前文的请求日志将检

查断言失败的请求细节打印出来。

https://jmeter.apache.org/usermanual/test_plan.html#executionorder
https://jmeter.apache.org/api/org/apache/jmeter/assertions/AssertionResult.html

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第178 共531页

import org.apache.jmeter.assertions.AssertionResult;

// 获取断言结果

AssertionResult[] results = prev.getAssertionResults();

// 遍历断言结果

for (int i = 0; i < results.length; i++) {

 AssertionResult result = results[i];

 if (result.isFailure() || result.isError()) {

 // 打印断言失败或错误信息

 log.info("Assertion failed: " + result.getFailureMessage());

 // 获取 Sampler 名称

 def samplerName = sampler.getName()

 // 获取响应码

 def responseCode = prev.getResponseCode()

 log.info("Sampler Name: " + samplerName + ", Response Code: " +

responseCode)

 }

}

如果 JMX 脚本中有多个检查断言，需要打印单个或需要全部打印的情况，可以参考前文有多个请求的情况下打

印日志的方式，将 Listener 放置在不同的位置即可。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第179 共531页

管理项目

项目概述
最近更新时间：2024-11-08 15:33:22

概念介绍

在 PTS 中，您可以用项目（Project）来组织压测资源、管理资源权限。

组织压测资源：

 一个压测项目的资源，可包含多个压测场景（Scenario）、多个告警联系人等。

项目与项目之间的资源是互相隔离的。

您可从每个页面顶端的列表里切换项目，来管理该项目下的所有资源。

管理资源权限：

 PTS 以项目资源为粒度，对用户进行鉴权。

鉴权通过腾讯云标签实现。您可以为您的项目绑定一些标签，对子用户进行鉴权（子用户必须对其中任一标

签具备权限，才能访问该项目的资源）。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第180 共531页

新建项目
最近更新时间：2024-10-31 18:11:52

操作场景

云压测的项目模块用于集中管理测试场景，一个项目可包含多个测试场景。本文将为您介绍如何新建云压测项目。

操作步骤

1. 登录 。腾讯云可观测平台

2. 在左侧菜单栏中单击云压测 > 项目列表 > 新建项目，进入新建项目页面。

3. 填写项目名、描述以及标签，单击保存。您还可为项目绑定标签用于鉴权，详情请参见 。标签管理

https://console.cloud.tencent.com/monitor
https://cloud.tencent.com/document/product/248/87361

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第181 共531页

编辑项目
最近更新时间：2024-10-31 18:11:52

本文将为您介绍如何修改云压测项目信息，包括项目名、项目描述和标签等。

操作步骤

1. 登录 。腾讯云可观测平台

2. 在左侧菜单栏中单击云压测 > 项目列表。

3. 在新建项目管理页，找到需要编辑的项目，在操作列中单击编辑。

4. 在编辑页面输入需要修改的信息，修改完后单击保存即可。

https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第182 共531页

删除项目
最近更新时间：2024-10-31 18:11:52

本文将为您介绍如何删除云压测项目。

操作步骤

1. 登录 。腾讯云可观测平台

2. 在左侧菜单栏中单击云压测 > 项目列表。

3. 在新建项目管理页，找到需要删除的项目，在操作列中单击删除图标并确定删除。

https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第183 共531页

管理场景

场景概述
最近更新时间：2024-07-05 11:48:11

概念介绍

在 PTS 里，场景（Scenario）是对一个真实业务场景的压力状况的模拟，也是管理一次压测的配置、资源、生命

周期的最小单元。

根据编排方式的不同，PTS 提供以下几种场景模式：

简单模式：简单直观，适合快速上手。

通过控制台的图形界面，可视化、零代码实现请求链路编排。

支持 HTTP 协议的 GET，POST，PUT，PATCH，DELETE 请求。

脚本模式：逻辑编排灵活、协议支持灵活、有脚本模板可供参考。

在控制台的在线代码编辑器里，编写 JavaScript 脚本，以 as code 模式实现对请求链路的编排。

支持 HTTP、WebSocket、TRPC、GOFree 等网络传输协议，和 Protobuf、JCE 等数据序列化/反

序列化协议。

PTS 提供了多种类别的脚本模板，供您参考以编写自己的脚本，方便地满足个性化需求。

JMeter 模式：原生支持 JMeter 压测。

上传 jmx 脚本，无缝迁移 JMeter 压测体验。

还支持上传 csv、jar 等文件，以使用 JMeter 扩展功能。

操作步骤

1. 登录 。腾讯云可观测平台

2. 在左侧菜单栏中单击云压测>测试场景。

3. 在测试场景页面单击新建场景。

4. 在创建测试场景页面选择合适的类型并单击开始进行创建。

5. 完成对应的场景配置后，单击右上角的保存，或者调试，或者保存并运行。

https://console.cloud.tencent.com/monitor/overview

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第184 共531页

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第185 共531页

施压配置
最近更新时间：2024-12-18 10:02:33

施压配置用于控制压测过程中的流量，来模拟真实业务场景中的流量变化及流量分布。

在场景的施压配置部分，您可以配置以下针对施压模式、施压时长、压力来源等的参数，来管理压测流量。

关于 VU、RPS 等相关概念的介绍，请参见 。常见问题

压力模式

并发模式

并发指虚拟并发用户数。从业务角度，也可以理解为同时在线的用户数。可用于摸底业务系统能够承载的最大实时并

发数。

最大并发数（Max VUs）：虚拟用户（VUs）的最大数量。施压端通常用一个线程实现一个 VU，每个 VU 重

复执行压测脚本。

递增步数：在 VU 递增的过程中，需将递增时长平均分成几个阶段，来达到最大并发数。（建议3 - 5步，步数

太高变化频繁会影响线程预热启动）

总梯度时长：VU 递增过程的时长。

压测总时长：一次压测的总时长，包括 VU 递增时的运行时长，和达到最大 VU 数后的稳定运行时长。

RPS 模式

RPS 即每秒请求数量，用于衡量服务端的吞吐量。免去并发数到 RPS 的繁琐转换，来帮忙用户更好的摸底业务性

能瓶颈。

最大 RPS：压测 RPS 上限，用来摸底业务系统的目标吞吐量。PTS 会根据最大 RPS 为压测任务分配合理的

施压资源。

起始 RPS：压测起始 RPS，用户可以在压测过程中手工调整发压 RPS，并观察报表指标变化。

压测总时长：一次压测的总时长。

压测资源：PTS 会根据用户设置的最大 RPS，合理分配压测资源池。如果您的请求响应较慢，您可以通过适当

扩大压测资源池，来确保达到目标吞吐量。

流量分布：将压测总流量以一定的百分比，分布于多个地域，以模拟真实场景中，来自不同地域的用户带来的流

量。

RPS 压测模式下， 用户可在 的压测报表页面调整 RPS，并实时观察系统整体指标的变化。测试场景

https://cloud.tencent.com/document/product/248/87369
https://console.cloud.tencent.com/monitor/pts/scenarios/list

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第186 共531页

说明：

 简单模式和脚本模式的场景：从 ，创建场景时在施压配置里设定 RPS 上下限；运行压测

时在报告页动态拖拽调整 RPS。

PTS 控制台

 JMeter 模式的场景：编写 JMeter 压测脚本时，使用 JMeter 原生的 RPS 模式，再将该脚本上传

至 PTS。详情请参见 。JMeter 配置 RPS 限制

网络流量配置

根据压测流量来源的不同，PTS 支持公共网络和腾讯云 VPC 私有网络两种网络类型。

若您选择公共网络，则压测流量将由 PTS 为您分配的公共网络资源发出；若您选择腾讯云 VPC 私有网络，则需要

您手工指定被压服务所在的 VPC 及子网，压测流量将由该 VPC 内网发出。

公共网络

若您选择公共网络，则可压测支持公网访问的服务地址。

流量分布：将压测总流量以一定的百分比，分布于多个地域，以模拟真实场景中，来自不同地域的用户带来的流量。

https://console.cloud.tencent.com/monitor/pts

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第187 共531页

腾讯云 VPC 私有网络

若您选择腾讯云 VPC 私有网络，则可压测您的 VPC 内的服务地址。

VPC 内网性能测试完全在客户 VPC 环境进行，客户服务无需暴露服务到公网，安全性更高。另外，对于

RPC 类型的微服务，有些不方便暴露公网地址，针对 VPC 内网的每个微服务执行性能测试，可以大幅提升性

能测试的效率，节省性能测试成本。

VPC 内网性能测试模式下，压测机仅能访问客户 VPC 环境内的地址。业务选好 VPC 与子网后，初次压测需

要进行资源初始化，预计需要花5分钟时间准备资源，请耐心等待。

VPC：选择被压服务所在的 VPC。

子网：选择压测机使用的子网网段，子网网段的可用 IP 数量需要大于压测机节点数量，否则会导致压测任

务启动失败。若子网不可选，则代表该子网所在可用区暂不支持性能测试服务。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第188 共531页

压测资源

在 PTS 中，压测资源是引擎调度的基本单位。

一个压测资源提供500并发，以及100Mb网络带宽（上行下行各100Mb）。压测资源在 PTS 中是一个虚拟概念，

代表一组资源集合，PTS 保障压测资源调度后互相隔离。利用虚拟化技术，多个压测资源可能调度到同一个物理机

上共享 IP，也可能独占 IP。

您可以在施压报告中查看您的压测资源的利用率。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第189 共531页

文件管理

使用参数文件
最近更新时间：2025-09-23 09:43:42

上传参数文件

通过上传 csv 参数文件，您可以动态引用其中的测试数据，供脚本里的变量使用。

这样，当施压机并发执行这段代码，每条请求能动态、逐行获取 csv 里的每行数据，作为请求参数使用。

参数定义

默认 csv 首行作为参数名。在该模式下，PTS 读取数据时，会跳过第一行。

若不用 csv 文件首行做参数名，则可如下图所示，取消勾选首行作为参数名，然后勾选该参数文件所在的行，页

面会展开一个参数名编辑框，供您自行编辑参数名。

参数使用

在代码中，您可以用参数名作为变量名，获取变量值。

每个 VU 每次迭代会按照顺序取 csv 的一行数据。

当 csv 文件被读取完最后一行数据后，下次会回到首行，继续循环读取。

参数文件组合与切分

参数切分的逻辑

同施压机多 VU：所有 VU 共同逐行读取施压机上的 csv 文件，每个 VU 每次迭代会依次取一行数据。例如：

施压机有一个参数文件 user.csv，在压测启动后，VU-1的第1次迭代读取到了第1行，VU-2的第1次迭代则读

取到第2行，以此类推。

多施压机：若参数文件很大，用户可勾选切分文件。PTS 会将大文件逐行切分，按照流量占比分配给多个施压机

使用。例如：user.csv 有4行数据，用户勾选了切分文件，且在广州地域有2个压测资源（施压机），则在压测

启动前，施压机-1获取到包含第1、3行数据的 csv，施压机-2获取到包含第2、4行数据的 csv。

参数组合的逻辑

一个场景可上传多个 csv 参数文件，进行跨文件参数组合。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第190 共531页

不同 csv 文件的列名（参数名）需保持全局唯一。

每个 VU 每次迭代会跨文件取到多个文件的同一行的数据。

若不同 csv 文件的行数不同，默认采用行数大的作为基准，行数少的 csv 文件会自行复制到跟基准文件相同行

数，保证每个 VU 每次迭代都能取到多个文件的同一行的数据。

在场景中使用参数

简单模式场景

在简单模式的场景中，您可以用 ${} 的形式，使用参数文件里的参数。以下面的 dataset.csv 为例：

name age,

xiaohong 18,

xiaoming 19,

上传以上参数文件后，您即可在请求的任何部分通过${name}, ${age}引用参数。如下图所示：

在 GET 请求的 url 通过 `${age}` 引用参数文件中定义的 age 参数，在请求参数中通过 `${name}` 引用参数

文件中定义的 name 参数。

在 POST 请求的 body中通过 `${name}`, `${age}` 引用参数文件中定义的参数：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第191 共531页

脚本模式场景

代码示例如下，用 dataset.get("MyKey") ，可从 csv 文件获取参数名/列名为 MyKey 的参数值，作为请求

体里的 value 值。

如果期望参数文件的数据轮询一遍后，自动结束压测，可以设置全局参数：stopAfterDataConsumption:

true。

import dataset from 'pts/dataset';

// Global load configuration example

export const option = {

 load: {

 // Stop the test when the dataset is fully consumed. Default: false.

 stopAfterDataConsumption: true ,

 // Total iterations to run. Uncomment to enable. Default: unlimited.

 // targetIterations: 100

 }

};

export default function () {

 const value = dataset get "MyKey". ()

 //@ts-ignore

 const postResponse = http post "http://httpbin.org/post" data:

value

. (, {

});

 console log postResponse. ()

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第192 共531页

};

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第193 共531页

使用请求文件
最近更新时间：2024-06-07 15:31:51

请求文件主要指代在压测场景中，构建您的请求需要使用到的文件，如压测接口中需要上传的文件。用户可以在场景

中直接操作这些请求文件。

例如：

QQ 空间用户发图片说说的压测场景，需要压测模拟用户上传图片的场景。

银行部分场景需要在客户端安装证书。模拟这些场景需要在客户端打开并加载证书。

使用请求文件

1. 上传请求文件：

2. 在脚本中使用请求文件：

定义全局变量（global）的代码：每个并发运行一次。

主函数（default）代码：每个并发的每次迭代运行一次，且每个 VU 在达到本次压测配置的时长上限或迭代上

限之前，会持续不断地迭代执行。

因此，一些静态的文件读取等操作建议放到 global 中定义，一个并发仅需读取一次文件。避免在主函数中定义读取

文件，会导致每个迭代中读取文件，带来压测性能损耗。

// send a post request

import http from "pts/http";

const makefile = open "Makefile"();

export const options = {};

export default function main () {

 let response;

 response = http.post "https://httpbin.org/post", makefile, ({

 headers: {

 "Content-Type": "application/octet-stream",

 ,}

 });

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第194 共531页

}

3. open 函数提供两种 mode, 第二个参数为空返回字符串， 为‘b’则返回 ArrayBuffer。

export default function main () {

 let data = open 'Makefile'();

 console.log data // SHELL := /bin/bash .(); ..

 data = open 'Makefile', 'b'();

 console.log data // object ArrayBuffer(); []

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第195 共531页

使用协议文件
最近更新时间：2024-06-07 15:31:51

gRPC 场景使用协议文件

gRPC 等协议需要用户上传协议文件，压测引擎依赖协议文件完成请求的序列化。支持用户上传文件或目录，文件

名需要保持唯一，同名文件将会被新上传的文件覆盖。

如果用户上传 zip 文件，PTS 会解压文件，并展示解压后的文件结构。

如果目录或者 zip 包中包含非 Proto 文件，PTS 将忽略这些文件。

如果主 pb 文件依赖其他 proto 文件，那么也需要一并上传（谷歌提供的标准 proto 文件：

google/protobuf/*.proto 不需要额外上传，PTS 会自动加载）。

用户只需要加载主 pb 即可，主 pb 依赖的其他 pb 文件，会根据主 pb 文件中 import 的路径自动递归加载。

import grpc from 'pts/grpc';

const client = new grpc.Client();

client.load ,'addsvc/addsvc.proto' ([]);

export default => () {

 client.connect 'grpcb.in:9000', insecure: true({ });

 const rsp = client.invoke 'addsvc.Add/Sum', ({

 a: 1,

 b: 2,

 });

 console.log JSON.stringify rsp(());

 console.log rsp.data.v // 3();

 client.close();

};

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第196 共531页

SLA 配置
最近更新时间：2024-11-08 15:33:22

配置场景

服务等级定义（Service Level Agreement，缩写为 SLA）是您为压测场景定义的具体目标，也是判断压测是

否异常的重要依据。

当您为场景配置了 SLA 规则，PTS 在运行压测任务时，会将 SLA 指标与压测过程中收集到的相关数据进行比

较，然后确定目标的 SLA 状态，并根据您指定的方式做出相应处理（例如停止压测、发出通知等）。

配置 SLA

1. 登录 控制台。腾讯云可观测平台

2. 在左侧菜单栏中单击云压测 > 测试场景。

3. 在测试场景页面单击新建场景。

4. 在创建测试场景页面选择合适的类型并单击开始进行创建。

5. 在场景配置的 SLA 页面，您可以为该场景创建 SLA 规则。

SLA 规则配置

一条 SLA 规则主要包含以下信息：

SLA 规则表达式：包含 SLA 指标、聚合方式、条件、阈值。

适用对象：被发送请求的所有服务接口 URL。

是否停止压测：当规则被触发时，是否中止压测任务。

告警联系人配置

https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第197 共531页

当 SLA 规则被触发时，除了能及时停止压测，您还可以配置告警联系人，接收告警消息。PTS 能借助您的腾讯云

账号下已有的通知渠道，向您发送告警消息。在场景的 SLA 配置页面，您可单击选择联系人组，弹出的列表页会展

示出当前项目下，所有场景共用的联系人组：

若当前列表为空，您需要先新建联系人组，并添加相应的腾讯云账号作为联系人、使用该联系人账号下已有的通知渠

道（例如短信、邮件等）：

若您想要选择的联系人不存在，您可单击新增用户，跳转到腾讯云访问管理相关页面，维护您账号下的用户信息及通

知渠道。

除了腾讯云账号下的现有通知渠道之外，您还可以自行创建企业微信机器人，并将其 Webhook 填入接收渠道，您

就可以通过企业微信群，接收由该机器人发出的告警消息。

配置效果

如图所示，SLA 规则中配置当请求数大于100时，停止压测并发送通知：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第198 共531页

压测时请求数超过100，任务中断：

告警通知也会发往相应的联系人和渠道，例如短信、邮件等。此外，还可在告警历史页面，查看同一项目下所有的告

警历史记录。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第199 共531页

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第200 共531页

高级配置

域名解析
最近更新时间：2024-11-08 15:33:22

操作场景

简单理解相当于在施压机 /etc/hosts 文件中增加条目。

域名绑定是指将域名与指定的 IP 地址关联。压测时，压测流量将直接访问绑定的 IP 地址（优先级高于 DNS 服务

器对域名的解析），实现对目标设施的压测。

在 VPC 内网压测时，用户可以为域名绑定 VPC 内地址。在不改变压测场景配置的前提下，实现对 VPC 内网

服务的压测。

在公网压测时，如果用户有多套环境，可通过为域名绑定不同的 IP 地址，实现对不同环境进行压测。

操作步骤

1. 登录 。腾讯云可观测平台

2. 在左侧菜单栏中单击云压测 > 测试场景。

3. 在测试场景页面单击新建场景。

4. 在创建测试场景页面选择合适的类型并单击开始进行创建。

5. 在场景页面配置中选择高级配置，填写需要绑定的域名和 IP 即可。

https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第201 共531页

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第202 共531页

压测指标导出

压测指标导出使用指南
最近更新时间：2024-11-08 15:33:22

云压测提供从实时运行的测试任务中导出压测指标到指定系统的能力，支持用户自定义管理和查询压测指标的需求。

支持导出的压测指标文档： 。压测指标介绍

压测指标导出

1. 登录 ，选择测试场景，创建压测场景并单击高级配置菜单，可以看到压测指标导出的配置选项。云压测控制台

2. 选择压测指标导出的目标系统类型并单击添加配置，目前，云压测支持将压测指标导出到腾讯云 Prometheus

托管集群。若要查看账号已有的 Prometheus 托管集群，请 查看。前往控制台

3. 进行配置基础信息的填写，其中配置名称是必填项、配置备注是选填项。

https://cloud.tencent.com/document/product/248/87347
https://console.cloud.tencent.com/monitor/pts/projects
https://console.cloud.tencent.com/monitor/pts/projects

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第203 共531页

4. 选择 Prometheus 实例，指定地域后，选择压测指标导出的 Prometheus 实例。

若现有的 Prometheus 实例不符合您的要求，可以单击新建跳转链接到 Prometheus 控制台新建实例。

5. 单击连通性测试，检测云压测后台能否访问已选定的 Prometheus 实例。

若显示为绿色的对勾，则说明通过连通性测试；若显示橙色的叹号，则说明云压测后台无法访问到对应的实例。

注意：

“连通性测试”仅对当前的实例状态进行检测，在未来的压测任务执行的过程中，若实例出现故障或销

毁等情况导致云压测后台无法访问，则也无法将压测指标导出到对应实例中。

6. 单击保存即可保存场景，在任务运行时就可以将压测指标导入到配置的 Prometheus 中；目前云压测支持导出

的压测指标详情请参见 。 压测指标介绍

https://cloud.tencent.com/document/product/248/87347

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第204 共531页

压测指标查看

云压测将压测指标导出到指定的 Prometheus 实例中，支持用户自定义地查询和管理压测指标数据。

在 Prometheus 中，常用的数据查看方法包括，通过 API 请求或 Grafana 中添加数据源并查看数据，请参见

。

监

控数据查询

以下主要介绍如何在 Grafana 中查看云压测导出的压测指标数据：

1. 进入 Prometheus 实例的“基本信息”页面，确认是否已绑定可用的 Grafana 实例。

Prometheus 监控服务与 Grafana 服务高度集成，Prometheus 绑定 Grafana 的方式请参见

。

Grafana

服务

2. 在 Prometheus 实例的集成中心页面，搜索“PTS”找到 PTS 集成，单击 Dashboard 操作 >

Dashboard 安装/升级并单击确定，可以在 Grafana 中自动安装云压测 Dashboard。

https://cloud.tencent.com/document/product/248/87442
https://cloud.tencent.com/document/product/248/87442
https://cloud.tencent.com/document/product/248/87438
https://cloud.tencent.com/document/product/248/87438

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第205 共531页

3. 在 Prometheus 实例的“基本信息”页面，单击绑定的 Grafana 并登录进入 Grafana 界面，进

入“Dashboards”-“Browse”-“pts”-“PTS 任务详情”即可看到安装的云压测 Dashboard。

监控面板使用

面板概览图：

其中，右上方的时间栏代表了查询数据的时间范围，通过下拉填写能够改变面板展示不同时间范围的数据。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第206 共531页

时间的变化也可以在面板里面选择，如图，在需要的时间开始处按住并拖动即可：

界面的正上方是该 Dashboard 包含的变量，包括：

dataSource，数据源，可以选择关联的监控指标导出的 Prometheus 实例。

job，选择需要查看的压测任务 ID。

region，选择区域以查看压测任务在不同区域内的执行情况。

以上三个变量作用于后面所有的图表。

另外两个变量是：

service，选择关注的服务，该变量作用于 Service Detail Row 栏。

check，选择关注的检查点，该变量作用于 Check Detail Row 栏。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第207 共531页

整个面板共包括 Overview、VUs vs Other Metrics、Service Detail、Check Detail、Pressure

Machine Detail 等五个栏。

Overview 中是压测任务的总体概览，包含了解压测任务总体执行情况的数据。

VUs vs Other Metrics 中，您可以了解不同指标随 VUs 变化而变化的情况，具有对比意义。

Service Detail 中，根据 service 变量选择关注的 service，并了解相关的细节，当变量值为 All 时即选中所

有 service。

Check Detail 中，根据 check 变量选择关注的 check，并了解相关的细节，当变量值为 All 时即选中所有

check。

Pressure Machine Detail 中，可以看到压测任务执行所在的施压机器的情况，包括 CPU、内存限制和使用

量等。

图表栏 Overview

Overview 中是压测任务的总体概览，通过该栏能够大致了解压测任务执行的情况。

左侧为六个“瞬时”数值，代表当前任务运行的状态，右侧为六个时序曲线图表。

分别代表：

当前执行压测的 VU 数量及其随时间的变化。

当前的 RPS 数值及其随时间的变化。

当前执行请求的平均响应时间及其随时间的变化。

当前网络流量及其随时间的变化，包括入流量和出流量的加和。

当前请求错误率及其随时间的变化。

当前检查点未通过率及其随时间的变化。

图表栏 VUs vs Other Metrics

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第208 共531页

VUs vs Other Metrics 中，可以了解不同指标随 VUs 变化而变化的情况，具有对比意义。

当压测场景中配置了 VU 梯度时，如图所示：

对应的施压力度会随着时间根据不同的梯度进行变化，因此，在不同 VU 数值下观察关键指标的变化具有重要的意

义。

在该栏中，包括了 RPS 吞吐量、平均响应时间、请求错误率、检查点未通过率等和 VU 的对比时序曲线图，能够

反映随 VU 变化时被压端执行请求的情况。

图表栏 Service Detail

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第209 共531页

Service Detail 中，根据 service 变量选择关注的 service，并了解相关的细节，当变量值为 All 时即选中所有

service。

选择关注的 service，获得该 service 的信息，包括当前的瞬时量，例如 RPS、平均响应时间、网络流量等。

以及 RPS 和不同状态码、响应时间的不同百分位数、请求不同阶段的耗时、发送和接收的流量和速率等的时序曲

线。

以 RPS 为例，如果想看某个状态码的曲线，单击下方图例即可；若要查看多条曲线，按住 ctrl 或 shift 再单击多

个图例即可：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第210 共531页

图表栏 Check Detail

Check Detail 中，根据 check 变量选择关注的 check，并了解相关的细节，当变量值为 All 时即选中所有

check。

该栏中，包括了检查点当前的执行次数、执行速率、未通过次数、未通过速率和未通过率，以及其随时间变化的情况

等信息。

图表栏 Pressure Machine Detail

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第211 共531页

Pressure Machine Detail 中，可以看到压测任务执行所在的施压机器的情况，包括 CPU、内存限制和使用量

等。

根据用户在压测场景中的配置，云压测会拉起不同配置和数量的 Pod 进行压测任务执行，通过施压机监控可以查看

任务运行过程中 CPU 或内存的情况。

备注：

如果您想要在此面板的基础上进行修改，可以复制该面板后进行自定义配置。

单击设置符号，并单击 Save As...，设置并保存到想要的名称和目录，单击 Save 即可。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第212 共531页

之后，Grafana 会跳转到复制后的 Dashboard 界面，该 Dashboard 即可以由用户自定义修改和删除。

压测指标查询

除了 Dashboard，Grafana 还支持通过 PromQL 语句进行临时的指标查询，通过自定义 PromQL 语句，来查

询聚合出丰富的业务指标。

1. 在 Grafana 中单击 Explore。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第213 共531页

选择监控指标导入的 Prometheus 实例。

2. 输入想要查询的 PromQL 模式和语句即可，具体请参见 。Grafana 官方文档

https://grafana.com/docs/grafana/latest/explore/

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第214 共531页

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第215 共531页

压测指标文档
最近更新时间：2024-11-08 15:33:22

本文档介绍 PTS 支持输出到 Prometheus 的压测指标，供用户接入时使用参考。

标签

默认标签

PTS 输出的所有压测指标均包含以下三个标签：

instance：施压机的 IP 地址。

job：PTS 压测任务 ID，如 job-xxx。

region：压测任务运行所在的地域，如 ap-guangzhou。

其他标签

部分压测指标包含的其他标签：

method：请求方法名称，以 HTTP 协议为例，method 为 GET、POST、PUT 等。

proto：协议名称，以 HTTP 协议为例，proto 为 HTTP/1.1、HTTP/2 等。

service：服务名，以 HTTP 协议为例，service 为请求 url，如 http://httpbin.org/get 等。

status：响应状态码，以 HTTP 协议为例，状态码包括 200、404、500 等。

result：响应详情，通过 result 判断请求成果或失败。

请求正常，result 标签值为 ok。

请求失败，result 标签携带错误码和描述。

详细的错误码手册： 。错误代码手册

check：检查名，标签值为用户设置的检查点名称。

注意：

在 websocket 中，event 对应 method 标签，包括：

上行消息：sendPing、sendPong、sendMessage、sendBinaryMessage。

下行消息：ping、pong、message、binaryMessage、error、open、close。

指标

metric name type labels help info
descriptio

n

pts_engine_req_total coun

ter

method,

proto,

Total

number of

请求总次数

https://cloud.tencent.com/document/product/248/87368

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第216 共531页

service,

status,

result,

instance, job,

region

requests

sent to

server

pts_engine_req_duration_sec

onds

histo

gra

m

method,

proto,

service,

status,

result,

instance, job,

region

Duration of

request(sec

ond)

每次请求耗

时

pts_engine_req_max_duratio

n_seconds

gaug

e

method,

proto,

service,

status,

result,

instance, job,

region

Max

duration of

request(sec

ond)

请求最大耗

时

pts_engine_req_min_duration

_seconds

gaug

e

method,

proto,

service,

status,

result,

instance, job,

region

Min duration

of

request(sec

ond)

请求最小耗

时

pts_engine_req_send_duratio

n_seconds

histo

gra

m

method,

proto,

service,

status,

result,

instance, job,

region

Duration of

request

sending(sec

ond)

发送请求耗

时

pts_engine_req_wait_duratio

n_seconds

histo

gra

m

method,

proto,

service,

status,

result,

instance, job,

region

Duration of

request

waiting(sec

ond)

读取第一个

响应字节耗

时

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第217 共531页

pts_engine_req_receive_dura

tion_seconds

histo

gra

m

method,

proto,

service,

status,

result,

instance, job,

region

Duration of

request

receiving(se

cond)

读取完整响

应耗时

pts_engine_req_block_durati

on_seconds

histo

gra

m

method,

proto,

service,

status,

result,

instance, job,

region

Duration of

request

blocked(sec

ond)

发起请求之

前被阻塞耗

时

pts_engine_req_connect_dur

ation_seconds

histo

gra

m

method,

proto,

service,

status,

result,

instance, job,

region

Duration of

request

connecting(

second)

与远程主机

建立连接耗

时

pts_engine_req_tls_handsha

ke_duration_seconds

histo

gra

m

method,

proto,

service,

status,

result,

instance, job,

region

Duration of

request tls

handshakin

g(second)

与远程主机

握手耗时

pts_engine_req_dns_lookup_

duration_seconds

histo

gra

m

method,

proto,

service,

status,

result,

instance, job,

region

Duration of

request dns

lookup(seco

nd)

DNS 寻址耗

时

pts_engine_send_bytes_total coun

ter

method,

proto,

service,

status,

result,

Total

number of

bytes sent

发送字节数

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第218 共531页

instance, job,

region

pts_engine_receive_bytes_to

tal

coun

ter

method,

proto,

service,

status,

result,

instance, job,

region

Total

number of

bytes

received

接收字节数

pts_engine_checks_total
coun

ter

check,

result,

instance, job,

region

Total

number of

checks in

requests

检查点执行

总次数

container_cpu_usage_secon

ds_total

coun

ter

instance, job,

region

Cumulative

cpu time

consumed

累计 CPU

占用时间

container_memory_usage_by

tes

gaug

e

instance, job,

region

Current

memory

usage,

including all

memory

regardless

of when it

was

accessed

当前内存使

用量

container_network_receive_b

ytes_total

coun

ter

instance, job,

region

Cumulative

count of

bytes

received

累计接收字

节数

container_network_transmit_

bytes_total

coun

ter

instance, job,

region

Cumulative

count of

bytes

transmitted

累计发送字

节数

kube_pod_resource_cpu_limi

ts

gaug

e

instance, job,

region

CPU limit in

cores

CPU 核心上

限

kube_pod_resource_mem_li

mits

gaug

e

instance, job,

region

Memory

limit in bytes
内存上限

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第219 共531页

注意：

histogram 指标的 bucket 为 {0.001, 0.002, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2, 5,

10, 25, 50}。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第220 共531页

响应数据提取
最近更新时间：2024-06-27 14:06:51

概述

若要从请求的响应中动态提取数据，PTS 除了支持字符串的简单匹配（相等或包含），还支持 Jsonpath 提取

器、正则表达式提取器，供您实现更加灵活的提取逻辑。

基本用法

您在 PTS 压测场景中编排或调试请求时，若需从响应中动态提取数据值，用于为当前请求设置检查点、或为后续请

求注入参数、或在调试模式下调试具体响应字段，则您可使用数据提取器，解析和提取响应数据中的具体字段。

响应数据提取需在编排场景或者调试场景时使用。如何编排或调试场景，详情请参见 、 和

。

简单模式 脚本模式 调试

场景

使用场景

简单模式的场景下，您可从列表中选择具体的提取方式，然后在文本框输入符合提取器语法的表达式。以

Jsonpath 提取器为例：

脚本模式的场景下，您可使用 Get JSON field values，在脚本中实现提取数据的逻辑。以 Jsonpath 提取器为

例：

https://cloud.tencent.com/document/product/1484/74040
https://cloud.tencent.com/document/product/1484/74231
https://cloud.tencent.com/document/product/1484/74053
https://cloud.tencent.com/document/product/1484/74053

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第221 共531页

提取器类型

Jsonpath 提取器

Jsonpath 提取器适用于从 JSON 类型的响应体中提取数据。Jsonpath 表达式的常用语法：

运算符 描述

@ 当前节点

* 通配符，可匹配任意节点名或索引值

.<name> 用 . 匹配下级节点

[<number

> (,

<number>

)]

用 [] 检索数组中的一个或多个元素

[start:end] 数组切片

[?

(<expressi

on>)]

用布尔表达式筛选数据

 在脚本模式下，Jsonpath 的用法及其结果示例如下：

import jsonpath from 'pts/jsonpath';

export default function () {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第222 共531页

 const json = JSON stringify . ({

 "name": "first": "Tom" "last": "Anderson" { , },

 "age": 37 ,

 "children": "Sara" "Alex" "Jack" [, ,],

 "fav.movie": "Deer Hunter" ,

 "friends": [

 "first": "Dale" "last": "Murphy" "age": 44 "nets": "ig"

"fb" "tw"

{ , , , [,

,]},

 "first": "Roger" "last": "Craig" "age": 68 "nets": "fb"

"tw"

{ , , , [,

]},

 "first": "Jane" "last": "Murphy" "age": 47 "nets": "ig"

"tw"

{ , , , [,

]}

]

 });

 console log jsonpath get json 'name.last' // Anderson . (. (,));

 console log jsonpath get json 'age' // 37 . (. (,));

 console log jsonpath get json 'children' // Sara,Alex,Jack . (. (,));

 console log jsonpath get json 'children[*]' // Sara,Alex,Jack . (. (,));

 console log jsonpath get json 'children.[0]' // Sara . (. (,));

 console log jsonpath get json 'children[1:2]' // Alex,Jack . (. (,));

 console log jsonpath get json 'children[1, 2]' // Alex,Jack . (. (,));

 console log jsonpath get json 'friends[:].first' //

Dale,Roger,Jane

. (. (,));

 console log jsonpath get json 'friends[1].last' // Craig . (. (,));

 console log jsonpath get json 'friends[?(@.age > 45)].last' //

Craig,Murphy

. (. (,));

 console log jsonpath get json 'friends[?(@.first =~ /D.*e/)].last'

// Murphy

. (. (,));

};

正则表达式提取器

正则表达式提取器适用于从文本类型的响应中提取数据。PTS 正则表达式符合 JavaScript 原生语法，详情请参见

。正则表达式

https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Global_Objects/RegExp

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第223 共531页

以 PTS 场景调试为例，正则表达式提取器用法如下：

以脚本模式场景设置检查点为例，正则表达式提取器用法如下：

import sleep check from "pts"{ , } ;

import http from "pts/http";

export default function main () {

 let response;

 response = http get "http://mockhttpbin.pts.svc.cluster.local/get?

name=hello"

. (

);

 check "body matches /h[a-z]*o/" => (, () {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第224 共531页

 const expr = new RegExp "h[a-z]*o"();

 return expr test response body. (.);

 });

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第225 共531页

复制场景
最近更新时间：2024-01-10 20:03:21

本文将为您介绍如何在同一个项目下快速复制测试场景。

操作步骤

1. 登录 控制台。腾讯云可观测平台

2. 在左侧菜单栏中单击云压测 > 测试场景。

3. 单击场景名称，进入测试场景详情页，单击 > 复制。

4. 等待执行成功后，修改场景名称并单击确认 （场景名称为必填字段，默认与原场景同名），即可创建出与原场景

的配置完全一致的新场景。

https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第226 共531页

调试场景
最近更新时间：2024-10-31 18:11:52

在创建场景之后、正式压测之前，您可以先借助调试模式，快速地校验您的场景、排查和修复错误，以保证正式压测

时，您的场景是符合预期的。

操作步骤

1. 登录 。腾讯云可观测平台

2. 在左侧菜单栏中单击云压测 > 测试场景。

3. 点击新建场景，选择测试场景模式，然后在新建测试场景页面填写基础信息后，点击调试，进入调试模式。

4. 在弹出的调试页面上，您可以查看所有请求的采样日志、引擎日志和脚本信息，并可以使用调试工具，调试分析

您的请求数据。

https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第227 共531页

在采样日志页，您可以单击左侧请求列表，查看某个请求及其响应的具体信息和耗时瀑布流；还可以单击调试工

具标签页，输入 JSON Path 表达式或者正则表达式，从响应结果中提取所需数据。

使用 JSON Path 提取数据的示例如下：

使用正则表达式提取数据的示例如下：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第228 共531页

在引擎日志页，您可以选择日志级别和日志来源，查看引擎输出的日志：

在脚本信息页，您可以浏览本次压测时刻所使用的场景脚本快照：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第229 共531页

5. 若要退出调试模式，可单击右上角“关闭”图标，返回场景页。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第230 共531页

流量录制

浏览器流量录制
最近更新时间：2024-10-31 18:11:52

您可以在 Chrome 上安装 Tencent PTS Recorder 流量录制插件。PTS Recorder 将会录制您在浏览器上的

操作和发送的请求以及对应的响应内容。并自动生成 PTS 压测场景。

本文介绍如何使用 PTS 流量录制功能，帮助您快速模拟业务场景，发起压测。

操作步骤

安装插件

1. 下载 插件，下载到本地，并解压。 PTS Recorder

2. 打开 Chrome 浏览器，地址栏输入 chrome://extensions/ ，进入扩展程序管理页面。单击扩展页右上角

按钮，切换到开发者模式。

3. 单击左上角加载已解压的扩展程序，选择下载并解压后 PTS Recorder 插件。

4. Chrome 浏览器插件列表中出现 Tencent Cloud PTS Recorder，即表示安装成功。

5. 成功安装插件后，请单击刷新页面 后，重新单击流量录制。

6. 插件安装完成后，您可以在 Chrome 浏览器顶部菜单栏，单击 图标，再单击 PTS 录制器插件旁的 图

标，固定此插件。

https://pts-recorder-1251763868.cos.ap-chengdu.myqcloud.com/PTS_Recorder.zip

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第231 共531页

 ﻿

使用插件

1. 插件安装完成后，填写下列信息，并单击 开始录制。

起始页面：录制器启动后跳转的页面，在该页面开始录制用户操作流量。

URL 筛选：通过 URL 筛选，可以录制您感兴趣的流量。例如您只关心发送到域名为

console.cloud.tencent.com 的请求，那么在 URL 筛选中填入该域名即可。

类型筛选：选择仅录制您感兴趣的请求类型。

说明：

录制类型：

XHR： application/json,text/xml,text/plain,application/xml

JS：application/javascript,text/javascript,application/x-javascript

HTML：text/html

CSS：text/css

Image：image/*

其他：others/*,application/json,text/xml,text/plain,application/xml,-

application/javascript,text/javascript,application/x-

javascript,text/html,text/css,image/*

2. 在录制页面上执行您的操作，PTS 将自动记录您的操作。您可以浏览器底部菜单栏下看到 PTS 录制中的提示。

单击 PTS 插件，也可看到录制中的提示。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第232 共531页

3. 操作完成后，浏览器底部菜单栏下方的提示中单击取消，或者在 PTS 插件中单击停止录制。在流量录制页面中

筛选出您感兴趣的请求，生成压测场景。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第233 共531页

环境管理
最近更新时间：2024-07-01 16:33:21

简介

环境管理支持用户创建不同的环境变量组，每个变量组中可以创建不同的环境变量。在压测过程中，可以在压测脚本

中使用环境变量。

环境管理

PTS 支持环境配置的增删改查操作。

环境创建

登录 ，在左侧导航栏中选择云压测 > 环境管理，点击新建环境，创建环境和变量，并进行保存。腾讯云可观测平台

环境编辑

登录 ，在左侧导航栏中选择云压测 > 环境管理，选择目标环境的 ID，点击 ，即可对已有的

环境进行编辑处理。

腾讯云可观测平台

https://console.cloud.tencent.com/monitor/overview
https://console.cloud.tencent.com/monitor/overview

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第234 共531页

环境删除

登录 ，在左侧导航栏中选择云压测 > 环境管理，选择目标环境的 ID，点击删除或者 时，会

提示已经关联的测试场景，然后点击弹框中的确定即可删除。

腾讯云可观测平台

如何使用

创建完环境和变量后，可以在简单测试场景和 js 脚本中进行引用。

脚本模式

1. 登录 ，在左侧导航栏中选择云压测 > 测试场景，点击新建场景。腾讯云可观测平台

2. 选择脚本模式。

3. 在测试场景中进行施压配置，配置详情可参见 。施压配置

https://console.cloud.tencent.com/monitor/overview
https://console.cloud.tencent.com/monitor/overview
https://cloud.tencent.com/document/product/248/87314

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第235 共531页

4. 点击环境管理，管理具体的环境，然后在脚本中，使用 env 函数即可。

import env from 'pts'{ }

let a = env()

console log a name. (.)

console log a age. (.)

简单模式

1. 登录 ，在左侧导航栏中选择云压测 > 测试场景，点击新建场景。腾讯云可观测平台

2. 选择简单模式。

3. 在测试场景中进行施压配置，配置详情可参见 。施压配置

https://console.cloud.tencent.com/monitor/overview
https://cloud.tencent.com/document/product/248/87314

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第236 共531页

4. 点击环境管理，管理具体的环境，简单模式会自动生成变量引用，直接使用即可。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第237 共531页

定时压测
最近更新时间：2024-10-31 18:11:52

操作场景

当您需要定期执行压测任务时，可以使用定时压测功能。定时压测可以指定压测任务的执行时间、频率、通知对象

等。本文将介绍如何使用定时压测功能，帮助您快速上手，发起定时压测。

使用前提

为了确保压测任务的可行性，您需提前创建并调试了您的测试场景，详情可参见 。相关操作指引

提前 ，告警联系人用于在压测任务启动和结束时的通知。新建告警联系人

使用限制

在使用定时压测功能之前，您需要知悉定时压测的使用限制：

一个测试场景只能用于一个定时压测任务。建议您单独为定时压测创建场景。

已经用于定时压测任务的测试场景不可再编辑，只有删除该定时压测任务后，场景的限制才会解除。

操作指南

1. 登录 。腾讯云可观测平台

2. 在左侧菜单栏中单击云压测 > 定时压测 > 创建定时任务

3. 进入新建定时任务页面，根据下列描述配置定时压测任务。

https://cloud.tencent.com/document/product/248/87642
https://console.cloud.tencent.com/monitor/pts/alarm/notice
https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第238 共531页

配置项 说明

任务名称 自定义定时任务名称

关联场景 选择您需要关联的场景名称

执行频率

支持执行一次，日粒度（每个月的某日执行），周粒度（每周的星期几执行），高级配置

（若前三种方式无法满足您的需求，您可以使用 cron 表达式来定义执行频率），详情可参

见 。执行频率介绍

告警联系

人

选择对应的告警联系人，若无可进入 页面进行创建，用于接收压测任务启动和

结束相关的通知。

告警联系人

4. 创建完后您可以在定时压测任务列表。查看定时压测任务的基本信息，包括关联的测试场景、以文字形式描述的

执行频率、任务状态等。

https://console.cloud.tencent.com/monitor/pts/alarm/notice

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第239 共531页

若您想要快速找到某一个定时压测任务，可以通过排序或任务名称模糊搜索实现。

若您想要查看已经执行的压测任务的报表，可以单击对应场景快速跳转到报表界面。

执行频率介绍

执行一次：您需要选择压测任务执行的时间，且该时间必须大于当前时间。定时压测任务会在指定时间运行一次

压测任务，并将状态更新为已完成。

日粒度：如果您想在每个月的某些天执行一次压测任务，可以选择日粒度，如图选择2号、4号的16:35，则定时

压测任务会在每个月2号和4号的16:35执行一次压测任务。另外，您可以填写结束时间（可不填），定时压测任

务会在到达结束时间时更新状态为已完成。

周粒度：如果您想在每周的某些天执行一次压测任务，可以选择周粒度。

高级配置：如果前三种方式都没法满足您的需求，那您可以直接使用 cron 表达式来定义执行频率（cron 表达

式的介绍放在下一节），在您填写 cron 表达式的过程中，我们会检查您的表达式是否正确，这能辅助您正确填

写。如果填写正确，我们会展示前5次执行的时间，方便您检查该表达式是否符合您的需求。

cron 表达式

只能选择按照日或者周，指定执行压测时间。 日和周只能二选一，指定日或周之后，另外一个输入框内必须填写

?，表示不受限制。

只能使用英文符号，不能使用中文符号（若您认为填写正确，但提示填写错误，可以检查 * 和?是否是英文）。

表示多个值时，使用英文逗号连接。例如， 日输入框中填写 1,5 表示每月一号和五号。

表示区间值时，用短横线连接。例如， 日输入框中填写 1-5 表示每月一号至五号。

表示指定频率时，使用斜杠连接。例如， 日输入框中填写 */2 表示每隔两天。

示例：

每隔10分钟执行一次。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第240 共531页

每个月一号至五号的2点和8点每隔半小时执行一次。详情可看图中的最近5次执行时间。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第241 共531页

压测报告

解读报告
最近更新时间：2024-12-27 11:58:52

概述

云压测会将一次压测的结果展示在压测报表中。压测报表分为实时报表和历史报表两种状态，前者供您在压测过程中

实时查看数据，后者供您在压测结束后查看历史数据。

说明：

云压测历史报表保留期限为45天，45天后将自动清理过期报告。您可以在报告过期前下载 PDF 格式压测

报告作为备份。

实时报表

当您触发运行您的压测场景，PTS 经过一些资源准备步骤后，会为您创建出一个压测任务。进入 ，选择

并点击需查看的压测任务，页面动态展示该任务的压测数据，并以一定的频率实时刷新。

测试场景

历史报表

当您的压测场景的一次压测任务完成后，您可进入 ，单击压测任务的右上角的 > 历史报表，即可进入

历史报表总览页面。找到并单击需查看的历史报表，即可查看历史数据。

测试场景

https://console.cloud.tencent.com/monitor/pts/scenarios/list
https://console.cloud.tencent.com/monitor/pts/scenarios/list

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第242 共531页

报表数据

概览

概览页展示一些最核心的概览数据，如压测任务本身的元数据及压测结果里最常用的指标及其图表（如 VU、

RPS、平均响应时间）。

概览页最上方一栏，为压测任务的总览数据，其中：

并发数、请求总数，为压测任务运行时刻的瞬时值。

RPS、平均响应时间、失败率、网络流量，为压测任务运行期间的平均值。

概览页中间一栏，为压测任务的持续时间、压测人、状态等元数据。

概览页最下方一栏，为压测任务的实时曲线，展示各指标在各时间点的瞬时值。

说明

关于并发用户数、RPS、响应时间的概念介绍及其之间的关系，请参见 。常见问题

服务明细

https://cloud.tencent.com/document/product/248/87369

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第243 共531页

服务明细页默认将每个 URL 归类为一个“服务”，展示压测期间发送的所有请求的明细信息。

您可单击展开每个服务的详情，查看其数据及图表。在图表中，您可点击切换指标名（Metric）或聚合方式

（Aggregation），来切换查看。

说明

在 PTS 中，不同服务默认是按照不同的 URL 来归类的。若您需要自定义服务归类，可在脚本模式的场景

中，指定 http.Request 中的 service 属性。请参见 。JavaScript API 列表

检查点明细

在检查点明细页面，您可查看您在场景中所设置的检查点的结果明细。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第244 共531页

说明

关于如何设置检查点，请参见 。设置检查点

脚本信息

在脚本信息页面，您可查看压测任务执行时所使用的场景脚本的快照。

多维分析

在多维分析页面，您可交互式地切换查看多种压测结果数据的图表组合。您可单击切换指标名（Metric）或聚合方

式（Aggregation），来切换查看不同图表。

您还可单击页面下方添加指标，新建您所需的数据图表。

https://cloud.tencent.com/document/product/248/87329

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第245 共531页

施压机

在施压机页面，您可查看该压测任务的施压机的基本信息、在压测过程中输出的日志、施压机本身的资源使用状况。

其中，压测日志可按日志级别（debug/info/error）和日志内容（用户输出/引擎输出）分类，您可在下拉列表中切

换。

用户自行打印的日志，将展示在用户输出标签页。

PTS 打印的通用日志，将展示在引擎输出标签页。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第246 共531页

请求采样

1. 单击请求采样，您可查看施压端采样选取的部分请求的详细信息。

2. 输入相应条件，筛选所需请求。在请求列表中，单击查看详情，可展开单条请求的详情页。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第247 共531页

在单条请求的详情页中，您可查看它的请求和响应的详细信息，以及请求耗时分布的瀑布图。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第248 共531页

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第249 共531页

下载报告
最近更新时间：2024-08-16 11:52:01

本文将为您介绍如何下载一次已完成的压测任务的历史报告。

操作步骤

1. 登录 。腾讯云可观测平台控制台

2. 在左侧菜单栏选择云压测 > 测试场景页面。

3. 在测试场景的右上角，单击 > 历史报表，进入历史报表页面。

4. 在历史报表页面，单击想要下载的历史报表。

https://console.cloud.tencent.com/monitor/overview2

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第250 共531页

5. 在报表页点击右上角 > 下载压测报告，您可下载一次已完成压测任务的历史报告。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第251 共531页

访问控制

概述
最近更新时间：2024-04-22 18:05:51

如果您在腾讯云中使用到了性能测试服务，该服务由不同的人管理，但都共享您的云账号密钥，将存在以下问题：

您的密钥由多人共享，泄密风险高。

您无法限制其他人的访问权限，易产生误操作造成安全风险。

此时，您就可以通过子账号实现不同的人员管理不同的服务，来规避以上的问题。默认情况下，子账号无使用性能测

试权限。因此，我们需要创建策略来允许子账号使用他们所需要资源的权限。

简介

（Cloud Access Management，CAM）是腾讯云提供的一套 Web 服务，它主要用于帮助客户安全

管理腾讯云账户下的资源的访问权限。通过 CAM，您可以创建、管理和销毁用户（组），并通过身份管理和策略管

理控制哪些人可以使用哪些腾讯云资源。

访问管理

当您使用 CAM 时，可以将策略与一个用户或一组用户关联起来，策略能够授权或者拒绝用户使用指定资源完成指

定任务。有关 CAM 策略的更多相关基本信息，请参见 。有关 CAM 策略的更多相关使用信息，请参见

。

策略语法

策略

授权方式

云压测支持资源级授权和按标签授权两种方式：

资源级授权：您可以通过策略语法或默认策略授予子账号单个资源的管理权限，详细请参见 和

。

策略语法 策略授

予

按标签授权：您可以通过给资源标记标签，实现给子账号对应的标签下资源的管理权限，详细请参见 。资源标签

说明：

若您无需对子账号进行性能测试服务相关资源的访问管理，您可以跳过此章节。跳过该部分不会影响您对文

档中其余部分的理解和使用。

https://cloud.tencent.com/document/product/598
https://cloud.tencent.com/document/product/598/10603
https://cloud.tencent.com/document/product/598/10601
https://cloud.tencent.com/document/product/248/87359
https://cloud.tencent.com/document/product/248/87358
https://cloud.tencent.com/document/product/248/87358
https://cloud.tencent.com/document/product/248/87361

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第252 共531页

策略授予
最近更新时间：2024-09-14 11:48:11

子账号默认没有性能测试任何权限。需要主账号授予子账号相关权限，子账号才能正常访问云压测资源。

操作前提

使用拥有管理员权限（AdministratorAccess）或者拥有访问管理全读写权限（QcloudCamFullAccess）的

子账号登录腾讯云控制台，请参考 创建子账户。新建子用户

自定义策略

1. 使用拥有管理员权限（AdministratorAccess）或者拥有访问管理全读写权限

（QcloudCamFullAccess）子账号进入 。访问管理 > 策略

2. 单击新建自定义策略 > 按策略语法创建，选择空白模板。根据 完成策略编辑。策略语法

策略授权

说明：

https://cloud.tencent.com/document/product/598/13674
https://console.cloud.tencent.com/cam/policy
https://cloud.tencent.com/document/product/248/87359

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第253 共531页

云压测为您创建默认策略 QcloudPTSFullAccess（云压测（PTS）全读写访问权限）和

QcloudPTSReadOnlyAccess（云压测（PTS）只读访问权限），您可以通过搜索策略名称快速进行

默认策略授权。也可以对自定义策略进行授权。授权成功后，子账号才能正常访问相关资源。

1. 使用拥有管理员权限（AdministratorAccess）或者拥有访问管理全读写权限

（QcloudCamFullAccess）权限的子账号进入 。访问管理 > 策略

2. 进入策略管理页，在策略名称搜索框中输入对应的策略名称。

3. 选择只读访问或全读写访问权限，在操作列中单击关联用户/组/角色。

支持资源级授权的 API 列表

API 操作 API 描述

AbortJob 停止任务

CreateProject 创建项目

CreateScenario 创建场景

DeleteJobs 删除任务

DeleteProjects 删除项目

DeleteScenarios 删除场景

DescribeCheckSummary 查询检查点汇总信息

DescribeJobs 查询任务列表

DescribeLabelValues 查询标签内容

DescribeProjects 查询项目列表

DescribeRegions 查询地域列表

DescribeSampleBatchQuery 批量查询指标，返回固定时间点指标内容

DescribeSampleQuery 查询指标，返回固定时间点指标内容

https://console.cloud.tencent.com/cam/policy

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第254 共531页

DescribeSampleStreamBatchQuery 批量查询指标序列

DescribeSampleStreamQuery 查询一段时间范围内的指标序列

DescribeScenarioWithJobs 查询场景配置并附带已经执行的任务内容

DescribeScenarios 查询场景列表

DescribeServiceSummary 查询服务汇总信息

DescribeZones 查询可用区列表

GenerateTmpKey 生成临时 COS 凭证

StartJob 创建并启动任务

UpdateJob 更新任务

UpdateProject 更新项目

UpdateScenario 更新场景

不支持资源级授权的 API 列表

针对不支持资源级权限的云压测 API 操作，您仍可以向用户授予使用该操作的权限，但策略语句的资源

（resource）元素必须指定为 * 。

API 操作 API 描述

CreateProject 创建 PTS 服务实例

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第255 共531页

策略语法
最近更新时间：2024-10-31 18:11:52

概述

访问策略可用于授予访问云压测相关的权限。访问策略使用基于 JSON 的访问策略语言。您可以通过访问策略语言

授权指定委托人（principal）对指定的云压测资源执行指定的操作。

访问策略语言描述了策略的基本元素和用法，有关策略语言的说明请参见 。CAM 策略管理

策略语法

CAM 策略

 {

 "version":"2.0",

 "statement":

 [

 {

 "effect":"effect",

 "action": "action" , []

 "resource": "resource" , []

 "condition": "key": "value" { { }}

 }

]

 }

元素用法

版本 version：必填项，目前仅允许值为"2.0"。

语句 statement：描述一条或多条权限的详细信息，该元素包括 effect、action、resource，condition

等多个其他元素的权限或权限集合。一条策略有且仅有一个 statement 元素。

影响 effect：必填项，描述声明产生的结果为“允许”或“显式拒绝”，包括 allow（允许）和 deny（显

式拒绝）两种情况。

操作 action：必填项，描述允许或拒绝的操作。操作可以是 API （以 name 前缀描述）或者功能集（一

组特定的 API，以 permid 前缀描述）。

资源 resource：必填项，授权的具体数据。资源是用六段式描述。每款产品的资源定义详情会有所区别。

有关如何指定资源的信息，请参见您编写的资源声明所对应的产品文档。

https://cloud.tencent.com/document/product/598/10600

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第256 共531页

生效条件 condition：非必填项，描述策略生效的约束条件。条件包括操作符、操作键和操作值组成。条件

值可包括时间、IP 地址等信息。有些服务允许您在条件中指定其他值。

指定效力

如果没有显式授予（允许）对资源的访问权限，则隐式拒绝访问。同时，也可以显式拒绝（deny）对资源的访问，

从而确保用户无法访问该资源，即使有其他策略授予了访问权限的情况下也无法访问。下面是指定允许效力的示例：

"effect" : "allow"

指定操作

云压测定义了可在策略中指定一类控制台的操作，指定的操作按照操作性质分为读取部分接口 pts:Describe*

和全部接口 pts:* 。

指定允许操作的示例如下：

"action": [

 "name/pts:Describe*"

]

指定资源

资源（resource）元素描述一个或多个操作对象，如性能测试服务等。所有资源均可采用下述的六段式描述方式。

qcs:project_id:service_type:region:account:resource

参数说明如下：

参数 描述
是否必

选

qcs qcloud service 的简称，表示是腾讯云的云服务 是

project

_id
描述项目信息，仅为了兼容 CAM 早期逻辑，一般不填 否

service

_type
产品简称，此处为 pts 是

accoun

t

描述资源拥有者的主账号信息，即主账号的 ID，表示为 uin/${OwnerUin} ，

如 uin/100000000001
是

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第257 共531页

resourc

e
描述具体资源详情，前缀为 instance 是

下面是性能测试服务的四段式示例：

"resource":["qcs::pts:uin/1250000000:ProjectId/project-bx123456"]

实际案例

基于资源 ID，分配指定资源的读写权限，主账号 ID 为 1250000000。

示例：为子账号分配查询项目（ID：project-bx123456）权限。

{

 "version": "2.0",

 "statement": [

 {

 "effect": "allow",

 "action": [

 "pts:DescribeProjects"

 ,]

 "resource": [

 "qcs::pts:uin/1250000000:ProjectId/project-bx123456"

]

 }

]

}

支持资源级授权的 API 列表

API 操作 API 描述

API 操作 API 描述

AbortJob 停止任务

CreateProject 创建项目

CreateScenario 创建场景

DeleteJobs 删除任务

DeleteProjects 删除项目

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第258 共531页

DeleteScenarios 删除场景

DescribeAllLabels 查询所有指标的labels

DescribeCheckSummary 查询检查点汇总信息

DescribeJobs 查询任务列表

DescribeLabelValues 查询标签内容

DescribeProjects 查询项目列表

DescribeRegions 查询地域列表

DescribeSampleBatchQuery 批量查询指标，返回固定时间点指标内容

DescribeSampleQuery 查询指标，返回固定时间点指标内容

DescribeSampleStreamBatchQuery 批量查询指标序列

DescribeSampleStreamQuery 查询一段时间范围内的指标序列

DescribeScenarioWithJobs 查询场景配置并附带已经执行的任务内容

DescribeScenarios 查询场景列表

DescribeServiceSummary 查询服务汇总信息

DescribeZones 查询可用区列表

GenerateTmpKey 生成临时COS凭证

StartJob 创建并启动任务

UpdateJob 更新任务

UpdateProject 更新项目

UpdateScenario 更新场景

不支持资源级授权的 API 列表

针对不支持资源级权限的云压测 API 操作，您仍可以向用户授予使用该操作的权限，但策略语句的资源

（resource）元素必须指定为 * 。

API 操作 API 描述

CreateProject 创建 PTS 服务实例

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第259 共531页

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第260 共531页

告警管理

告警联系人
最近更新时间：2024-08-16 11:52:01

使用场景

SLA 使用场景：当 SLA 规则被触发时，您还可以配置告警联系人，接收告警消息。PTS 能借助您的腾讯云账

号下已有的通知渠道，向您发送 SLA 规则被触发的告警消息。

定时压测使用场景：您可以在设置定时压测时，绑定告警联系人，在压测任务启动和结束时的将会根据您筛选的

渠道进行通知。

操作步骤

1. 登录 。腾讯云可观测平台

2. 在左侧菜单栏中单击云压测 > 告警联系人 > 添加联系人组。

3. 自定义联系人组名称，选择联系人，并选择接收渠道即可。若联系人列表不符合您的要求，您可以单击右侧的新

增用户，参见 指引新增联系人即可。新建消息接收人

接口回调：填写回调地址，例如： http://my.service.example.com， 接口回调具备将告警信息通过

HTTP 的 POST 请求推送到可访问公网 URL 的功能，您可基于接口回调推送的告警信息做进一步的处理。

https://console.cloud.tencent.com/monitor
https://cloud.tencent.com/document/product/598/13667

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第261 共531页

告警历史
最近更新时间：2024-08-16 11:52:01

操作场景

当您在 SLA 规则或定时压测中绑定了告警联系人，当 SLA 规则被触发或定时压测任务启动和结束时，将会根据您

筛选的渠道进行告警通知，历史的告警记录将会保存在告警历史中。

操作步骤

1. 登录 。腾讯云可观测平台

2. 在左侧菜单栏中单击云压测 > 告警历史，即可查看告警历史内容。

https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第262 共531页

标签管理

标签概述
最近更新时间：2024-04-19 16:18:11

简介

标签是腾讯云提供的用于标识云上资源的标记，是一个键-值对（Key-Value）。您可以根据各种维度（例如业

务、用途、负责人等）使用标签对 PTS 项目资源进行分类管理。

通过标签可便捷地筛选过滤出对应的资源，也可基于标签对资源进行授权。

标签键值对会严格按字符串进行解析匹配，腾讯云不会使用您设定的标签，标签仅用于您对资源的管理。

以下通过一个具体的案例来介绍标签的使用。

案例背景

某公司在腾讯云上拥有10 个 云项目，分属电商、游戏、文娱三个运营部门，服务于营销活动、游戏 A、后期制作等

业务，三个部门对应的负责人为张三、李四、王五。

设置标签

为了方便管理，该公司使用标签分类管理对应的 PTS 项目资源，定义了下述标签键和值。

标签键 标签值

运营部门 电商、游戏

运营产品 广告营销中心、天涯明月刀

一级业务 资讯推荐平台、游戏运营平台

二级业务 推送流、春节推广活动

负责人 张三、李四

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第263 共531页

使用限制
最近更新时间：2024-10-31 18:11:52

标签是一个键-值对（Key-Value），您可以在 PTS 云压测控制台，通过对项目设置标签实现资源的分类管理。

通过标签，可以非常方便筛选过滤出对应的资源。

数量限制

每个云资源允许的最大标签数是50。

标签键限制

qcloud、tencent、project 开头为系统预留标签键，禁止创建。

只能为字母、数字、空格或汉字，支持 +-=._:/@()[]（）【】,;><

标签键长度最大为127个字符。

标签值限制

只支持字母、数字、空格、汉字或特殊符号。

标签值最大长度为255个字符。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第264 共531页

绑定标签
最近更新时间：2024-10-31 18:11:52

本文将为您介绍云压测项目如何绑定标签。

操作前提

已创建标签，详情可参见 指引新建标签。创建标签

操作步骤

1. 登录 。腾讯云可观测平台控制台

2. 在左侧菜单栏中单击云压测 > 项目列表，进入项目列表页，在列表中选择您需要操作的项目，单击操作列的编辑

按钮。

3. 进入编辑页面后，单击+添加，添加完后保存即可。

https://cloud.tencent.com/document/product/651/56716
https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第265 共531页

使用标签
最近更新时间：2024-10-31 18:11:52

本文指导您在腾讯云可观测平台的控制台中，根据标签对实例进行资源筛选，过滤出对应的资源。

前提条件

已创建标签，若未创建可参见 进行创建。创建标签

操作步骤

1. 登录 。腾讯云可观测平台控制台

2. 在左侧菜单栏中单击云压测 > 项目列表。

3. 在项目列表右上角的搜索框，单击空白处弹出标签过滤选择框，选择标签，如下图所示：

4. 在标签过滤选择框中选择对应的条件，单击确定进行过滤。

5. 如果需要调整对应的标签条件，单击搜索框里的标签后面的标签内容进行编辑即可。

6. 同时也支持直接单击项目列表中对应的标签值来进行过滤，如下图所示：

https://cloud.tencent.com/document/product/651/56716
https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第266 共531页

错误代码手册
最近更新时间：2024-12-02 10:04:42

前言

PTS 错误码主要有两种：

引擎发请求包时产生的自定义错误码。

引擎透传的 HTTP、gRPC 等协议的错误码。

错误码只代表大致的错误类型；若要定位具体错误原因，请务必参考错误的详细信息。

引擎自定义错误码

引擎自定义的错误码，是用来进一步细分脚本可能导致的错误，例如：设置的 HTTP 超时时间不合理（默认10

秒）、域名不存在等，方便您排查问题。

错误码 英文描述 错误码含义

999 unkown 通用错误码，具体原因见请求采样、施压机引擎日志。

1010 context deadline 请求超时，通常与1301状态码同时出现，均表示超时。

1100 具体的 DNS 错误信息 DNS 查询出错的通用错误码。

1101
lookup: no such

host
DNS 域名解析错误。

1200 具体的 TCP 错误信息 请求在成功建立网络连接后出错的通用错误码。

1201
具体的 TCP op error

错误信息
请求出错，且该请求使用的不是 TCP 连接。

1202
connection reset

by peer

请求出错，且该错误发生于数据的读取或写入场景，服务端关闭了

连接，可能是服务端异常、或负载过高等原因。

1203 broken pipe
请求出错，且该错误发生于数据的写入场景，服务端关闭了连接，

可能是服务端异常、或负载过高等原因。

1204
具体的系统调用错误信

息
请求出错，且错误来源于系统调用。

1210 具体的 dial 错误信息 请求在建立网络连接时出错的通用错误码。

1211
unknown errno on

with message
请求出错，且该错误来源于未被识别的系统调用。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第267 共531页

1212 dial: i/o timeout 建立网络连接超时。

1301 request canceled
请求取消，通常是因为超时，且超时情况下通常与1010错误码同时

出现。

2000 具体错误信息 数据库操作出错。

2001 具体错误信息 检查点结果为 False。

HTTP 协议常见错误码

单击查看官网说详细说明

状

态

码

状态码英文名称 中文描述

10

0
Continue 继续。客户端应继续其请求。

10

1

Switching

Protocols

切换协议。服务器根据客户端的请求切换协议。只能切换到更高级的协

议，例如，切换到 HTTP 的新版本协议。

20

0
OK 请求成功。一般用于 GET 与 POST 请求。

20

1
Created 已创建。成功请求并创建了新的资源。

20

2
Accepted 已接受。已经接受请求，但未处理完成。

20

3

Non-

Authoritative

Information

非授权信息。请求成功。但返回的 meta 信息不在原始的服务器，而是一

个副本。

20

4
No Content

无内容。服务器成功处理，但未返回内容。在未更新网页的情况下，可确

保浏览器继续显示当前文档。

20

5
Reset Content

重置内容。服务器处理成功，用户终端（例如：浏览器）应重置文档视

图。可通过此返回码清除浏览器的表单域。

20

6
Partial Content 部分内容。服务器成功处理了部分 GET 请求。

30

0
Multiple Choices

多种选择。请求的资源可包括多个位置，相应可返回一个资源特征与地址

的列表用于用户终端（例如浏览器）选择。

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第268 共531页

30

1

Moved

Permanently

永久移动。请求的资源已被永久的移动到新 URI，返回信息会包括新的

URI，浏览器会自动定向到新 URI。今后任何新的请求都应使用新的 URI

代替。

30

2
Found

临时移动。与301类似。但资源只是临时被移动。客户端应继续使用原有

URI。

30

3
See Other 查看其它地址。与301类似。使用 GET 和 POST 请求查看。

30

4
Not Modified

未修改。所请求的资源未修改，服务器返回此状态码时，不会返回任何资

源。客户端通常会缓存访问过的资源，通过提供一个头信息指出客户端希

望只返回在指定日期之后修改的资源。

30

5
Use Proxy 使用代理。所请求的资源必须通过代理访问。

30

6
Unused 已经被废弃的 HTTP 状态码。

30

7

Temporary

Redirect
临时重定向。与302类似。使用 GET 请求重定向。

40

0
Bad Request 客户端请求的语法错误，服务器无法理解。

40

1
Unauthorized 请求要求用户的身份认证。

40

2

Payment

Required
保留，将来使用。

40

3
Forbidden 服务器理解请求客户端的请求，但是拒绝执行此请求。

40

4
Not Found

服务器无法根据客户端的请求找到资源（网页）。通过此代码，网站设计

人员可设置"您所请求的资源无法找到"的个性页面。

40

5

Method Not

Allowed
客户端请求中的方法被禁止。

40

6
Not Acceptable 服务器无法根据客户端请求的内容特性完成请求。

40

7

Proxy

Authentication

Required

请求要求代理的身份认证，与401类似，但请求者应当使用代理进行授

权。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第269 共531页

40

8

Request Time-

out
服务器等待客户端发送的请求时间过长，超时。

40

9
Conflict

服务器完成客户端的 PUT 请求时可能返回此代码，服务器处理请求时发

生了冲突。

41

0
Gone

客户端请求的资源已经不存在。410不同于404，如果资源以前有现在被

永久删除了可使用410代码，网站设计人员可通过301代码指定资源的新位

置。

41

1
Length Required 服务器无法处理客户端发送的不带 Content-Length 的请求信息。

41

2

Precondition

Failed
客户端请求信息的先决条件错误。

41

3

Request Entity

Too Large

由于请求的实体过大，服务器无法处理，因此拒绝请求。为防止客户端的

连续请求，服务器可能会关闭连接。如果只是服务器暂时无法处理，则会

包含一个 Retry-After 的响应信息。

41

4

Request-URI

Too Large
请求的 URL 过长（ URL 通常为网址），服务器无法处理。

41

5

Unsupported

Media Type
服务器无法处理请求附带的媒体格式。

41

6

Requested range

not satisfiable
客户端请求的范围无效。

41

7

Expectation

Failed
服务器无法满足 Expect 的请求头信息。

50

0

Internal Server

Error
服务器内部错误，无法完成请求。

50

1
Not Implemented 服务器不支持请求的功能，无法完成请求。

50

2
Bad Gateway

作为网关或者代理工作的服务器尝试执行请求时，从远程服务器接收到了

一个无效的响应。

50

3

Service

Unavailable

由于超载或系统维护，服务器暂时的无法处理客户端的请求。延时的长度

可包含在服务器的 Retry-After 头信息中。

50

4

Gateway Time-

out
充当网关或代理的服务器，未及时从远端服务器获取请求。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第270 共531页

50

5

HTTP Version

not supported
服务器不支持请求的 HTTP 协议的版本，无法完成处理。

gRPC 协议常见错误码

点此查看官网说详细说明

英文描述 状态码 说明

OK 0 不是错误；成功后返回。

CANCELLED 1 该操作通常被调用方取消。

UNKNOWN 2

未知错误。例如，当从另一个地址空间接收的 Status 值属于此地址

空间中未知的错误空间时，可能会返回此错误。此外，API 引发的错

误如果没有返回足够的错误信息，则可能会转换为此错误。

INVALID_ARG

UMENT
3

客户端指定的参数无效。请注意，这与 FAILED_PRECONDITION

不同。INVALID_ARGUMENT 表示无论系统状态如何都有问题的

参数（例如，格式错误的文件名）。

DEADLINE_E

XCEEDED
4

在操作完成之前，截止日期已过期。对于更改系统状态的操作，即使操

作已成功完成，也可能返回此错误。例如，来自服务器的成功响应可能

会延迟很长时间。

NOT_FOUND 5

找不到某些请求的实体（例如，文件或目录）。服务器开发人员注意：

如果对整个用户类别的请求被拒绝，例如逐步推出功能或未记录的

allowlist，则可以使用 NOT_FOUND。如果某类用户中的某些用户

的请求被拒绝，例如基于用户的访问控制，则必须使用

PERMISSION_denied。

ALREADY_EX

ISTS
6 客户端试图创建的实体（例如，文件或目录）已存在。

PERMISSION_

DENIED
7

调用者没有执行指定操作的权限。permission_DENIED 不能用于

因耗尽某些资源而导致的拒绝（对于这些错误，请使用

resource_EXHAUSTED）。如果无法识别调用者，则不得使用

PERMISTION_DENIED （对于这些错误，请使用

UNAUTHENTICATED）。此错误代码并不意味着请求有效，或者

请求的实体存在或满足其他先决条件。

RESOURCE_E

XHAUSTED
8

某些资源已用尽，可能是每个用户的配额，也可能是整个文件系统空间

不足。

FAILED_PREC

ONDITION

9 操作被拒绝，因为系统未处于执行操作所需的状态。例如，要删除的目

录是非空的，rmdir 操作应用于非目录等。服务实现者可以使用以下

https://grpc.github.io/grpc/core/md_doc_statuscodes.html

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第271 共531页

准则来决定 FAILED_PRECONDITION、ABORTED 和

UNAVAILABLE：

如果客户端可以重试失败的调用，请使用 UNAVAIALLE。

如果客户端应在更高级别重试（例如，当客户端指定的测试和设置

失败时，表示客户端应重新启动读-修改-写序列），请使用

ABORTED。

如果在显式修复系统状态之前客户端不应重试，请使用

FAILED_PRECONDITION。例如，如果“rmdir”因目录非

空而失败，则应返回 FAILED_PRECONDITION，因为除非从

目录中删除文件，否则客户端不应重试。

ABORTED 10

操作被中止，通常是由于并发问题，如序列器检查失败或事务中止。请

参阅上面的指导原则，以确定FAILED_PRECONDITION、

ABORTED和UNAVAILABLE。

OUT_OF_RAN

GE
11

尝试的操作超出了有效范围。 例如，查找或读取文件末尾。与

INVALID_ARGUMENT 不同，此错误表示一个问题，如果系统状

态发生变化，则可以修复该问题。例如，如果要求32位文件系统以不

在[0,2^32-1]范围内的偏移量进行读取，则会生成

INVALID_ARGUMENT，但如果要求以超过当前文件大小的偏移

量读取，则将生成 OUT_OF_range。

FAILED_PRECONDITION 和 OUT_of_RANGE 之间有一点重

叠。我们建议在应用时使用 OUT_OF_RANGE（更具体的错误），

以便在空间中迭代的调用者可以很容易地查找 OUT_OF-RANGE

错误，以便在完成时进行检测。

UNIMPLEMEN

TED
12 此服务未实现或不支持/启用该操作。

INTERNAL 13
内部错误。这意味着底层系统预期的一些不变量已被打破。此错误代码

是为严重错误保留的。

UNAVAILABL

E
14

该服务当前不可用。这很可能是一种瞬态情况，可以通过回退重试来纠

正。请注意，重试非幂等操作并不总是安全的。

DATA_LOSS 15 无法恢复的数据丢失或损坏。

UNAUTHENTI

CATED
16 请求没有该操作的有效身份验证凭据。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第272 共531页

实践教程

使用 Prometheus 观测性能压测指标
最近更新时间：2024-11-11 10:15:12

性能压测是一个充满挑战的领域，性能评估和优化贯穿开发、测试、部署、上线等各个阶段，直接影响系统运行效率

和用户使用体验。本文将为您介绍在压测过程中 Prometheus 存储指标，并使用 Grafana 将指标可视化。通过

观测指标的动态变化，发现系统瓶颈。

性能压测可观测

可观测体系主要包含3类指标：Metrics、Logs、Traces。三者既可独立工作，也可相辅相成，推导出系统整体

的状况。

Metrics：是一种聚合的度量数值，能够量化系统各个维度指标，常用于提供系统全局视图，一般包括

Counter、Gauge、Histogram 等指标类型。

Logs：应用程序运行过程中产生的日志或者事件，提供系统运行的上下文信息，例如：某个变量值、发生错误

详情等。

Traces：提供请求从发送到完成响应整个链路。在分布式系统中，一个请求完成需要经过多个服务，Trace 提

供请求在链路各个环节的响应时间、响应体、是否报错等。通过 Trace 更方便分析出请求中的异常环节。

指标概述

Counter：只增不减的计数器

Counter 是一种累积度量指标，用于表示一个只能增加的值，如果重置系统或服务，Counter 可能会从0开始重新

计数。Counter 最常见的用途是计数器，用于记录发生的事件数量，例如请求的数量、完成的任务数、错误的数量

等。例如 Counter 类型指标：http_requests_total，用于记录请求次数。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第273 共531页

通过 rate()函数获取请求 QPS:

rate(http_requests_total[5m])

查询系统访问量前10的 http 请求：

topk(10, http_requests_total)

Gauge：有增有减的度量衡

Gauge 与 Counter 不同，Counter 用来反映事件发生次数，而 Gauge 用来反映系统当前的状态，例如当前的

温度、服务器 CPU/内存使用率、剩余可用内存等。例如：通过 Gauge 指标，查看节点剩余可用内存：

HELP node_memory_MemAvailable_bytes Memory information field

MemAvailable_bytes.

TYPE node_memory_MemAvailable_bytes gauge

node_memory_MemAvailable_bytes

查看剩余可用内存比例（这个语句通常可用来设置警报，当剩余可用内存低于某个阈值时进行通知，这样您就可以采

取行动避免系统出现内存不足的情况）：

(node_memory_MemFree_bytes/node_memory_MemTotal_bytes)*100

Histogram/Summary：分析数据分布

Histogram 和 Summary 主要用于统计和分析样本的分布情况。

以 Histogram 为例，通常使用 histogram_quantile 函数计算百分位数。例如，要计算请求响应时间的第90百

分位数：

histogram_quantile(0.9, rate(http_response_duration_seconds_bucket[5m]))

这个查询会返回过去5分钟内所有记录的请求持续时间的第90百分位数。通过这种方式，Histogram 为您提供了强

大的工具来监控和理解您的系统性能。

设计观测指标

可以通过性能压测暴露系统瓶颈，通过选择合适可观测工具、设计科学的指标监控，根据指标变化来帮助您定位系统

瓶颈。

核心指标

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第274 共531页

压测过程中，从施压方看主要需要关注以下核心指标：

请求响应时间：包括平均响应时间、响应时间百分比水位。

请求 RPS

请求成功率，失败率。

请求错误原因

压测并发数

检查点成功数，失败数。

请求发送接收字节数

施压机内存/CPU 使用率等

指标维度

每个指标最好能够区分不同的维度，例如：

1. 按返回码统计不同请求的 QPS，例如返回码为200的请求的 QPS 是多少，返回码为500的请求的 QPS 是多

少？

2. 统计发往不同服务的请求的 QPS，例如压测 www.test1.com 和 www.ok1.com 的请求的 QPS 分别是多

少？

以 http 请求为例，常见的维度划分如下：

job：压测任务标识，每一次压测都是一个不同的 job。

method：请求方法，例如 GET、POST、HEAD 等。

proto：请求协议，例如 http、https、http2。

service：请求地址，例如 https://www.test1.com 。

status：请求响应码，例如200、404、500等。

result：标识请求响应码，例如200或者其他小于400对应 OK，404对应 Not Found，500对应 Internal

Error 。

check：检查点/断言名字，一般用于简单描述该断言的作用。

指标设计

基于此我们设计了一套最基本、常用的指标体系，能够覆盖绝大部分用户的使用需求，详情请参见下表。您也可以基

于如下指标体系进行拓展，以满足不同的需求。

Metric Type Labels Description

req_total
Counte

r

job,method,

proto,service, status,

result

请求次数

req_duration_

seconds

Histogr

am

job,method,

proto,service, status,

请求耗时

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第275 共531页

result

checks_total
Counte

r
job, check, result 检查点

send_bytes_t

otal

Counte

r

job,method,

proto,service, status,

result

发送字节数

receive_bytes

_total

Counte

r

job,method,

proto,service, status,

result

接收字节数

num_vus Gauge job

并发数，可用于指代虚拟用户数量。

如果是 JMeter压测，也可用于指

代线程数

示例

查看实时的并发用户数：

sum(num_vus{job=~"$job"})

查看请求的 QPS：

查看不同请求的qps

sum(rate(req_total{job=~"$job"}[1m])) by (service)

查看成功请求的qps

sum(rate(req_total{job=~"$job",result="ok"}[1m]))

查看指定http://www.test1.com服务的qps

sum(rate(req_total{job=~"$job",service="http://www.test1.com"}[1m]))

查看请求失败率：

请求总体失败率

sum(rate(req_total{job=~"$job",result!="ok"}

[1m]))/sum(rate(req_total{job=~"$job"}[1m]))

基于请求维度，查看各请求的失败率

sum(rate(req_total{job=~"$job",result!="ok"}[1m])) by

(service)/sum(rate(req_total{job=~"$job"}[1m])) by (service)

查询请求响应时间：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第276 共531页

查询请求平均响应时间

sum(rate(req_duration_seconds_sum{job=~"$job"}

[15s]))/sum(rate(req_duration_seconds_count{job=~"$job"}[15s]))

查询请求中位数（50百分位）响应时间

histogram_quantile(0.50,

sum(rate(req_duration_seconds_bucket{job=~"$job"}[1m])) by (le))

查询请求90百分位响应时间

histogram_quantile(0.90,

sum(rate(req_duration_seconds_bucket{job=~"$job"}[1m])) by (le))

查询请求出入带宽：

请求出带宽汇总

sum(rate(send_bytes_total{job=~"$job",region=~"$region"}[1m]))

请求入带宽汇总

sum(rate(pts_engine_receive_bytes_total{job=~"$job",region=~"$region"}

[1m]))

检查点成功率（用户自定义的 test 语句，在JMeter 中对应断言）：

检查点成功率

sum(rate(checks_total{job=~"$job", result="ok"}

[1m]))/sum(rate(checks_total{job=~"$job"}[1m]))

指定检查点成功率

sum(rate(checks_total{job=~"$job", result="ok",check="response contains

hello"}[1m]))/sum(rate(checks_total{job=~"$job", check="response

contains hello"}[1m]))

说明：

用户也可以基于以上 demo 进行灵活扩充，对被压测服务进行同样的监控。在压测过程中，对比查看压

测平台生成的指标报告与用户服务的指标报告，综合分析排查问题。

使用 Prometheus 存储以上指标，使用查询语句在 Prometheus 中查询数据，最后通过 Grafana

可视化展示以上数据。一边压测，一边实时观测服务性能指标变化。

操作步骤

1. 登录 。腾讯云可观测平台

https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第277 共531页

2. 在左侧菜单栏中单击云压测 > 测试场景。

3. 在测试场景页面单击新建场景。

4. 在创建测试场景页面选择“JMeter”压测类型，并单击开始，创建压测场景。

上传 jmx 脚本

必选：上传 jmx 脚本

可选：

上传 Jar 包：如果您的脚本中使用了 JMeter 三方插件，您可以上传对应 jar 包，来拓展 JMeter 功能。

上传 properties 文件：在原生 jmeter.properties 文件基础上，自定义 JMeter 属性。

csv 文件：在 Jmeter 中读取 csv 文件中的数据，作为变量在脚本中引用。

其他文件：任何在 jmx 中脚本引用的其他文件

将报告导出到腾讯云 Prometheus

在高级配置 > 压测指标导出 > 腾讯云 Prometheus 托管集群中，单击添加配置， 选择您的实例：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第278 共531页

如果您在该地域没有实例，您也可以单击新建。

运行压测脚本

单击保存并运行即可开始压测。

查看实时报告

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第279 共531页

您可以选择不同的页签，查看不同维度的报告详情。

在 Prometheus 中查看压测报告

在压测过程中，指标会同步发送到腾讯云 Prometheus 中。您也可以在 Prometheus 中查询指标信息，自定义

查询语句。

1. 登录 ，在搜索栏根据实例名称找到您的 Prometheus 实例。Prometheus 控制台

2. 单击实例 ID，进入实例详情。

如果您的 Prometheus 实例没有对应的 Grafana，可以单击绑定 Grafana。通过 Grafana 来展示

Prometheus 指标。

https://console.cloud.tencent.com/monitor/prometheus

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第280 共531页

3. 选择数据采集 > 集成中心，搜索云压测 PTS 应用，单击它即会弹出一个窗口，单击 Dashboard > 安装/升

级， 将云压测监控面板安装到 Prometheus 绑定的 Grafana 上。

4. 在 Grafana 中查看压测报告，登录 Prometheus 绑定的 Grafana 页面。

5. 搜索 PTS，查看云压测压测报告。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第281 共531页

6. 单击 PTS 任务详情，查看报告详情。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第282 共531页

压测时如何评估系统瓶颈

在压测时，主要关注系统吞吐量（RPS，网络带宽）、响应时间、并发用户数等。公式如下：

RPS = VU（并发数）/ 平均响应时间

如何理解压测公式?

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第283 共531页

以一个线程循环去执行某个请求为例：如果请求平均响应时间是10ms，那么一个并发每秒可执行100个请求，对应

的 RPS = 100req/s。

从这个公式可以推导，如果想提升压测的总体 RPS，有以下几种方法：

增加并发数，且请求平均响应时间保持不变。

这种情况就是被压服务还没有饱和，压测 RPS 随着并发压力的增加而增加。

降低请求平均响应时间， VU 保持不变。

这种情况比较理想，请求平均响应时间降低，代表被压服务进行了优化，单个 VU 单位时间内能够发送更多的请

求。

在现实压测中，很可能随着 VU 增加，被压系统压力增加，响应时间也随之增加。

如果响应时间增加系数小于 VU 增加系数，总体 RPS 还是在变大，系统还未达到瓶颈。

如果响应时间增加系数大于 VU 增加系数，压测的表现就是随着 VU 增大，总体 RPS 反而降低，此时系统已经

达到瓶颈。

评估系统性能拐点

压测就是在压力不断增加情况下，找到业务系统扩展性的拐点，即系统瓶颈/最大容量。

在一定的阶段，我们观测到扩展性是线性变化的。到达某一点时，此时对于资源的争夺开始影响性能。这一点也可以

认为是系统拐点。作为曲线分界，过了拐点，整体的吞吐量会随着资源争夺加剧偏离线性扩展。最终，资源争夺的开

销反而导致完成的请求数变少，吞吐量反而下降。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第284 共531页

这种情况可能在系统负载到达 100% 使用率（饱和点）之后发生，也可能在接近100% 使用率的时候，这个时候排

队比较明显。

例如：有一个计算密集型系统，在更多请求进来时候，需要更多的线程来执行请求。当CPU使用率接近100%时，

由于CPU调度延时增加，性能开始下降。在性能达到峰值后，整体吞吐量反而会随着更多线程加入而下降。线程加

入会导致更多上下文切换，消耗CPU资源，实际完成的任务反而变少。

性能的非线性变化，我们也可以通过响应时间的变化来看出来：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第285 共531页

性能下降的原因非常多，除了上面提到的频繁上下文切换外，还有如下原因：

系统内存不够，开始频繁的换页（swap）来补充内存。

随着系统磁盘 IO 增加，磁盘 IO 可能进入缓冲排队。

系统内部实现队列算法，来进行削峰操作，导致请求处理等待时间变长。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第286 共531页

使用云压测回放 GoReplay 录制的请求
最近更新时间：2024-12-02 10:04:42

前言

本文将通过一个实例演示如何使用 GoReplay 录制 Nginx 网关接收到的请求，并将请求各个字段保存成 CSV 文

件。在云压测中，通过上传 CSV 参数文件，指定期望的并发数，分布式回放请求到用户指定的地址。

GoRePlay 简介

GoReplay 是一个开源的流量录制回放工具。主要用于捕获实时流量并将其复制到测试环境中。

由于 GoReplay 本身并不提供一个分布式运行方案，只能在单机上运行。在流量录制完成后，受限于单机资源瓶

颈，我们很难大规模的重放录制的流量，无法 有效的模拟真实用户流量的压测行为以及极限测试。而腾讯云云压测

是一款分布式性能测试服务，可模拟海量用户的真实业务场景。因此我们可以引入云压测，使用云压测来回放

GoReplay 录制的真实流量。

常见 GoReplay 使用场景

性能测试：通过复制生产环境的流量到测试环境，可以在不影响真实用户的情况下对应用程序进行压力测试和性

能评估。

故障排除和调试：当生产环境出现问题时，可以捕获相关的流量并在一个隔离的环境中重放，以便开发人员可以

安全地调试问题而不会影响实际服务。

回归测试：在发布新版本之前，可以使用 GoReplay 捕获的流量来验证更改是否会引入新的错误或性能问题。

A/B 测试：可以将流量同时发送到两个服务版本，比较它们的表现，以便做出数据驱动的决策。

通过在回放时候，加大回放请求的倍数，模拟高流量情况，可以帮助确定在不同负载下所需的资源量。

GoReplay 流量录制原理

GoReplay 流量录制是监听指定端口流量，录制成 gor 文件（或者发送到其他目的端），方便后续回放。

sudo gor -- input - raw 8080 -- output - file requests gor: .

开始录制回放用户 Nginx 网关

本文以录制回放 Nginx 网关为例，其他所有类型的网关都可以按照相同的方式来录制请求，然后使用云压测来回放

用户请求。

环境准备

Nginx 网关：Nginx 网关上有源源不断的用户请求，需要在 Nginx 网关录制下这些请求。

GoReplay：请求录制回放工具。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第287 共531页

安装 GoReplay 至网关所在机器上，如果网关所在机器是 Linux 或 macOS，可以使用以下命令：

 # 从官方 GitHub 仓库下载最新的二进制文件

curl -L

https://github.com/buger/goreplay/releases/download/1.3.3/gor_1.3.3_x6

4.tar.gz | tar xz

将二进制文件移动到你的PATH目录中，例如/usr/local/bin

mv gor /usr/local/bin/

说明：

确保替换上面的 URL 中的版本号为最新的版本，仓库地址：

。https://github.com/buger/goreplay

CSV 生成服务：接收 HTTP 请求，将接收到的请求各个字段写入 CSV 文件中。

云压测：基于用户上传的 CSV 文件，回放用户录制的所有请求。

实验流程

将 Nginx 上的请求录制成 Gor 文件

本节参与组件（其他组件仅做完整场景展示）：Nginx 网关、GoReplay。

整体架构图如下：

开始录制流量前，需要在网关所在服务器上运行 GoReplay。以下是一个基本的命令示例，它会监听网关上的80端

口，并将捕获的流量保存到一个文件中：

sudo gor --input-raw 80 --output-file requests gor: .

这个命令会捕获所有通过端口80的流量，并将其保存到当前目录下的 requests.gor 文件中。

https://github.com/buger/goreplay

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第288 共531页

注意：

需要 sudo 权限来监听80端口。

将 Gor 文件转换成 CSV 参数文件

本节使用 GoReplay 回放 Gor 文件中记录的请求到 CSV 生成服务。参与组件：GoReplay、CSV 生成服务。

整体架构如下：

在 CSV 文件中会记录下请求各个字段，例如 scheme、host、uri、method、base64Body。下面是一个简

单 CSV 文件示例：

sch

em

e

host uri
met

hod

jsonHead

ers
base64Body

http
mockhttpbin.pts.svc

.cluster.local

/get?

page=1
get

{"name":"k

k"}
 -

http
mockhttpbin.pts.svc

.cluster.local
/post

pos

t

{"Hello":

'world',}

dGhpcyBpcyBnb29

kCg==

scheme host uri method jsonHeaders base64Body, , , , ,

http mockhttpbin pts svc cluster local /get?page=1 get "name" "kk", , , ,{ : },

http mockhttpbin pts svc cluster local /post post

"hello" "world" dGhpcyBpcyBnb29kCg==

, , , ,

{ : },

说明：

使用 base64Body，而不是直接记录 body 是因为有些请求的 body 发送的二进制文件，直接写入

CSV 文件会展示成乱码。写成 base64 后，方便后续转换成原来的结构体。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第289 共531页

CSV 生成服务代码

编写服务代码，并保存为 main.go 文件。

package main

import (

"encoding/base64"

"encoding/csv"

"encoding/json"

"fmt"

"io/ioutil"

"log"

"net/http"

"os"

)

func main () {

http HandleFunc "/" requestHandler // 设置处理函数. (,)

log Println "Server starting on port 8080...". ()

log Fatal http ListenAndServe ":8080" nil. (. (,))

}

func requestHandler w http ResponseWriter r *http Request (. , .) {

// 获取请求信息

scheme := "http" // 默认为http，因为Go的http包不支持直接获取scheme

if r TLS != nil . {

scheme = "https"

}

host := r Host.

uri := r RequestURI.

method := r Method.

// 将headers转换为JSON格式

headersJson err := json Marshal r Header, . (.)

if err != nil {

http Error w "Error converting headers to JSON"

http StatusInternalServerError

. (, ,

.)

return

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第290 共531页

// 读取请求体

body err := ioutil ReadAll r Body, . (.)

if err != nil {

http Error w "Error reading request body"

http StatusInternalServerError

. (, ,

.)

return

}

defer r Body Close. . ()

// Base64编码请求体

base64Body := base64 StdEncoding EncodeToString body. . ()

// 写入CSV文件

record := string scheme host uri method string headersJson

base64Body

[] { , , , , (),

}

err = writeToCSV record()

if err != nil {

http Error w "Error writing to CSV"

http StatusInternalServerError

. (, ,

.)

return

}

// 发送响应

fmt Fprintf w "Request logged". (,)

}

func writeToCSV record string error ([]) {

file err := os OpenFile "requests.csv"

os O_CREATE|os O_WRONLY|os O_APPEND 0666

, . (,

. . . ,)

if err != nil {

return err

}

defer file Close. ()

writer := csv NewWriter file. ()

defer writer Flush. ()

return writer Write record. ()

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第291 共531页

编译并运行 CSV 生成服务

1. 将上述文件保存成 main.go 文件

2. 直接运行代码。

go run main go.

回放流量到 CSV 生成服务上，用来生成 CSV 文件。

gor --input-file requests gor --output-http "http://csv-server-

address:8080" --http-original-host true

.

这个命令会读取 requests.gor 文件中的流量，并将其回放到CSV生成服务上，CSV 生成服务默认会将接收到的

请求写成 requests.csv 文件里；且生成的流量 host 为请求原本的 host 而非 CSV 服务的地址。

在云压测上使用 CSV 参数文件回放请求

云压测支持用户上传 CSV 文件作为参数文件。您可以动态引用其中的测试数据，供脚本里的变量使用。这样，当施

压机并发执行这段代码，每条请求能动态、逐行获取 CSV 里的每行数据，作为请求参数使用。参数文件具体用法可

参见 。 使用参数文件

1. 登录 ，云压测对于首次使用的用户提供一个免费的压测资源包。云压测控制台

2. 在左侧导航栏中选择测试场景，单击新建场景，选择脚本模式。

云压测脚本模式支持原生 JavaScript ES2015(ES6)+ 语法，并提供额外函数，帮助您在脚本模式下，快速编

排压测场景。您可在控制台的在线编辑器里，用 JavaScript 代码描述您的压测场景所需的请求编排、变量定

义、结果断言、通用函数等逻辑。（详细的 API 文档请参见： ）。PTS API

3. 上传之前录制的 CSV 文件，作为参数文件。

https://cloud.tencent.com/document/product/248/87340
https://console.cloud.tencent.com/monitor/pts/projects
https://cloud.tencent.com/document/product/248/93019

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第292 共531页

4. 编写压测脚本，施压机每次执行压测脚本时候，读取 CSV 文件中下一行，利用 CSV 文件中记录的字段重新构

造出原始请求。

压测脚本如下：

// Send a http get request

import http from 'pts/http';

import { check, sleep } from 'pts';

import util from 'pts/util';

import dataset from 'pts/dataset';

export default function () {

 // 读取csv文件各个字段

 var method = dataset.get("method")

 var scheme = dataset.get("scheme")

 var host = dataset.get("host")

 var uri = dataset.get("uri")

 var jsonHeaders = dataset.get("jsonHeaders")

 var base64Body = dataset.get("base64Body")

 var headers = JSON.parse(jsonHeaders)

 var body = util.base64Decoding(base64Body, "std", "b")

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第293 共531页

 // 构造请求

 var req = {

 method: method,

 url: scheme + "://" + host + uri,

 headers: headers,

 body: body

 }

 // 发送请求

 var resp = http.do(req)

 // simple get request

 console.log(resp.body);

 check('status is 200', () => resp.statusCode === 200, resp);

 // sleep 1 second

 sleep(1);

}

5. 点击保存并运行，即可运行压测脚本，回放流量。查看压测报告及请求采样，观察请求是否符合预期。

请求采样：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第294 共531页

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第295 共531页

JavaScript API 列表

JavaScript API 列表概述
最近更新时间：2024-10-22 14:10:21

本部分介绍 PTS 提供的 JavaScript 模块及其 API，覆盖了编写压测脚本时所需的协议、函数、流程、断言的用

法等内容。

关于 PTS 脚本模式压测的介绍，您可参见 。脚本模式压测

https://cloud.tencent.com/document/product/248/87318

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第296 共531页

pts/global

模块概览
最近更新时间：2025-10-31 16:33:21

Javascript API 的 pts/global 模块实现了部分内置函数和对象。

方法

方法 返回类型 描述

﻿

open(filePath,

mode?)

string 或

ArrayBuffer
用于打开文件

﻿int64(v) object 用于实现 int64 类型

﻿uint64(v) object 用于实现 uint64 类型

对象

对象 描述

﻿BasicAuth 配置 中的 basicAuth 配置HTTP

﻿Certificate 配置 中的 certificates 配置TLSConfig

﻿HTTP 全局参数配置 中的 http 配置Option

﻿Option 全局的配置参数

﻿TLSConfig 全局参数配置 中的 tlsConfig 配置项Option

﻿TRPC 全局参数配置 中的 trpc 配置Option

﻿WS 全局参数配置 中的 ws 配置Option

﻿Load 全局参数配置 中的 load 配置Option

https://cloud.tencent.com/document/product/248/88735
https://cloud.tencent.com/document/product/248/88735
https://cloud.tencent.com/document/product/248/88556
https://cloud.tencent.com/document/product/248/88557
https://cloud.tencent.com/document/product/248/88558
https://cloud.tencent.com/document/product/248/88559
https://cloud.tencent.com/document/product/248/88736
https://cloud.tencent.com/document/product/248/88561
https://cloud.tencent.com/document/product/248/88559
https://cloud.tencent.com/document/product/248/88560
https://cloud.tencent.com/document/product/248/88560
https://cloud.tencent.com/document/product/248/88561
https://cloud.tencent.com/document/product/248/88560
https://cloud.tencent.com/document/product/248/88737
https://cloud.tencent.com/document/product/248/88560
https://cloud.tencent.com/document/product/248/88738
https://cloud.tencent.com/document/product/248/88560
https://cloud.tencent.com/document/product/248/124629
https://cloud.tencent.com/document/product/248/88560

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第297 共531页

open
最近更新时间：2023-05-17 10:10:08

open 内置函数用于打开文件。

open filePath: string mode?: '' | 'b' : string | ArrayBuffer(,)

参数

参数 类型 描述

filePath string 文件的相对路径。

mode? '' 或 'b'

打开模式（可选）。文本文件无需指定 mode，返回值为

string；二进制文件必须传入 'b' mode，返回值为

ArrayBuffer。

返回

类型 描述

string 或 ArrayBuffer 文件数据。

样例

打开文件：

export default function () {

 let data = open 'test1.json' // 默认打开文本文件();

 console log data // {"a":"b"}. ();

 data = open 'test2.bin' 'b' // 'b' 模式打开二进制文件(,);

 console log data // [object ArrayBuffer]. ();

};

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第298 共531页

int64
最近更新时间：2023-05-17 10:10:08

int64 内置函数用于实现 int64 类型。

int64 v: string : object()

参数

参数 类型 描述

v string int64 类型数据的字符串格式

返回

类型 描述

object

返回的对象，具有以下方法：

toString()，返回字符串；

toJSON()，使用 JSON.stringify() 时会被调用；

样例

使用 int64：

export default function () {

 let a = {

 k: int64 "9223372036854775807"()

 }

 // toJSON() 方法在 JSON.stringify() 时会被调用

 // {"k":"9223372036854775807"}

 console log JSON stringify a . (. ());

 // 9223372036854775807

 console log a k toString. (. . ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第299 共531页

uint64
最近更新时间：2025-01-03 14:11:02

uint64 内置函数用于实现 uint64 类型。

uint64 v: string : object()

参数

参数 类型 描述

v string uint64 类型数据的字符串格式

返回

类型 描述

object

返回的对象，具有以下方法：

toString()，返回字符串

toJSON()，使用 JSON.stringify() 时会被调用

示例

使用 uint64：

export default function () {

 let a = {

 k: uint64 "18446744073709551615"()

 }

 // toJSON() 方法在 JSON.stringify() 时会被调用

 // {"k":"18446744073709551615"}

 console log JSON stringify a . (. ());

 // 18446744073709551615

 console log a k toString. (. . ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第300 共531页

BasicAuth
最近更新时间：2023-05-09 17:33:19

BasicAuth 是参数配置 中的 basicAuth 配置。HTTP

字段

字段 类型 描述

username string 用户名

password string 密码

样例

使用 BasicAuth：

export const option = {

 http: {

 basicAuth: {

 username: 'username',

 password: 'password',

 }

 }

}

https://cloud.tencent.com/document/product/248/88559

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第301 共531页

Certificate
最近更新时间：2023-05-09 17:33:19

Certificate 是配置参数 中的 certificates 配置项。TLSConfig

字段

字段 类型 描述

cert string 证书

key string 私钥

样例

使用 Certificate：

export const option = {

 tlsConfig: {

 'localhost': {

 insecureSkipVerify: false,

 rootCAs: open 'tool/tls/twoway/ca.crt'[()],

 certificates: [

 {

 cert: open 'tool/tls/twoway/client.crt'(),

 key: open 'tool/tls/twoway/client.key'()

 }

]

 }

 }

}

https://cloud.tencent.com/document/product/248/88561

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第302 共531页

HTTP
最近更新时间：2023-05-17 10:10:09

HTTP 是全局参数配置 中的 http 配置。Option

字段

字段 类型 描述

maxRedirects? number 可选，最大重定向跳转次数

maxIdleConns? number 可选，单个 VU 最大活跃连接数

maxIdleConnsPerHost

？
number 可选，单个 VU 单个域名最大活跃连接数

disableKeepAlives? boolean 可选，是否禁用长连接

headers?
Record<string,

string>
可选，请求头

timeout? number 可选，请求超时时间，单位毫秒

basicAuth? ﻿ ﻿BasicAuth 可选，基础鉴权

discardResponseBody? boolean 可选，是否丢弃回包

http2? boolean 可选，是否启用 HTTP2

样例

使用 HTTP Option：

export const option = {

 http: {

 maxRedirects: 5,

 maxIdleConns: 50,

 maxIdleConnsPerHost: 10,

 disableKeepAlives: true,

 headers: {

 'key': 'value'

 },

 timeout: 3000,

 basicAuth: {

https://cloud.tencent.com/document/product/248/88560
https://cloud.tencent.com/document/product/248/88558

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第303 共531页

 username: 'user',

 password: 'passwd'

 },

 discardResponseBody: true,

 http2: true

 }

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第304 共531页

Option
最近更新时间：2023-05-17 10:10:09

Option 是全局的配置参数，对于不同类型的请求可以设置不同的配置。

字段

字段 类型 描述

setupTimeoutSeconds? number 可选，setup 函数的超时时间，单位为秒

teardownTimeoutSeco

nds?
number

可选，teardown 函数的超时时间，单位

为秒

tlsConfig？
Record<string,

TLSConfig>
可选，TLS 配置

http? ﻿ ﻿HTTP 可选，HTTP 选项配置

trpc? ﻿ ﻿TRPC 可选，TRPC 选项配置

ws? ﻿ ﻿WS 可选，WS 选项配置

https://cloud.tencent.com/document/product/248/88559
https://cloud.tencent.com/document/product/248/88737
https://cloud.tencent.com/document/product/248/88738

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第305 共531页

TLSConfig
最近更新时间：2024-06-26 11:12:51

TLSConfig 是全局参数配置 中的 tlsConfig 配置项。Option

字段

字段 类型 描述

insecureSkipV

erify

bool

ean

控制客户端是否验证服务器的证书链和主机名；如果为真，crypto/tls 接

受服务器提供的任何证书以及该证书中的任何主机名

rootCAs
Arra

y
根证书

certificates
Arra

y
客户端证书列表

serverName
strin

g
匹配证书里的主机名

样例

使用 TLSConfig：

export const option = {

 tlsConfig: {

 'localhost': {

 insecureSkipVerify: false,

 rootCAs: open 'ca.crt'[()],

 certificates: [

 {

 cert: open 'client.crt'(),

 key: open 'client.key'()

 }

],

 serverName: "xxx.com"

 }

 }

}

https://cloud.tencent.com/document/product/1484/85414

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第306 共531页

TRPC
最近更新时间：2023-05-17 10:10:09

TRPC 是全局参数配置 Option 中的 trpc 配置。

字段

字段 类型 描述

env? string 可选，123 环境名，例如 formal、pre、test

namespace? string
可选，环境类型，例如 Production、

Development

sendOnly？ boolean 可选，trpc 只发不收选项

样例

使用 TRPC Option：

export const option = {

 trpc: {

 env: 'formal',

 namespace: 'Development',

 sendOnly: true

 }

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第307 共531页

WS
最近更新时间：2023-05-09 17:33:19

WS 是全局参数配置 中的 ws 配置。Option

字段

字段 类型 描述

writeControlTimeout? number
可选，写控制指令超时时间，单位毫秒，默认

10s

handshakeTimeout? number 可选，握手超时时间，单位毫秒，默认 30s

writeTimeout？ number
可选，写消息超时时间，单位毫秒，默认不限

制

readTimeout? number
可选，读消息超时时间，单位毫秒，默认不限

制

样例

使用 WS Option：

export const option = {

 ws: {

 writeControlTimeout: 10000,

 handshakeTimeout: 10000,

 writeTimeout: 3000,

 readTimeout: 3000,

 }

}

https://cloud.tencent.com/document/product/248/88560

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第308 共531页

Load
最近更新时间：2025-10-31 16:33:21

Load 是全局参数配置 中的 load 配置。用于控制参数文件 dataset 的消费策略与压测迭代行为，例如在

数据集耗尽时是否停止，以及全局目标迭代总数等。

Option

字段

字段 类型 描述

stopAfterDataConsumptio

n
boolean 是否在数据集耗尽后停止

targetIterations number 压测脚本总迭代次数

样例

使用 Load Option：

export const option = {

 load: {

 stopAfterDataConsumption: true,

 targetIterations: 1000

 }

}

https://cloud.tencent.com/document/product/248/88560

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第309 共531页

pts/http

模块概览
最近更新时间：2025-01-03 14:11:02

Javascript API 的 pts/http 模块实现了 HTTP 相关的功能。

方法

方法 返回类型 描述

﻿batch(requests, opt?)
﻿

[]

BatchRespons

e
批量发起 HTTP 请求

﻿delete(url, request?) ﻿ ﻿Response 发起 DELETE 请求

﻿do(request) ﻿ ﻿Response 发起 HTTP 请求

﻿

file(data, name?,

contentType?)
﻿ ﻿http.file 构造 FormData 中上传的文件对象

﻿get(url, request?) ﻿ ﻿Response 发起 GET 请求

﻿head(url, request?) ﻿ ﻿Response 发起 HEAD 请求

﻿

patch(url, body,

request?)
﻿ ﻿Response 发起 PATCH 请求

﻿

post(url, body,

request?)
﻿ ﻿Response 发起 POST 请求

﻿put(url, body, request?) ﻿ ﻿Response 发起 PUT 请求

对象

对象 描述

﻿BatchOption 批量发起 HTTP 请求调用 时的配置选项http.batch

﻿BatchResponse 批量发起 HTTP 请求调用 时得到的请求结果http.batch

﻿File 用于 FormData 中上传的文件对象，由 生成http.file

﻿FormData 构造 form-data 类型的请求体

https://cloud.tencent.com/document/product/248/88564
https://cloud.tencent.com/document/product/248/88741
https://cloud.tencent.com/document/product/248/88741
https://cloud.tencent.com/document/product/248/88565
https://cloud.tencent.com/document/product/248/88750
https://cloud.tencent.com/document/product/248/88566
https://cloud.tencent.com/document/product/248/88750
https://cloud.tencent.com/document/product/248/88567
https://cloud.tencent.com/document/product/248/88567
https://cloud.tencent.com/document/product/248/88567
https://cloud.tencent.com/document/product/248/88568
https://cloud.tencent.com/document/product/248/88750
https://cloud.tencent.com/document/product/248/88569
https://cloud.tencent.com/document/product/248/88750
https://cloud.tencent.com/document/product/248/88570
https://cloud.tencent.com/document/product/248/88570
https://cloud.tencent.com/document/product/248/88750
https://cloud.tencent.com/document/product/248/88571
https://cloud.tencent.com/document/product/248/88571
https://cloud.tencent.com/document/product/248/88750
https://cloud.tencent.com/document/product/248/88739
https://cloud.tencent.com/document/product/248/88750
https://cloud.tencent.com/document/product/248/88740
https://cloud.tencent.com/document/product/248/88564
https://cloud.tencent.com/document/product/248/88741
https://cloud.tencent.com/document/product/248/88564
https://cloud.tencent.com/document/product/248/88742
https://cloud.tencent.com/document/product/248/88567
https://cloud.tencent.com/document/product/248/88744

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第310 共531页

﻿Request 发起请求时的请求

﻿Response 发起请求后获得的请求结果

https://cloud.tencent.com/document/product/248/88748
https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第311 共531页

http.batch
最近更新时间：2023-05-17 10:10:09

http.batch 用于批量发起 HTTP 请求。

batch requests: Request opt?: BatchOption : BatchResponse([],) []

参数

参数 类型 描述

requests ﻿ []Request 请求对象数组

opt? ﻿ ﻿BatchOption 可选，批量发起请求的配置选项

返回

类型 描述

[]BatchResponse 批量请求结果数组

样例

发起批量请求：

import http from 'pts/http';

export default function () {

 const responses = http batch. ([

 {

 method: 'GET',

 url: 'http://httpbin.org/get?a=1',

 headers: a: '1, 2, 3' { },

 query: b: '2' { },

 },

 {

 method: 'GET',

 url: 'http://httpbin.org/get?a=1',

 headers: a: '1, 2, 3' { },

 query: b: '2' { },

https://cloud.tencent.com/document/product/248/88748
https://cloud.tencent.com/document/product/248/88740
https://cloud.tencent.com/document/product/248/88741

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第312 共531页

 },

]);

 console log JSON stringify responses. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第313 共531页

http.delete
最近更新时间：2025-01-03 14:11:02

http.delete 用于发起 DELETE 请求。

delete url:string request?: Request : Response(,)

参数

参数 类型 描述

url string URL 字符串

reque

st

﻿

﻿

Reques

t

可选，请求对象，请求对象中的 method 和 url 字段不会覆盖当前方法

http.delete 中的 method 和 url

返回

类型 描述

﻿Response 响应对象

示例

发起 DELETE 请求：

import http from 'pts/http';

export default function () {

 const data = user_id: '12345' { };

 const req = {

 query: data,

 };

 const resp = http delete 'http://httpbin.org/delete' req. (,);

 console log resp json args user_id // 12345. (. (). .);

}

https://cloud.tencent.com/document/product/248/88748
https://cloud.tencent.com/document/product/248/88748
https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第314 共531页

http.do
最近更新时间：2023-05-17 10:10:09

http.do 用于发起 HTTP 请求。

do request: Request : Response()

参数

参数 类型 描述

request ﻿ ﻿Request 请求对象

返回

类型 描述

﻿Response 响应对象

样例

发起 HTTP 请求：

import http from 'pts/http';

export default function () {

 const req = {

 method: 'post',

 url: 'http://httpbin.org/post',

 headers: 'Content-Type': 'application/json' { },

 query: a: '1' { },

 body: user_id: '12345' { },

 };

 const resp = http do req. ();

 console log resp json args a // 1. (. (). .);

 console log resp json json user_id // 12345. (. (). .);

}

https://cloud.tencent.com/document/product/248/88748
https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第315 共531页

http.file
最近更新时间：2024-06-19 11:04:52

http.file 用于构造 FormData 中上传的文件对象。

file data: string | ArrayBuffer name?: string contentType?: string :

File

(, ,)

参数

参数 类型 描述

data
string 或

ArrayBuffer
文件内容

name? string 可选，文件名，默认为纳秒级时间戳

contentType? string 可选，内容类型，默认为 application/octet-stream

返回

类型 描述

﻿File 文件对象

样例

构造用于 FormData 上传的文件对象：

import http from 'pts/http';

const data = open './sample/tmp.js'();

export default function () {

 const file = http file data. ();

 //@ts-ignore 忽略校验

 console log file data length // 231. (. .);

 console log file name // 1635403323707745000. (.);

 console log file contentType // application/octet-stream. (.);

}

https://cloud.tencent.com/document/product/248/88742

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第316 共531页

构造用于 FormData 上传的文件对象，并传入 name 和 contentType 参数：

import http from 'pts/http';

const data = open './sample/tmp.js'();

export default function () {

 const file = http file data 'data' 'application/json'. (, ,);

 //@ts-ignore 忽略校验

 console log file data length // 231. (. .);

 console log file name // data. (.);

 console log file contentType // application/json. (.);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第317 共531页

http.get
最近更新时间：2023-05-17 10:10:10

http.get 用于发起 GET 请求。

get url:string request?: Request : Response(,)

参数

参数 类型 描述

url string URL 字符串

request ﻿ ﻿Request
可选，请求对象，请求对象中的 method 和 url 字段不会覆

盖 GET 和 url 参数

返回

类型 描述

﻿Response 响应对象

样例

发起 GET 请求：

import http from 'pts/http';

export default function () {

 const data = user_id: '12345' { };

 const req = {

 query: data,

 };

 const resp = http get 'http://httpbin.org/get' req. (,);

 console log resp json args user_id // 12345. (. (). .);

}

https://cloud.tencent.com/document/product/248/88748
https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第318 共531页

http.head
最近更新时间：2023-05-17 10:10:10

http.head 用于发起 HEAD 请求。

head url:string request?: Request : Response(,)

参数

参数 类型 描述

url string URL 字符串

request ﻿ ﻿Request
可选，请求对象，请求对象中的 method 和 url 字段不会覆

盖 HEAD 和 url 参数

返回

类型 描述

﻿Response 响应对象

样例

发起 HEAD 请求：

import http from 'pts/http';

export default function () {

 const data = user_id: '12345' { };

 const req = {

 query: data,

 };

 const resp = http head 'http://httpbin.org/get' req. (,);

 console log resp statusCode // 200. (.);

}

https://cloud.tencent.com/document/product/248/88748
https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第319 共531页

http.patch
最近更新时间：2024-06-19 11:04:52

http.patch 用于发起 PATCH 请求。

patch url:string body: string | object | Record<string string>

request?: Request : Response

(, , ,

)

参数

参数 类型 描述

url string URL 字符串

body
string、object 或

Record<string, string>
请求体

request ﻿ ﻿Request
可选，请求对象，请求对象中的 method、url 和

body 字段不会覆盖 HEAD 和 url、body 参数

返回

类型 描述

﻿Response 响应对象

样例

发起 PATCH 请求：

import http from 'pts/http';

export default function () {

 const data = user_id: '12345' { };

 const headers = 'Content-Type': 'application/json' { };

 const request = {

 headers,

 };

 //@ts-ignore 忽略校验

 const resp1 = http patch 'http://httpbin.org/patch' data request. (, ,);

 const resp2 = http patch 'http://httpbin.org/patch' '123' request. (, ,);

https://cloud.tencent.com/document/product/248/88748
https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第320 共531页

 console log resp1 json json user_id // 12345. (. (). .);

 console log resp2 json json // 123. (. ().);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第321 共531页

http.post
最近更新时间：2023-05-17 10:10:10

http.post 用于发起 POST 请求。

post url:string body: string | object | Record<string string>

request?: Request : Response

(, , ,

)

参数

参数 类型 描述

url string URL 字符串

body

string、object 或

Record<string,

string>

请求体

request ﻿ ﻿Request
可选，请求对象，请求对象中的 method、url 和

body 字段不会覆盖 HEAD 和 url、body 参数

返回

类型 描述

﻿Response 响应对象

样例

发起 POST 请求：

import http from 'pts/http';

export default function () {

 const data = user_id: '12345' { };

 const headers = 'Content-Type': 'application/json' { };

 const request = {

 headers,

 };

 const resp1 = http post 'http://httpbin.org/post' data request. (, ,);

 const resp2 = http post 'http://httpbin.org/post' '123' request. (, ,);

https://cloud.tencent.com/document/product/248/88748
https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第322 共531页

 console log resp1 json json user_id // 12345. (. (). .);

 console log resp2 json json // 123. (. ().);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第323 共531页

http.put
最近更新时间：2023-05-17 10:10:10

http.put 用于发起 PUT 请求。

put url:string body: string | object | Record<string string>

request?: Request : Response

(, , ,

)

参数

参数 类型 描述

url string URL 字符串

body

string、object

或

Record<string,

string>

请求体

request ﻿ ﻿Request
可选，请求对象，请求对象中的 method、url 和 body 字段不

会覆盖 HEAD 和 url、body 参数。

返回

类型 描述

﻿Response 响应对象

样例

发起 PUT 请求：

import http from 'pts/http';

export default function () {

 const data = user_id: '12345' { };

 const headers = 'Content-Type': 'application/json' { };

 const request = {

 headers,

 };

 const resp1 = http put 'http://httpbin.org/put' data request. (, ,);

https://cloud.tencent.com/document/product/248/88748
https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第324 共531页

 const resp2 = http put 'http://httpbin.org/put' '123' request. (, ,);

 console log resp1 json json user_id // 12345. (. (). .);

 console log resp2 json json // 123. (. ().);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第325 共531页

BatchOption
最近更新时间：2023-05-17 10:10:10

BatchOption 用于批量发起 HTTP 请求时的配置选项。

字段

字段 类型 描述

parallel? number 可选，并行数，默认 20

使用样例

使用 BatchOption 进行批量请求的配置：

import http from 'pts/http';

export default function () {

 const responses = http batch. (

 [

 {

 method: 'GET',

 url: 'http://httpbin.org/get?a=1',

 headers: a: '1, 2, 3' { },

 query: b: '2' { },

 },

 {

 method: 'GET',

 url: 'http://httpbin.org/get?a=1',

 headers: a: '1, 2, 3' { },

 query: b: '2' { },

 },

],

 // BatchOption 配置选项

 {

 parallel: 1,

 },

);

 console log JSON stringify responses. (. ());

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第326 共531页

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第327 共531页

BatchResponse
最近更新时间：2023-05-17 10:10:10

BatchResponse 是利用 http.batch 批量发起 HTTP 请求得到的请求结果。

字段

字段 类型 描述

error string
错误，不为空则表示请求出

错。

response ﻿ ﻿Response 请求结果

样例

批量发起请求并获得结果：

import http from 'pts/http';

export default function () {

 const responses = http batch. (

 [

 {

 method: 'GET',

 url: 'http://httpbin.org/get?a=1',

 headers: a: '1, 2, 3' { },

 query: b: '2' { },

 },

 {

 method: 'GET',

 url: 'http://httpbin.org/get?a=1',

 headers: a: '1, 2, 3' { },

 query: b: '2' { },

 },

],

 {

 parallel: 1,

 },

);

https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第328 共531页

 // 200 OK

 // 200 OK

 for const resp of responses () {

 console log resp response status. (. .);

 }

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第329 共531页

File
最近更新时间：2023-05-17 10:10:10

File 表示用于 FormData 中上传的文件对象，由 http.file 生成。

字段

字段 类型 描述

contentType string
内容类型，默认为 "application/octet-

stream"

data
string 或

ArrayBuffer
文件内容，通常使用 open() 的返回值

name string 文件名，默认为纳秒级时间戳

样例

import http from 'pts/http';

const data = open './sample/tmp.js'();

export default function () {

 const file = http file data 'data' 'application/json'. (, ,);

 console log file data length // 231. (. .);

 console log file name // data. (.);

 console log file contentType // application/json. (.);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第330 共531页

FormData

FormData 概览
最近更新时间：2023-05-17 10:10:11

FormData 用于构造 form-data 类型的请求体。

构造函数

通过 new 进行对象实例的创建，如下所示：

new FormData : FormData()

方法

方法 返回类型 描述

append(key, value) void 向 form-data 中添加键值对数据

body() ArrayBuffer 返回 form-data 内容，且不能再进行 append

contentType() string 返回 form-data 的 ContentType

 样例

import http from 'pts/http';

const data = open './sample/tmp.js'();

export default function () {

 // 通过 new 构造 FromData 实例

 const formData = new http.FormData();

 formData append 'text' 'text'. (,);

 formData append 'file' http file data 'tmp.js'. (, . (,));

 console log formData contentType. (. ());

 const resp = http post 'http://httpbin.org/post' formData body . (, . (), {

 headers: 'Content-Type': formData contentType{ . ()}

 });

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第331 共531页

 console log 'formData: ' resp body. (, .);

};

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第332 共531页

FormData.append
最近更新时间：2023-05-17 10:10:11

FormData.append 用于向 form-data 数据添加新的键值对数据。

append key: string value: string | File : void(,)

参数

参数 类型 描述

key string 添加数据的键

value
string 或

﻿File
添加数据的值，可以是 string 或 类型File

返回

类型 描述

void 无返回数据

样例

import http from 'pts/http';

const data = open './sample/tmp.js'();

export default function () {

 const formData = new http.FormData();

 // 添加 value 为 string 的数据

 formData append 'text' 'text'. (,);

 // 添加 value 为 File 的数据

 formData append 'file' http file data 'tmp.js'. (, . (,));

 const resp = http post 'http://httpbin.org/post' formData body . (, . (), {

 headers: 'Content-Type': formData contentType{ . ()}

 });

 console log 'formData: ' resp body. (, .);

https://cloud.tencent.com/document/product/248/88742
https://cloud.tencent.com/document/product/248/88742

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第333 共531页

};

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第334 共531页

FormData.body
最近更新时间：2023-05-17 10:10:11

Form.body 用于返回 form-data 内容，且调用后不能再进行 append。

body : ArrayBuffer()

返回

类型 描述

ArrayBuffer 请求体内容

样例

import http from 'pts/http';

const data = open './sample/tmp.js'();

export default function () {

 const formData = new http.FormData();

 formData append 'text' 'text'. (,);

 formData append 'file' http file data 'tmp.js'. (, . (,));

 // 输出 [object ArrayBuffer]

 console log formData body. (. ());

 const resp = http post 'http://httpbin.org/post' formData body . (, . (), {

 headers: 'Content-Type': formData contentType{ . ()}

 });

 console log 'formData: ' resp body. (, .);

};

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第335 共531页

FormData.contentType
最近更新时间：2023-05-17 10:10:11

FormData.contentType 用于获取 form-data 的 ContentType 字段。

contentType : string()

返回

类型 描述

string ContentType 字段值

样例

import http from 'pts/http';

const data = open './sample/tmp.js'();

export default function () {

 const formData = new http.FormData();

 formData append 'text' 'text'. (,);

 formData append 'file' http file data 'tmp.js'. (, . (,));

 // 返回 "multipart/form-data; boundary=xxxxxx"

 console log formData contentType. (. ());

 const resp = http post 'http://httpbin.org/post' formData body . (, . (), {

 headers: 'Content-Type': formData contentType{ . ()}

 });

 console log 'formData: ' resp body. (, .);

};

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第336 共531页

Request
最近更新时间：2023-05-17 10:10:11

Request 是发起请求时的请求结构。

字段

字段 类型 描述

basicAuth? BasicAuth 基础鉴权

body?
string、object 或

ArrayBuffer

要发送的请求体，在使用 http.do 方法时才需要

指定

chunked?
function，(body

string) => void

当数据以一系列分块的形式进行发送时，如果指定

了 chunked 函数，会按行读取响应体并进行回

调函数的运行

contentLength? number
记录关联内容的长度；-1 表示长度未知，>=0 表

示可以从 body 中读取给定的字节数

discardResponseB

ody?
boolean

丢弃响应体，适用于响应体太大且不需要对象应体

内容进行 check 的场景

headers?
Record<string,

string>
请求头

host? string host 或 host:port

maxRedirects? number 最大重定向跳转次数

method? string
指定 HTTP 方法，如 GET、PUT、POST

等，只有当使用 http.do 方法时才需要指定

path? string 路径，相对路径省略前导斜杠

query?
Record<string,

string>
与请求一同发送的 URL 参数

scheme? "http" | "https" 协议，填写 "http" 或 "https"

service? string

在 PTS 中，按照 url 识别不同 service 并基于

该维度生成报表；如当 url 为

http://demo.com/{id}，不同的 id 会被识别为

不同的 service，可以通过指定 service，将此

类请求在报表中归类到同一个服务下

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第337 共531页

timeout? number
客户端发出的请求的时间限制，超时包括连接时

间、任何重定向和读取响应正文，单位为毫秒

url? string
要访问的 URL，只有当使用 do 方法时才需要指

定

样例

在 http.do 方法中使用 Request：

import http from 'pts/http';

export default function () {

 const req = {

 method: 'post',

 url: 'http://httpbin.org/post',

 headers: 'Content-Type': 'application/json' { },

 query: a: '1' { },

 body: user_id: '12345' { },

 };

 const resp = http do req. ();

 console log resp json args a // 1. (. (). .);

 console log resp json json user_id // 12345. (. (). .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第338 共531页

Response

Response 概览
最近更新时间：2023-05-17 10:10:11

Response 是发起请求后获得的请求结果。

字段

字段 类型 描述

body string 服务器返回的响应

contentLength number 服务器响应体长度

headers
Record<string,

string>
服务器响应的 HTTP 头

proto string 协议，如 "HTTP/1.0"

request ﻿ ﻿Request 为获得此响应而发送的请求

responseTimeMS number 请求的响应时间，单位为毫秒

status string
来自服务器响应的 HTTP 状态消息，如 "200

OK"

statusCode number 来自服务器响应的 HTTP 状态代码，如 200

方法

方法 返回类型 描述

﻿json() any 将 Response.body 反序列化为 json

样例

import http from 'pts/http';

export default function () {

 const req = {

 method: 'post',

 url: 'http://httpbin.org/post',

 headers: 'Content-Type': 'application/json' { },

https://cloud.tencent.com/document/product/248/88748
https://cloud.tencent.com/document/product/248/88751

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第339 共531页

 query: a: '1' { },

 body: user_id: '12345' { },

 };

 const resp = http do req. ();

 console log resp json // [Object object]. (. ());

 console log resp json args a // 1. (. (). .);

 console log resp json json user_id // 12345. (. (). .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第340 共531页

Response.json
最近更新时间：2023-05-17 10:10:11

Response.json 将 Response.body 反序列化为 json。

json : any()

返回

类型 描述

any 返回代表 Response.body 的对象

样例

import http from 'pts/http';

export default function () {

 const req = {

 method: 'post',

 url: 'http://httpbin.org/post',

 headers: 'Content-Type': 'application/json' { },

 query: a: '1' { },

 body: user_id: '12345' { },

 };

 const resp = http do req. ();

 console log resp json // [Object object]. (. ());

 console log resp json args a // 1. (. (). .);

 console log resp json json user_id // 12345. (. (). .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第341 共531页

pts

模块概览
最近更新时间：2023-05-17 10:10:11

JavaScript API 中的 pts 模块实现了测试的基本功能。

方法

方法 返回类型 描述

﻿

check(name,

callback,

[interrupt])

boolean
针对请求返回的结果做进一步的检查，若返回失败，则代表当前

检查不通过。

﻿sleep(seconds) void 暂停执行指定的时间长度。

﻿

step(name,

callback)
void

将压测场景分为不同步骤，在最终的压测报告中实现步骤的区

分。

metadata()
﻿

﻿

Metadat

a
返回压测任务的元数据。

对象

对象 描述

﻿Metadata 包含了压测任务元数据的 Object，调用 方法时返回。pts.metadata()

https://cloud.tencent.com/document/product/248/88754
https://cloud.tencent.com/document/product/248/88754
https://cloud.tencent.com/document/product/248/88754
https://cloud.tencent.com/document/product/248/88757
https://cloud.tencent.com/document/product/248/88756
https://cloud.tencent.com/document/product/248/88756
https://cloud.tencent.com/document/product/248/88755
https://cloud.tencent.com/document/product/248/88758
https://cloud.tencent.com/document/product/248/88758
https://cloud.tencent.com/document/product/248/88758
https://cloud.tencent.com/document/product/248/88755

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第342 共531页

pts.check
最近更新时间：2024-09-09 18:18:21

在脚本执行过程中，针对请求返回的结果做进一步的检查，若返回失败则代表当前检查不通过。

check(name: string, callback: () => boolean, response?:):

boolean

Response

参数

参数 类型 描述

name string 检查点的名字

callback function 用于检查的函数，该函数应返回 boolean 类型

response（可

选）
﻿ ﻿Response 传入被检查的请求的响应，用于开启记录检查点日志

返回

类型 描述

boolean 检查结果；true 为检查通过，false 为检查不通过

样例

检查 HTTP 请求的响应状态码是否为 200：

import http from 'pts/http';

import check from 'pts'{ } ;

export default function () {

 const resp =

http get 'http://mockhttpbin.pts.svc.cluster.local/get' . ();

 check 'statusCode is 200' => resp statusCode === 200 // 设置检查

点，以统计检查点指标

(, () .);

 check 'statusCode is 200' => resp statusCode === 200 resp //

设置检查点，以统计检查点指标、并记录检查点日志

(, () . ,);

};

https://cloud.tencent.com/document/product/248/88750
https://cloud.tencent.com/document/product/248/88750

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第343 共531页

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第344 共531页

pts.metadata
最近更新时间：2023-05-17 10:10:12

在脚本执行过程中，获取压测任务的元数据。

metadata : Metadata() ;

返回

类型 描述

﻿Metadata Object，包含压测任务的元数据

样例

获取当前压测任务的元数据：

import metadata from 'pts'{ } ;

export default function () {

 // md 为 Metadata 的 interface 对象

 let md = metadata ();

 console log md userID // 123456 . (.);

 console log md appID // 123456 . (.);

 console log md scenarioID // scenario-xxxxxxxx . (.);

 console log md region // ap-guangzhou . (.);

 console log md jobID // job-xxxxxxxx. (.);

}

https://cloud.tencent.com/document/product/248/88758

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第345 共531页

pts.step
最近更新时间：2023-05-17 10:10:12

在脚本执行的过程中，将执行过程分为不同步骤，在最终的压测报告中实现不同步骤的区分。

step name: string callback: => void(, (()));

参数

参数 类型 描述

name string 步骤的名称标识信息

callback function 步骤内执行的函数，由需要执行的脚本语句组成

样例

将脚本执行过程划分为多个步骤：

import http from 'pts/http';

import step from 'pts'{ } ;

export default function () {

 step 'get1' function (, () {

 http get 'http://httpbin.org/get'. ();

 })

 step 'get2' function (, () {

 http get 'http://httpbin.org/get'. ();

 })

 step 'get3' function (, () {

 http get 'http://httpbin.org/get'. ();

 })

};

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第346 共531页

pts.sleep
最近更新时间：2025-01-17 15:32:42

在脚本执行过程中，暂停指定的时间长度。

sleep seconds: number();

参数

参数 类型 描述

seconds number 暂停执行的时间长度，单位为秒。

样例

暂停10毫秒：

import http from 'pts/http';

import check sleep from 'pts'{ , } ;

export default function () {

 //const resp1 = http.get('http://httpbin.org/get');

 // 暂停10毫秒

 sleep 0.01();

 const resp1 = http get 'http://httpbin.org/get'. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第347 共531页

Metadata
最近更新时间：2023-05-17 10:10:12

Metadata 是包含了压测任务元数据的 Object，通过调用 方法时返回。metadata()

字段

字段 类型 描述

userID string 用户 Uin

appID string 账户 AppID

scenarioID string 压测场景 ID

region string 压测任务所在地域

jobID string 压测任务 ID

样例

调用 metadata() 获取 Metadata 对象：

import metadata from 'pts'{ } ;

export default function () {

 // md 为 Metadata 的 interface 对象

 let md = metadata ();

 console log md userID // 123456 . (.);

 console log md appID // 123456 . (.);

 console log md scenarioID // scenario-xxxxxxxx . (.);

 console log md region // ap-guangzhou . (.);

 console log md jobID // job-xxxxxxxx. (.);

}

https://cloud.tencent.com/document/product/248/88755

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第348 共531页

pts/dataset

模块概览
最近更新时间：2023-05-17 10:10:12

JavaScript API 中的 pts/dataset 模块实现了参数文件相关的逻辑。

方法

方法 返回类型 描述

﻿

add(fileName,

values)
void 增加新的参数文件，并设置给定的参数值。

﻿

forEach(fileName,

callback)
void 遍历指定参数文件，支持修改和删除。

﻿get(key) string 根据给定的列名，获取参数数据值。

﻿random(fileName)
Record<stri

ng, any>
随机获取指定参数文件中的某行数据。

对象

对象 描述

﻿Item
参数文件中的一行数据，以及其是否在本次脚本中是否被删除的标记，在 forEach 方法的

回调函数中使用。

https://cloud.tencent.com/document/product/248/88761
https://cloud.tencent.com/document/product/248/88761
https://cloud.tencent.com/document/product/248/88762
https://cloud.tencent.com/document/product/248/88762
https://cloud.tencent.com/document/product/248/88763
https://cloud.tencent.com/document/product/248/88764
https://cloud.tencent.com/document/product/248/88766

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第349 共531页

dataset.add
最近更新时间：2023-05-17 10:10:12

dataset.add 方法会新增一个参数文件，并添加给定的参数，主要在 setup function 中使用。

add filename: string values: Record<string any> : void(, , [])

参数

参数 类型 描述

filename string 新增参数文件的名称

values
Record<string, any>

[]
需要添加到参数文件的给定参数

返回

类型 描述

void 无返回内容

使用样例

增加新的参数文件和参数：

import dataset from 'pts/dataset';

export function setup () {

 dataset add "user" . (, [

 "id": 1 "name": "zhangsan" "age": 1{ , , },

 "id": 2 "name": "lisi" "age": 2{ , , },

]);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第350 共531页

dataset.forEach
最近更新时间：2024-06-19 11:04:52

在脚本执行的过程中，dataset.forEach 能够遍历给定的参数文件，支持修改和删除的操作，主要在 setup

function 中使用。

forEach fileName: string callback: item: Item, i?: number => void :

void

(, ())

参数

参数 类型 描述

fileName string 遍历的参数文件名

callback function
回调函数；item 为 Item 类型，代表参数文件中的一行数据；i 为

数字类型，代表该行数据的行号

返回

类型 描述

void 无返回内容

样例

遍历参数文件，并进行修改和删除：

import dataset from 'pts/dataset';

export function setup () {

 // 遍历名为 'test.csv' 的参数文件

 dataset forEach 'test.csv' item => . (, () {

 // 将数据行 item 中键名为 'key5' 的数据值改为 '555'

 item data key5 = '555'. . ;

 // 若数据行 item 中键名为 'key1' 的数据值为 '1'，则将其标记为删除，在本脚本执

行过程中不会被使用

 if item data key1 === '1' (. .) {

 item delete. ();

 }

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第351 共531页

 });

}

遍历参数文件，在回调函数中包含 i 参数：

import dataset from 'pts/dataset';

export function setup () {

 // 遍历名为 'test.csv' 的参数文件

 dataset forEach 'test.csv' item, i => . (, () {

 // 输出

 // 0: {"name":"1","value":"111"}

 // 1: {"name":"2","value":"222"}

 // 2: {"name":"3","value":"333"}

 console log i ': ' JSON stringify item data. (, , . (.));

 });

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第352 共531页

dataset.get
最近更新时间：2023-05-17 10:10:12

dataset.get 能够根据给定的列名，获取参数文件中的数据值，主要在主函数中使用。

get key: string : string()

参数

参数 类型 描述

key string 列名

返回

类型 描述

string 数据值

使用样例

获取参数文件中的数据值：

import dataset from 'pts/dataset';

export default function () {

 // 获取 dataset 中列名为 'key1' 的数据值，假设值为 'value1'

 const value = dataset get 'key1'. ();

 // 输出 'key1 => value1'

 console log `key1 => ${value}`. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第353 共531页

dataset.random
最近更新时间：2023-05-17 10:10:13

dataset.random 能够随机获取参数文件的一行，主要在主函数中使用。

random filename: string : Record<string any>() ,

参数

参数 类型 描述

fileName string 获取的参数文件名

返回

类型 描述

Record<string, any> 随机获取的一行参数

使用样例

随机获取某一参数文件的一行：

import dataset from 'pts/dataset';

export default function () {

 // 参数文件 'test.csv'

 // name,value

 // 1,111

 // 2,222

 // 3,333

 const record = dataset random 'test.csv'. ();

 // 输出 '{"name":"2","value":"222"}'

 console log JSON stringify record. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第354 共531页

Item

Item 概览
最近更新时间：2023-05-17 10:10:13

Item 代表了参数文件中的一行数据，以及其是否在本次脚本中是否被删除的标记，在 方法中

使用到。

dataset.forEach

字段

字段 类型 描述

data Record<string, string> 该行参数的列名和数据值

方法

方法 返回类型 描述

﻿delete() void
标记该行数据为“删除”，即在当前脚本

执行过程中不会使用

使用样例

遍历参数文件，并进行修改和删除：

import dataset from 'pts/dataset';

export function setup () {

 // 遍历名为 'test.csv' 的参数文件

 dataset forEach 'test.csv' item => . (, () {

 // 将数据行 item 中键名为 'key5' 的数据值改为 '555'

 item data key5 = '555'. . ;

 // 若数据行 item 中键名为 'key1' 的数据值为 '1'，则将其标记为删除，在本脚本执

行过程中不会被使用

 if item data key1 === '1' (. .) {

 item delete. ();

 }

 });

}

https://cloud.tencent.com/document/product/248/88762
https://cloud.tencent.com/document/product/248/88767

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第355 共531页

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第356 共531页

Item.delete
最近更新时间：2023-05-17 10:10:13

Item.delete 将该 Item 代表的数据行标记为删除，并在当前脚本的执行中不被使用。

datele : void()

返回

类型 描述

void 无返回内容

使用样例

将参数文件中的某行数据标记为删除：

import dataset from 'pts/dataset';

export function setup () {

 // 遍历名为 'test.csv' 的参数文件

 dataset forEach 'test.csv' item => . (, () {

 // 若数据行 item 中键名为 'key1' 的数据值为 '1'，则将其标记为删除，在本脚本执

行过程中不会被使用

 if item data key1 === '1' (. .) {

 item delete. ();

 }

 });

}

export default function () {

 // 在脚本执行过程中不会访问到 'key1' 列为 '1' 的数据行

 const record = dataset random 'test.csv'. ();

 console log JSON stringify record. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第357 共531页

pts/grpc

模块概览
最近更新时间：2023-05-17 10:10:13

Javascript API 中的 pts/grpc 模块实现了 gRPC 相关的功能。

对象

对象 描述

﻿Client gRPC 客户端

﻿DialOption Client.connect 建立连接过程中的可选配置

﻿InvokeOption Client.invoke 执行方法过程中的可选配置

﻿Response Client.invoke 执行方法的返回结果

https://cloud.tencent.com/document/product/248/88771
https://cloud.tencent.com/document/product/248/88776
https://cloud.tencent.com/document/product/248/88777
https://cloud.tencent.com/document/product/248/88848

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第358 共531页

Client

Client 概览
最近更新时间：2023-05-17 10:10:13

grpc.Client 代表了 gRPC 客户端，能够和 gRPC 服务端进行交互。

构造函数

new Client : Client()

方法

方法 返回类型 描述

﻿

load(importPaths,

...filenames)
void 加载 pb 文件

﻿

connect(target,

option?)
void 建立连接

﻿

invoke(method,

request, option?)
﻿ ﻿Response 执行方法

﻿close() void 关闭连接

样例

创建 gRPC Client 并使用：

import grpc from 'pts/grpc';

// 创建新的 grpc Client

const client = new grpc.Client();

// 加载协议文件根目录中的 addsvc.proto

client load 'addsvc.proto'. ([],);

export default => () {

 // 建立连接

 client connect 'grpcb.in:9000' insecure: true . (, { });

https://cloud.tencent.com/document/product/248/88772
https://cloud.tencent.com/document/product/248/88772
https://cloud.tencent.com/document/product/248/88773
https://cloud.tencent.com/document/product/248/88773
https://cloud.tencent.com/document/product/248/88774
https://cloud.tencent.com/document/product/248/88774
https://cloud.tencent.com/document/product/248/88778
https://cloud.tencent.com/document/product/248/88851

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第359 共531页

 // 调用方法

 const rsp = client invoke 'addsvc.Add/Sum' . (, {

 a: 1,

 b: 2,

 });

 console log rsp data v // 3. (. .);

 // 关闭连接

 client close. ();

};

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第360 共531页

Client.load
最近更新时间：2023-05-17 10:10:13

Client.load 用于加载 pb 文件。

load importPaths: string ...filenames: string : void([], [])

参数

参数 类型 描述

importPaths string[]
用于搜索 proto 源文件的 import 语句中引用的依赖项路径；若没

有提供导入路径，则当前目录被假定为唯一的导入路径

...filenames string[] pb 文件名列表，支持单个文件名的调用

返回

类型 描述

void 无返回内容

样例

加载协议文件根目录中的文件：

import grpc from 'pts/grpc';

const client = new grpc.Client();

// 加载协议文件根目录中的 addsvc.proto

client load 'addsvc.proto'. ([],);

加载协议文件某个目录中多个文件：

import grpc from 'pts/grpc';

const client = new grpc.Client();

// 加载中协议文件 dirName 目录中的 addsvc.proto 和 example.proto

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第361 共531页

client load 'dirName' 'addsvc.proto' 'example.proto'. ([], ,);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第362 共531页

Client.connect
最近更新时间：2023-05-17 10:10:13

Client.connect 用于建立连接。

connect target: string option?: DialOption : void(,)

参数

参数 类型 描述

target string 连接建立的目标地址

option? ﻿ ﻿DialOption 可选，DialOption 对象，建立连接的可选配置

返回

类型 描述

void 无返回内容

样例

调用方法建立连接：

import grpc from 'pts/grpc';

// 创建新的 grpc Client

const client = new grpc.Client();

// 加载协议文件根目录中的 addsvc.proto

client load 'addsvc.proto'. ([],);

export default => () {

 // 建立连接

 client connect 'grpcb.in:9000' insecure: true . (, { });

 // 关闭连接

 client close. ();

};

https://cloud.tencent.com/document/product/248/88776

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第363 共531页

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第364 共531页

Client.invoke
最近更新时间：2023-05-17 10:10:14

Client.invoke 用于执行方法。

invoke method: string request: any option?: InvokeOption : Response(, ,)

参数

参数 类型 描述

method string 完整的 Path 路径

request any 业务的请求内容

option？
﻿

﻿

InvokeOpti

on
可选，InvokeOption 对象，执行方法的选项

返回

类型 描述

﻿Response 执行结果

样例

调用方法进行指定 method 的执行：

import grpc from 'pts/grpc';

// 创建新的 grpc Client

const client = new grpc.Client();

// 加载协议文件根目录中的 addsvc.proto

client load 'addsvc.proto'. ([],);

export default => () {

 // 建立连接

 client connect 'grpcb.in:9000' insecure: true . (, { });

 // 调用方法

https://cloud.tencent.com/document/product/248/88777
https://cloud.tencent.com/document/product/248/88777
https://cloud.tencent.com/document/product/248/88778

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第365 共531页

 const rsp = client invoke 'addsvc.Add/Sum' . (, {

 a: 1,

 b: 2,

 });

 console log rsp data v // 3. (. .);

 // 关闭连接

 client close. ();

};

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第366 共531页

Client.close
最近更新时间：2025-01-03 14:11:02

Client.close 关闭连接。

close : void()

返回

类型 描述

void 无返回内容

样例

调用方法关闭连接：

import grpc from 'pts/grpc';

// 创建新的 grpc Client

const client = new grpc.Client();

// 加载协议文件根目录中的 addsvc.proto

client load 'addsvc.proto'. ([],);

export default => () {

 // 建立连接

 client connect 'grpcb.in:9000' insecure: true . (, { });

 // 调用方法

 const rsp = client invoke 'addsvc.Add/Sum' . (, {

 a: 1,

 b: 2,

 });

 console log rsp data v // 3. (. .);

 // 关闭连接

 client close. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第367 共531页

};

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第368 共531页

DialOption
最近更新时间：2023-05-17 10:10:14

DialOption 是 建立连接的过程中的可选项。Client.connect

字段

字段 类型 描述

insecure? boolean
是否不加密，true 不加密，false 加

密

timeout? number 超时时间，单位为毫秒

样例

使用 DialOption 设置连接的建立：

import grpc from 'pts/grpc';

// 创建新的 grpc Client

const client = new grpc.Client();

// 加载协议文件根目录中的 addsvc.proto

client load 'addsvc.proto'. ([],);

export default => () {

 // 建立连接

 client connect 'grpcb.in:9000' insecure: true timeout: 3000 . (, { , });

 // 关闭连接

 client close. ();

};

https://cloud.tencent.com/document/product/248/88773

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第369 共531页

InvokeOption
最近更新时间：2023-05-17 10:10:14

InvokeOption 是 执行方法过程中的可选配置。Client.invoke

字段

字段 类型 描述

headers? Record<string, string[]> 请求头

timeout? number 超时时间，单位为毫秒

样例

使用 InvokeOption 设置执行的可选配置：

export default => () {

 // 建立连接

 client connect 'grpcb.in:9000' insecure: true . (, { });

 // 调用方法

 const rsp = client invoke. (

 'addsvc.Add/Sum',

 a: 1 b: 2 { , },

 // 配置 InvokeOption

 {

 headers: {

 example: 'a' 'b'[,],

 },

 timeout: 5000,

 },

);

 console log rsp data v // 3. (. .);

 // 关闭连接

 client close. ();

};

https://cloud.tencent.com/document/product/248/88774

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第370 共531页

Response
最近更新时间：2023-05-17 10:10:14

Response 是 执行方法的返回对象。Client.invoke

字段

字段 类型 描述

code number 状态码

data any 业务返回数据

headers Record<string, string[]> 请求 Header 元数据

message string 错误信息

trailers Record<string, string[]> 请求 Trailer 元数据

样例

调用 Client.invoke 获得请求返回对象：

import grpc from 'pts/grpc';

// 创建新的 grpc Client

const client = new grpc.Client();

// 加载协议文件根目录中的 addsvc.proto

client load 'addsvc.proto'. ([],);

export default => () {

 // 建立连接

 client connect 'grpcb.in:9000' insecure: true . (, { });

 // 调用方法，获得请求的返回对象 rsp

 const rsp = client invoke 'addsvc.Add/Sum' . (, {

 a: 1,

 b: 2,

 });

 console log rsp data v // 3. (. .);

https://cloud.tencent.com/document/product/248/88774

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第371 共531页

 // 关闭连接

 client close. ();

};

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第372 共531页

pts/jsonpath

模块概览
最近更新时间：2023-05-17 10:10:14

JavaScript API 中的 pts/jsonpath 实现了对 JSON 序列化字符串进行操作的部分功能。

方法

方法 返回类型 描述

﻿

get(json,

path)

number、string、boolean 或

object
根据 path 获取 json 字符串中的值

https://cloud.tencent.com/document/product/248/88781
https://cloud.tencent.com/document/product/248/88781

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第373 共531页

jsonpath.get
最近更新时间：2023-05-17 10:10:14

jsonpath.get 用于从 JSON 字符串中获取对应路径的值。

get json: string path: string : string | number | boolean | object(,)

参数

参数 类型 描述

json string JSON 字符串

path string 取值路径

返回

类型 描述

string、number、boolean 或 object 取值得到的数据

样例

获取给定路径的值：

import jsonpath from 'pts/jsonpath';

export default function () {

 const json = JSON stringify. ({

 name: first: 'Tom' last: 'Anderson' { , },

 age: 37,

 children: 'Sara' 'Alex' 'Jack'[, ,],

 'fav.movie': 'Deer Hunter',

 friends: [

 first: 'Dale' last: 'Murphy' age: 44 nets: 'ig' 'fb' 'tw' { , , , [, ,]

},

 first: 'Roger' last: 'Craig' age: 68 nets: 'fb' 'tw' { , , , [,] },

 first: 'Jane' last: 'Murphy' age: 47 nets: 'ig' 'tw' { , , , [,] },

],

 });

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第374 共531页

 console log jsonpath get json 'name.last' // Anderson. (. (,));

 console log jsonpath get json 'age' // 37. (. (,));

 console log jsonpath get json 'children' // Sara,Alex,Jack. (. (,));

 console log jsonpath get json 'children[*]' // Sara,Alex,Jack. (. (,));

 console log jsonpath get json 'children.[0]' // Sara. (. (,));

 console log jsonpath get json 'children[1:2]' // Alex,Jack. (. (,));

 console log jsonpath get json 'friends[:].first' //

Dale,Roger,Jane

. (. (,));

 console log jsonpath get json 'friends[1].last' // Craig. (. (,));

 console log jsonpath get json 'friends[?(@.age > 45)].last' //

Craig,Murphy

. (. (,));

 console log jsonpath get json 'friends[?(@.first =~ /D.*e/)].last'

// Murphy

. (. (,));

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第375 共531页

pts/protobuf

模块概览
最近更新时间：2023-05-17 10:10:14

JavaScript API 中的 pts/protobuf 模块实现了 protobuf 相关的功能。

方法

方法 返回类型 描述

﻿

load(importPaths,

...fileNames)
void 加载 pb 文件

﻿marshal(message, value) ArrayBuffer 进行 pb 序列化

﻿

unmarshal(message, data,

filename?)
any 进行 pb 反序列化

样例

import protobuf from 'pts/protobuf';

// 加载协议文件根目录中的 demo.proto

protobuf load 'demo.proto'. ([],);

// 加载中协议文件 dirName 目录中的 demo.proto

// protobuf.load(['dirName'], 'demo.proto');

export default function () {

 // 调用 marshal 进行序列化

 const data = protobuf marshal 'xxxx.xxx.demo.stSayHelloReq' msg:

'pts'

. (, {

});

 console log data // [object ArrayBuffer]. ();

 // 调用 unmarshal 进行反序列化

 const value = protobuf unmarshal 'xxxx.xxx.demo.stSayHelloReq' data. (,);

 console log JSON stringify value // {"msg":"pts"}. (. ());

}

https://cloud.tencent.com/document/product/248/88784
https://cloud.tencent.com/document/product/248/88784
https://cloud.tencent.com/document/product/248/88785
https://cloud.tencent.com/document/product/248/88786
https://cloud.tencent.com/document/product/248/88786

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第376 共531页

protobuf.load
最近更新时间：2023-05-17 10:10:15

rotobuf.load 用于加载 pb 文件。

load importPaths: string ...filenames: string : void([], [])

参数

参数 类型 描述

importPaths string[]
用于搜索 proto 源文件的 import 语句中引用的依赖项路径；若没

有提供导入路径，则当前目录被假定为唯一的导入路径。

...filenames string[] pb 文件名列表，支持单个文件名的调用。

返回

类型 描述

void 无返回内容

样例

加载协议文件根目录中的文件：

import protobuf from 'pts/protobuf';

// 加载协议文件根目录中的 addsvc.proto

protobuf load 'addsvc.proto'. ([],);

加载协议文件某个目录中多个文件：

import protobuf from 'pts/protobuf';

// 加载中协议文件 dirName 目录中的 addsvc.proto 和 example.proto

protobuf load 'dirName' 'addsvc.proto' 'example.proto'. ([], ,);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第377 共531页

protobuf.marshal
最近更新时间：2023-05-17 10:10:15

protobuf.marshal 用于进行 pb 序列化。

marshal message: string value: any : ArrayBuffer(,)

参数

参数 类型 描述

message string 结构体名

value any JSON 化的请求体

返回

类型 描述

ArrayBuffer 序列化得到的二进制请求体

样例

调用方法进行 pb 序列化：

import protobuf from 'pts/protobuf';

// 加载协议文件根目录中的 demo.proto

protobuf load 'demo.proto'. ([],);

// 加载中协议文件 dirName 目录中的 demo.proto

// protobuf.load(['dirName'], 'demo.proto');

export default function () {

 // 调用 marshal 进行序列化

 const data = protobuf marshal 'xxxx.xxx.demo.stSayHelloReq' msg:

'pts'

. (, {

});

 console log data // [object ArrayBuffer]. ();

 // 调用 unmarshal 进行反序列化

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第378 共531页

 const value = protobuf unmarshal 'xxxx.xxx.demo.stSayHelloReq' data. (,);

 console log JSON stringify value // {"msg":"pts"}. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第379 共531页

protobuf.unmarshal
最近更新时间：2024-06-20 10:39:01

protobuf.marshal 用于进行 pb 反序列化。

unmarshal message: string data: ArrayBuffer filename?: string : any(, ,)

参数

参数 类型 描述

message string 结构体名

data ArrayBuffer 二进制请求体

filename? string 可选，参数文件名

返回

类型 描述

any 反序列化得到的结果

样例

调用方法进行 pb 反序列化：

import protobuf from 'pts/protobuf';

// 加载协议文件根目录中的 demo.proto

protobuf load 'demo.proto'. ([],);

// 加载中协议文件 dirName 目录中的 demo.proto

// protobuf.load(['dirName'], 'demo.proto');

export default function () {

 // 调用 marshal 进行序列化

 const data = protobuf marshal 'xxxx.xxx.demo.stSayHelloReq' msg:

'pts'

. (, {

});

 console log data // [object ArrayBuffer]. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第380 共531页

 // 调用 unmarshal 进行反序列化

 const value = protobuf unmarshal 'xxxx.xxx.demo.stSayHelloReq' data. (,);

 console log JSON stringify value // {"msg":"pts"}. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第381 共531页

pts/sql

模块概览
最近更新时间：2025-01-03 14:11:02

API 中的 pts/sql 模块实现了 sql 相关的功能。

对象

对象 描述

﻿Database 数据库实例，能够与数据库进行交互

﻿Result 调用 返回的结果Database.exec

https://cloud.tencent.com/document/product/248/88790
https://cloud.tencent.com/document/product/248/88793
https://cloud.tencent.com/document/product/248/88791

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第382 共531页

Database

Database 概览
最近更新时间：2023-05-17 10:10:15

Database 代表了数据库实例，能够与数据库进行交互。

创建

通过 new 进行数据库实例的创建，如下所示：

new driverName: string dataSourceName: string : Database(,)

参数

参数 类型 描述

driverName string 驱动名，目前支持 'mysql'

dataSourceN

ame
string 数据源

方法

方法 返回类型 描述

﻿exec(query, ...args) ﻿ ﻿Result 执行查询但不返回行数据

﻿query(query, ...args)
Record<string

, any>[]
执行查询并返回行结果，通常是 SELECT

样例

创建 Database 实例并进行交互：

import sql from 'pts/sql';

// 通过 new 创建数据库实例

const db = new sql.Database sql MySQL

"user:passwd@tcp(ip:port)/database"

(. ,

)

export default function () {

https://cloud.tencent.com/document/product/248/88791
https://cloud.tencent.com/document/product/248/88793
https://cloud.tencent.com/document/product/248/88792

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第383 共531页

 let result = db exec "UPDATE user SET age=? WHERE name='zhangsan'"

Math floor Math random * 100

. (,

. (. ()));

 console log JSON stringify result //

{"lastInsertId":0,"rowsAffected":1}

. (. ());

 let rows = db query "SELECT * FROM user". ();

 console log JSON stringify rows //

[{"id":1,"name":"zhangsan","age":23},{"id":2,"name":"lisi","age":2}]

. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第384 共531页

Database.exec
最近更新时间：2024-06-19 11:04:52

Database.exec 用于执行查询，但不返回数据库数据。

exec query: string ...args: any : Result(, [])

参数

参数 类型 描述

query string 查询语句

...args any[] 用于查询中的占位符参数

返回

类型 描述

﻿Result 查询返回结果

样例

使用 exec 进行数据库查询：

import sql from 'pts/sql';

// 通过 new 创建数据库实例

const db = new sql.Database sql MySQL

"user:passwd@tcp(ip:port)/database"

(. ,

)

export default function () {

 let result = db exec "UPDATE user SET age=? WHERE name='zhangsan'"

Math floor Math random * 100

. (,

. (. ()));

 console log JSON stringify result //

{"lastInsertId":0,"rowsAffected":1}

. (. ());

}

https://cloud.tencent.com/document/product/248/88793

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第385 共531页

Database.query
最近更新时间：2024-11-29 11:04:53

Database.query 用于执行查询，并返回数据库数据。

query query: string ...args: any : Record<string any>(, []) , []

参数

参数 类型 描述

query string 查询语句

...args any[] 用于查询中的占位符参数

返回

类型 描述

Record<string,

any>[]
查询返回结果，包含数据库数据

样例

使用 query 进行数据库查询：

import sql from 'pts/sql';

// 通过 new 创建数据库实例

const db = new sql.Database sql MySQL

"user:passwd@tcp(ip:port)/database"

(. ,

)

export default function () {

 let rows = db query "SELECT * FROM user". ();

 // [{"id":1,"name":"zhangsan","age":23},

{"id":2,"name":"lisi","age":2}]

 console log JSON stringify rows . (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第386 共531页

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第387 共531页

Result
最近更新时间：2023-05-17 10:10:15

Result 是 Database.exec 返回的结果。

字段

字段 类型 描述

lastInsertId? number

返回数据库为响应命令而生成的整

数；通常这将来自插入新行时的“自

动增量”列

rowsAffected? number 返回受更新、插入或删除影响的行数

样例

使用 exec 进行数据库查询返回 Result：

import sql from 'pts/sql';

// 通过 new 创建数据库实例

const db = new sql.Database sql MySQL

"user:passwd@tcp(ip:port)/database"

(. ,

)

export default function () {

 let result = db exec "UPDATE user SET age=? WHERE name='zhangsan'"

Math floor Math random * 100

. (,

. (. ()));

 console log JSON stringify result //

{"lastInsertId":0,"rowsAffected":1}

. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第388 共531页

pts/url

模块概览
最近更新时间：2024-11-29 11:04:53

JavaScript API 中的 pts/url 模块实现了 url 相关的功能。

对象

对象 描述

﻿URL 用于 URL 相关操作

﻿URLSearchParams 用于处理 URL 的查询字符串

https://cloud.tencent.com/document/product/248/88797
https://cloud.tencent.com/document/product/248/88823

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第389 共531页

URL

URL 概览
最近更新时间：2023-05-17 10:10:16

url.URL 能够用于 URL 的相关操作。

构造函数

通过 new 进行对象实例创建，如下所示：

new URL url: string base?: string | URL : URL(,)

参数

参数 类型 描述

url string 统一资源定位符

base? string 或 URL
统一资源定位符中的协议和主机部分，若 url 中不包

含，则对其进行覆盖

方法

方法 返回类型 描述

﻿hash() string 获取网址的片段部分

﻿setHash(hash) void 设置网址的片段部分

﻿host() string 获取网址的主机部分

﻿setHost(host) void 设置网址的部分

﻿hostname() string 获取网址的主机名部分

﻿

setHostname(host

name)
void 设置网址的主机名部分

﻿

setHostname(host

name)
string 获取序列化的网址

﻿setHref(href) void 设置序列化的网址

https://cloud.tencent.com/document/product/248/88798
https://cloud.tencent.com/document/product/248/88799
https://cloud.tencent.com/document/product/248/88800
https://cloud.tencent.com/document/product/248/88801
https://cloud.tencent.com/document/product/248/88802
https://cloud.tencent.com/document/product/248/88803
https://cloud.tencent.com/document/product/248/88803
https://cloud.tencent.com/document/product/248/88803
https://cloud.tencent.com/document/product/248/88803
https://cloud.tencent.com/document/product/248/88805

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第390 共531页

﻿origin() string 获取网址的源的只读的序列化

﻿password() string 获取网址的密码部分

﻿

setPassword(pass

word)
void 设置网址的密码部分

﻿pathname() string 获取网址的路径部分

﻿

setPathname(path

name)
void 设置网址的路径部分

﻿port() string 获取网址的端口部分

﻿setPort(port) void 设置网址的端口部分

﻿protocol() string 获取网址的协议部分

﻿protocol() void 设置网址的协议部分

﻿search() string 获取网址的序列化的查询部分

﻿setSearch(search) void 设置网址的序列化的查询部分

﻿searchParams()
﻿

﻿

URLSearchPar

ams
获取表示网址查询参数的 URLSearchParams 对象

﻿username() string 获取网址的用户名部分

﻿

setUsername(user

name)
void 设置网址的用户名部分

﻿toJSON() string
返回序列化的网址，当 URL 对象用

JSON.stringify() 序列化时，会自动调用此方法

﻿toString() string 返回序列化的网址

样例

创建 URL 对象，不使用 base 参数：

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

https://cloud.tencent.com/document/product/248/88806
https://cloud.tencent.com/document/product/248/88809
https://cloud.tencent.com/document/product/248/88810
https://cloud.tencent.com/document/product/248/88810
https://cloud.tencent.com/document/product/248/88807
https://cloud.tencent.com/document/product/248/88808
https://cloud.tencent.com/document/product/248/88808
https://cloud.tencent.com/document/product/248/88811
https://cloud.tencent.com/document/product/248/88812
https://cloud.tencent.com/document/product/248/88813
https://cloud.tencent.com/document/product/248/88814
https://cloud.tencent.com/document/product/248/88815
https://cloud.tencent.com/document/product/248/88816
https://cloud.tencent.com/document/product/248/88817
https://cloud.tencent.com/document/product/248/88823
https://cloud.tencent.com/document/product/248/88823
https://cloud.tencent.com/document/product/248/88818
https://cloud.tencent.com/document/product/248/88819
https://cloud.tencent.com/document/product/248/88819
https://cloud.tencent.com/document/product/248/88820
https://cloud.tencent.com/document/product/248/88821

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第391 共531页

 const u0 = new url.URL u()

 console log u0 toString //

http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker

. (. ());

}

创建 URL 对象，使用 base 参数：

import url from 'pts/url';

export default function () {

 const u = '/test/index.html?name=xxx&age=18#worker';

 const u0 = new url.URL u 'https://console.cloud.tencent.com:8080'(,)

 console log u0 toString //

https://console.cloud.tencent.com:8080/test/index.html?

name=xxx&age=18#worker

. (. ());

}

使用 URL 对象进行相关操作：

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const u1 = new url.URL u();

 console log 'hash1 ' u1 hash // #worker. (, . ());

 u1 setHash 'hash'. ();

 console log 'hash2 ' u1 hash // #hash. (, . ());

 const u2 = new url.URL u();

 console log 'host1 ' u2 host // www.example.com:8080. (, . ());

 u2 setHost 'host'. ();

 console log 'host2 ' u2 host // host. (, . ());

 const u3 = new url.URL u();

 console log 'hostname1 ' u3 hostname // www.example.com. (, . ());

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第392 共531页

 u3 setHostname 'hostname'. ();

 console log 'hostname2 ' u3 hostname // hostname. (, . ());

 const u4 = new url.URL u();

 console log 'href1 ' u4 href //

http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker

. (, . ());

 u4 setHref 'https://console.cloud.tencent.com'. ();

 console log 'href2 ' u4 href //

https://console.cloud.tencent.com/

. (, . ());

 const u5 = new url.URL u();

 console log 'origin1 ' u5 origin // http://www.example.com:8080. (, . ());

 const u6 = new url.URL u();

 console log 'pathname1 ' u6 pathname // /test/index.html. (, . ());

 u6 setPathname 'pathname'. ();

 console log 'pathname2 ' u6 pathname // pathname. (, . ());

 const u7 = new url.URL u();

 console log 'port1 ' u7 port // 8080. (, . ());

 u7 setPort '80'. ();

 console log 'port2 ' u7 port // 80. (, . ());

 const u8 = new url.URL u();

 console log 'protocol1 ' u8 protocol // http:. (, . ());

 u8 setProtocol 'protocol'. ();

 console log 'protocol2 ' u8 protocol // protocol:. (, . ());

 const u9 = new url.URL u();

 console log 'search1 ' u9 search // ?age=18&name=xxx. (, . ());

 u9 setSearch 'search'. ();

 console log 'search2 ' u9 search // ?search=. (, . ());

 const u10 = new url.URL u();

 console log 'searchParams1 ' u10 searchParams // [object Object]. (, . ());

 const u11 = new url.URL u();

 console log 'username1 ' u11 username // user. (, . ());

 u11 setUsername 'username'. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第393 共531页

 console log 'username2 ' u11 username // username. (, . ());

 const u12 = new url.URL u();

 console log 'password1 ' u12 password // pass. (, . ());

 u12 setPassword 'password'. ();

 console log 'password2 ' u12 password // password. (, . ());

 const u13 = new url.URL u();

 console log 'toJSON1 ' u13 toJSON //

http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker

. (, . ());

 const u14 = new url.URL u();

 console log 'toString1 ' u14 toString //

http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker

. (, . ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第394 共531页

URL.hash
最近更新时间：2023-05-17 10:10:16

URL.hash 用于获取网址的片段部分。

hash : string()

返回

类型 描述

string 网址的片段部分

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log 'hash1 ' uu hash // #worker. (, . ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第395 共531页

URL.setHash
最近更新时间：2023-05-17 10:10:16

URL.setHash 用于设置网址的片段部分。

setHash hash: string : void()

参数

参数 类型 描述

hash string 要设置的网址片段部分

返回

类型 描述

void 无返回数据

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu hash // #worker. (. ());

 uu setHash 'hash'. ();

 console log 'hash2 ' uu hash // #hash. (, . ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第396 共531页

URL.host
最近更新时间：2023-05-17 10:10:16

URL.host 用于获取网址的主机部分。

host : string()

返回

类型 描述

string 网址的主机部分

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu host // www.example.com:8080. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第397 共531页

URL.setHost
最近更新时间：2023-05-17 10:10:16

URL.setHost 用于网址的主机部分。

setHost host: string : void()

参数

参数 类型 描述

host string 要设置的网址主机部分

返回

类型 描述

void 无返回数据

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu host // www.example.com:8080. (. ());

 uu setHost 'host'. ();

 console log uu host // host. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第398 共531页

URL.hostname
最近更新时间：2023-05-17 10:10:16

URL.hostname 用于获取网址的主机名部分。

hostname : string()

返回

类型 描述

string 网址的主机名部分

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu hostname // www.example.com. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第399 共531页

URL.setHostname
最近更新时间：2023-05-17 10:10:16

URL.setHostname 用于设置网址的部分。

setHostname hostname: string : void()

参数

参数 类型 描述

hostname string 要设置的网址主机名部分

返回

类型 描述

void 无返回数据

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu hostname // www.example.com. (. ());

 uu setHostname 'hostname'. ();

 console log uu hostname // hostname. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第400 共531页

URL.href
最近更新时间：2023-05-17 10:10:17

URL.href 用于获取序列化的网址。

href : string()

返回

类型 描述

string 序列化的网址

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu href //

http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker

. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第401 共531页

URL.setHref
最近更新时间：2023-05-17 10:10:17

URL.setHref 用于设置序列化的网址。

setHref href: string : void新增()

参数

参数 类型 描述

href string 要设置的序列化网址

返回

类型 描述

void 无返回数据

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu href //

http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker

. (. ());

 uu setHref 'https://console.cloud.tencent.com'. ();

 console log uu href // https://console.cloud.tencent.com/. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第402 共531页

URL.origin
最近更新时间：2023-05-17 10:10:17

URL.origin 用于获取网址的源的只读的序列化。

origin : string()

返回

类型 描述

string 网址的源的只读的序列化

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu origin // http://www.example.com:8080. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第403 共531页

URL.pathname
最近更新时间：2023-05-17 10:10:17

URL.pathname 用于获取网址的路径部分。

pathname : string()

返回

类型 描述

string 网址的路径部分

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu pathname // /test/index.html. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第404 共531页

URL.setPathname
最近更新时间：2024-06-19 11:04:52

URL.setPathname 用于设置网址的路径部分。

setPathname pathname: string : void()

参数

参数 类型 描述

pathname string 要设置网址的路径部分

返回

类型 描述

void 无返回数据

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu pathname // /test/index.html. (. ());

 uu setPathname 'pathname'. ();

 console log uu pathname // pathname. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第405 共531页

URL.password
最近更新时间：2023-05-17 10:10:17

URL.password 用于获取网址的密码部分。

password : string()

返回

类型 描述

string 网址的密码部分

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu password // pass. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第406 共531页

URL.setPassword
最近更新时间：2023-05-17 10:10:17

URL.setPassword 用于设置网址的密码。

setPassword password: string : void()

参数

参数 类型 描述

password string 要设置网址的密码

返回

类型 描述

void 无返回数据

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu password // pass. (. ());

 uu setPassword 'password'. ();

 console log uu password // password. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第407 共531页

URL.port
最近更新时间：2023-05-17 10:10:17

URL.port 用于获取网址的端口部分。

port : string()

返回

类型 描述

string 网址的端口部分

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu port // 8080. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第408 共531页

URL.setPort
最近更新时间：2025-01-03 14:11:02

URL.setPort 用于设置网址的端口部分。

setPort port: string : void()

参数

参数 类型 描述

port string 要设置网址的端口部分

返回

类型 描述

void 无返回数据

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu port // 8080. (. ());

 uu setPort '80'. ();

 console log uu port // 80. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第409 共531页

URL.protocol
最近更新时间：2023-05-17 10:10:17

URL.protocol 用于获取网址的协议部分。

protocol : string()

返回

类型 描述

string 网址的协议部分

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu protocol // http:. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第410 共531页

URL.setProtocol
最近更新时间：2024-06-19 11:04:52

URL.setProtocol 用于设置网址的协议部分。

setProtocol protocol: string : void()

参数

参数 类型 描述

protocol string 要设置网址的协议部分

返回

类型 描述

void 无返回数据

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu protocol // http:. (. ());

 uu setProtocol 'protocol'. ();

 console log uu protocol // protocol:. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第411 共531页

URL.search
最近更新时间：2023-05-17 10:10:18

URL.search 用于获取网址的序列化的查询部分。

search : string()

返回

类型 描述

string 网址的序列化的查询部分

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu search // ?age=18&name=xxx. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第412 共531页

URL.setSearch
最近更新时间：2023-05-17 10:10:18

URL.setSearch 用于设置网址的序列化的查询部分。

setSearch search: string : void()

参数

参数 类型 描述

search string 要设置网址的序列化的查询部分

返回

类型 描述

void 无返回数据

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu search // ?age=18&name=xxx. (. ());

 uu setSearch 'search=1'. ();

 console log uu search // ?search=1. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第413 共531页

URL.searchParams
最近更新时间：2023-05-17 10:10:18

URL.searchParams 用于获取表示网址查询参数的 URLSearchParams 对象。

searchParams : URLSearchParams()

返回

类型 描述

﻿URLSearchParams 网址查询参数的 URLSearchParams 对象

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu searchParams // [object Object]. (. ());

}

https://cloud.tencent.com/document/product/248/88823

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第414 共531页

URL.username
最近更新时间：2023-05-17 10:10:18

URL.username 用于获取网址的用户名部分。

username : string()

返回

类型 描述

string 网址的用户名部分

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu username // user. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第415 共531页

URL.setUsername
最近更新时间：2023-05-17 10:10:18

URL.setUsername 用于设置网址的用户名。

setUsername username: string : void()

参数

参数 类型 描述

username string 要设置网址的用户名

返回

类型 描述

void 无返回数据

样例

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu username // user. (. ());

 uu setUsername 'username'. ();

 console log uu username // username. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第416 共531页

URL.toJSON
最近更新时间：2023-05-17 10:10:18

URL.toJSON 用于获取序列化的网址，当 URL 对象用 JSON.stringify() 序列化时，会自动调用此方法。

toJSON : string()

返回

类型 描述

string 序列化的网址

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu toJSON //

http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker

. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第417 共531页

URL.toString
最近更新时间：2023-05-17 10:10:18

URL.toString 用于返回序列化的网址。

toString : string()

返回

类型 描述

string 序列化的网址

样例

import url from 'pts/url';

export default function () {

 const u = 'http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker';

 const uu = new url.URL u();

 console log uu toString //

http://user:pass@www.example.com:8080/test/index.html?

name=xxx&age=18#worker

. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第418 共531页

URLSearchParams

URLSearchParams 概览
最近更新时间：2023-05-17 10:10:18

url.URLSearchParams 定义了一些实用的方法处理 URL 的查询字符串。

构造函数

通过 new 进行对象实例创建，如下所示：

new URLSearchParams params: string : URLSearchParams()

参数

参数 类型 描述

params string 查询字符串

方法

方法 返回类型 描述

﻿

append(key,

value)
void 增加指定的键/值对作为搜索参数

﻿delete(key) void 删除搜索参数列表指定的键及其对应的值

﻿entries() string[][] 获取查询参数中所有的键值对

﻿

forEach(callba

ck)
void 通过回调函数遍历 URLSearchParams 上的所有键值对

﻿get(key)
null 或

string
获取指定搜索参数对应的第一个值

﻿getAll(key) string[] 获取指定搜索参数对应的所有值

has() boolean 判断是否存在该键对应的搜索参数

﻿keys() string[] 获取搜索参数中所有的键名

﻿set(key, value) void 设置新的搜索参数，如果原来有该键值则覆盖

https://cloud.tencent.com/document/product/248/88824
https://cloud.tencent.com/document/product/248/88824
https://cloud.tencent.com/document/product/248/88825
https://cloud.tencent.com/document/product/248/88826
https://cloud.tencent.com/document/product/248/88827
https://cloud.tencent.com/document/product/248/88827
https://cloud.tencent.com/document/product/248/88828
https://cloud.tencent.com/document/product/248/88829
https://cloud.tencent.com/document/product/248/88830
https://cloud.tencent.com/document/product/248/88831
https://cloud.tencent.com/document/product/248/88832

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第419 共531页

﻿toString() string 获取搜索参数组成的字符串，可直接使用于 URL

﻿values() string[] 获取搜索参数中所有的值

样例

构造实例并进行操作：

import url from 'pts/url';

export default function () {

 const params = new url.URLSearchParams 'key1=value1&key2=value2'();

 // 调用 append

 params append 'key3' 'value3'. (,);

 console log params toString // key1=value1&key2=value2&key3=value3. (. ());

 // 调用 delete

 params delete 'key3'. ();

 console log params toString // key1=value1&key2=value2. (. ());

 // 调用 entries

 // key1, value1

 // key2, value2

 for var pair of params entries (. ()) {

 console log pair 0 + ', '+ pair 1. ([] []);

 }

 // 调用 forEach

 // value1, key1, [object Object]

 // value2, key2, [object Object]

 params forEach function value, key, searchParams . (() {

 console log value ', ' key ', ' searchParams. (, , , ,);

 });

 // 调用 get

 console log params get 'key1' // value1. (. ());

 console log params get 'key3' // null. (. ());

 // 调用 getAll

https://cloud.tencent.com/document/product/248/88833
https://cloud.tencent.com/document/product/248/88834

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第420 共531页

 params append 'key1' 1. (,);

 console log params getAll 'key1' // value1,1. (. ());

 // 调用 has

 console log params has 'key1' // true. (. ());

 console log params has 'key3' // false. (. ());

 // 调用 keys

 console log params keys // key1,key2. (. ());

 // 调用 set

 params set 'key3' 'value3'. (,);

 params set 'key1' 'value1'. (,);

 // key1, value1

 // key2, value2

 // key3, value3

 for var pair of params entries (. ()) {

 console log pair 0 + ', '+ pair 1. ([] []);

 }

 // 调用 toString

 console log params toString // key1=value1&key2=value2&key3=value3. (. ());

 // 调用 values

 console log params values // value1,value2,value3. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第421 共531页

URLSearchParams.append
最近更新时间：2023-05-17 10:10:19

URLSearchParams.append 用于增加指定的键值对作为搜索参数。

append key: string value: string | number : void(,)

参数

参数 类型 描述

key string 键

value
string 或

number
值

返回

类型 描述

void 无返回数据

样例

增加指定键值对作为搜索参数：

import url from 'pts/url';

export default function () {

 const params = new url.URLSearchParams 'key1=value1'();

 params append 'key2' 'value2'. (,);

 console log params toString // key1=value1&key2=value2. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第422 共531页

URLSearchParams.delete
最近更新时间：2024-06-19 11:04:52

URLSearchParams.delete 用于删除搜索参数列表指定的键及其对应的值。

delete key: string : void()

参数

参数 类型 描述

key string 键

返回

类型 描述

void 无返回数据

样例

删除搜索参数列表指定的键及其对应的值：

import url from 'pts/url';

export default function () {

 const params = new url.URLSearchParams 'key1=value1&key2=value2'();

 params delete 'key2'. ();

 console log params toString // key1=value1. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第423 共531页

URLSearchParams.entries
最近更新时间：2024-06-24 17:37:21

URLSearchParams.entries 用于获取搜索参数中所有的键值对。

entries : string() [][]

返回

类型 描述

string[][] 搜索参数中所有的键值对

样例

获取搜索参数列表所有的键值对：

import url from 'pts/url';

export default function () {

 const params = new url.URLSearchParams "key1=value1&key2=value2"();

 // 键/值对

 // key1, value1

 // key2, value2

 for var pair of params entries (. ()) {

 console log pair 0 + ', '+ pair 1. ([] []);

 }

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第424 共531页

URLSearchParams.forEach
最近更新时间：2023-05-17 10:10:19

URLSearchParams.forEach 用于通过回调函数遍历 URLSearchParams 上的所有键值对。

forEach callback: value: string, key: string, parent: URLSearchParams

=> void : void

(()

)

参数

参数 类型 描述

callback function
回调函数，value 和 key 分别为搜索参数的值和键名，parent

为当前调用 forEach 的 URLSearchParams 实例对象

返回

类型 描述

void 无返回数据

样例

通过回调函数遍历 URLSearchParams 上的所有键值对：

import url from 'pts/url';

export default function () {

 const params = new url.URLSearchParams 'key1=value1&key2=value2'();

 // value1, key1, [object Object]

 // value2, key2, [object Object]

 params forEach function value, key, searchParams . (() {

 console log value ', ' key ', ' searchParams. (, , , ,);

 });

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第425 共531页

URLSearchParams.get
最近更新时间：2023-05-17 10:10:19

URLSearchParams.get 用于获取指定搜索参数对应的第一个值。

get key: string : null | string()

参数

参数 类型 描述

key string 键

返回

类型 描述

null 或 string 指定键对应的第一个值，若没有找到则为 null

样例

获取指定搜索参数对应的第一个值：

import url from 'pts/url';

export default function () {

 const params = new url.URLSearchParams 'key1=value1&key2=value2'();

 const value1 = params get 'key1'. ();

 console log value1 // value1. ();

 const value3 = params get 'key3'. ();

 console log value3 // null. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第426 共531页

URLSearchParams.getAll
最近更新时间：2023-05-17 10:10:19

URLSearchParams.getAll 用于获取指定搜索参数对应的所有值。

getAll key: string : string() []

参数

参数 类型 描述

key string 键

返回

类型 描述

string[] 指定搜索参数对应的所有值

样例

获取指定搜索参数对应的所有值：

import url from 'pts/url';

export default function () {

 const params = new url.URLSearchParams 'key1=value1&key2=value2'();

 params append 'key1' 1. (,);

 console log params getAll 'key1' // value1,1. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第427 共531页

URLSearchParams.has
最近更新时间：2023-05-17 10:10:19

URLSearchParams.has 用于判断是否存在该键对应的搜索参数。

has key: string : boolean()

参数

参数 类型 描述

key string 键

返回

类型 描述

boolean 是否存在该键对应的搜索参数

样例

判断是否存在该键对应的搜索参数：

import url from 'pts/url';

export default function () {

 const params = new url.URLSearchParams 'key1=value1&key2=value2'();

 console log params has 'key1' // true. (. ());

 console log params has 'key3' // false. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第428 共531页

URLSearchParams.keys
最近更新时间：2023-05-17 10:10:19

URLSearchParams.keys 用于获取搜索参数中所有的键名。

keys : string() []

返回

类型 描述

string[] 搜索参数中所有的键名

样例

获取指定搜索参数对应的所有键名：

import url from 'pts/url';

export default function () {

 const params = new url.URLSearchParams 'key1=value1&key2=value2'();

 console log params keys // key1,key2. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第429 共531页

URLSearchParams.set
最近更新时间：2023-05-17 10:10:19

URLSearchParams.set 用于设置新的搜索参数，如果原来有该搜索参数则覆盖其值。

set key: string value: string | number : void(,)

参数

参数 类型 描述

key string 键

value
string 或

number
值

返回

类型 描述

void 无返回数据

样例

设置新的搜索参数：

import url from 'pts/url';

export default function () {

 const params = new url.URLSearchParams 'key1=value1&key2=value2'();

 params set 'key3' 'value3'. (,);

 params set 'key1' 1. (,);

 // key1, 1

 // key2, value2

 // key3, value3

 for var pair of params entries (. ()) {

 console log pair 0 + ', '+ pair 1. ([] []);

 }

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第430 共531页

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第431 共531页

URLSearchParams.toString
最近更新时间：2023-05-17 10:10:19

URLSearchParams.toString 用于获取搜索参数组成的字符串，可直接使用于 URL。

toString : string()

返回

类型 描述

string 搜索参数组成的字符串

样例

获取搜索参数组成的字符串：

import url from 'pts/url';

export default function () {

 const params = new url.URLSearchParams 'key1=value1&key2=value2'();

 params set 'key3' 'value3'. (,);

 console log params toString // key1=value1&key2=value2&key3=value3. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第432 共531页

URLSearchParams.values
最近更新时间：2023-05-17 10:10:19

URLSearchParams.values 用于获取搜索参数中所有的值。

values : string() []

返回

类型 描述

string[] 搜索参数中所有的值

样例

获取指定搜索参数对应的所有值：

import url from 'pts/url';

export default function () {

 const params = new url.URLSearchParams 'key1=value1&key2=value2'();

 console log params values // value1,value2. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第433 共531页

pts/util

模块概览
最近更新时间：2025-01-03 14:11:02

base64Encoding(input, encoding?)Javascript API 中的 pts/util 模块实现了部分常用的工具。

方法

方法 返回类型 描述

﻿

base64Encoding(input,

encoding?)
string base64 编码

﻿

base64Decoding(input,

encoding?)

string |

ArrayBuffer
base64 解码

﻿

cloudAPISignatureV3(para

m)
string 腾讯云 API 签名方法 V3

﻿md5Sum(data) string md5 加密

﻿

sloginEncrypt(salt, pwd,

vcode)
string QQ slogin 加密

﻿toArrayBuffer(data) ArrayBuffer 转换为字节数组

﻿uuid() string 全局唯一标识 UUID v4 版本

对象

对象 描述

﻿CloudAPISignatureV3Param 用于调用腾讯云 API 签名方法时需要的参数

https://cloud.tencent.com/document/product/248/88837
https://cloud.tencent.com/document/product/248/88837
https://cloud.tencent.com/document/product/248/88838
https://cloud.tencent.com/document/product/248/88838
https://cloud.tencent.com/document/product/248/88839
https://cloud.tencent.com/document/product/248/88839
https://cloud.tencent.com/document/product/248/88840
https://cloud.tencent.com/document/product/248/88841
https://cloud.tencent.com/document/product/248/88841
https://cloud.tencent.com/document/product/248/88842
https://cloud.tencent.com/document/product/248/88843
https://cloud.tencent.com/document/product/248/88844

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第434 共531页

util.base64Encoding
最近更新时间：2024-06-20 17:35:41

在脚本执行过程中，util.base64Encoding 用于 base64 编码。

base64Encoding input: string | ArrayBuffer encoding?: "std" | "rawstd"

| "url" | "rawurl" : string

(,

)

背景

base64 不同的编码方式：

StdEncoding 是标准的 base64 编码，见 中定义。RFC 4648

RawStdEncoding 是标准的原始、未填充的 base64 编码，见 第 3.2 节中定义；与

StdEncoding 相同，但省略了填充字符。

RFC 4648

URLEncoding 是 中定义的备用 base64 编码，通常用于 URL 和文件名。RFC 4648

RawURLEncoding 是 中定义的未填充的替代 base64 编码，通常用于 URL 和文件名；与

URLEncoding 相同，但省略了填充字符。

RFC 4648

参数

参数 类型 描述

input string 或 ArrayBuffer 要编码的字符串或字节数组

encoding（可选）
"std"、"rawstd"、"url" 或

"rawurl"

可选，代表前文所述的不同编码方式，不

填默认为 std

返回

类型 描述

string base64 编码后的结果

使用样例

不指定 encoding 使用 base64Encoding 方法：

import util from 'pts/util';

export default function () {

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第435 共531页

 // SGVsbG8sIHdvcmxk

 console log util base64Encoding 'Hello, world' . (. ());

}

指定 encoding 使用 base64Encoding 方法：

import util from 'pts/util';

export default function () {

 // aHR0cDovL3d3dy5leGFtcGxlLmNvbQ==

 console log util base64Encoding 'http://www.example.com' 'url' . (. (,));

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第436 共531页

util.base64Decoding
最近更新时间：2024-06-20 17:35:41

在脚本执行过程中，util.base64Decoding 用于 base64 解码。

base64Decoding input: string encoding?: "std" | "rawstd" | "url" |

"rawurl" mode?: "b" : string | ArrayBuffer

(,

,)

背景

base64 不同的编码方式：

StdEncoding 是标准的 base64 编码，见 中定义。RFC 4648

RawStdEncoding 是标准的原始、未填充的 base64 编码，见 第 3.2 节中定义；与

StdEncoding 相同，但省略了填充字符。

RFC 4648

URLEncoding 是 中定义的备用 base64 编码，通常用于 URL 和文件名。RFC 4648

RawURLEncoding 是 中定义的未填充的替代 base64 编码，通常用于 URL 和文件名；与

URLEncoding 相同，但省略了填充字符。

RFC 4648

参数

参数 类型 描述

input string 要解码的字符串

encoding（可选） string

可选，代表前文所述的不同编码方式；可选值包括

"std"、"rawstd"、"url" 或 "rawurl"，不设置该

值默认为 "std"

mode（可选） string
可选，不设置则结果为 string 类型，设置为"b"则

结果为 ArrayBuffer 类型

返回

类型 描述

string 或 ArrayBuffer base64 解码得到的结果

使用样例

不指定 encoding 使用 base64Decoding 方法：

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第437 共531页

import util from 'pts/util';

export default function () {

 // Hello, world

 console log util base64Decoding 'SGVsbG8sIHdvcmxk' . (. ());

}

指定 encoding 使用 base64Decoding 方法：

import util from 'pts/util';

export default function () {

 // http://www.example.com

 console log util base64Decoding 'aHR0cDovL3d3dy5leGFtcGxlLmNvbQ=='

'url'

. (. (,

));

}

指定 mode 使用 base64Decoding 方法：

import util from 'pts/util';

export default function () {

 // [object ArrayBuffer]

 console log util base64Decoding 'SGVsbG8sIHdvcmxk' 'std' 'b' . (. (, ,));

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第438 共531页

util.cloudAPISignatureV3
最近更新时间：2025-07-10 17:42:21

在脚本执行过程中，util.cloudAPISignatureV3 用于调用腾讯云 API 进行签名方法 v3 签名；

详情参考腾讯云 API 。签名方法 v3 文档

cloudAPISignatureV3 param: CloudAPISignatureV3Param : string()

参数

参数 类型 描述

param
﻿

﻿

CloudAPISignatureV3Par

am
签名参数

返回

类型 描述

string 签名结果

使用样例

调用方法进行签名并访问云 API：

import util from 'pts/util';

import http from 'pts/http';

export default function () {

 const timestamp = parseInt new Date getTime / 1000((). ());

 const body = {

 EnvironmentId: 'wtp',

 TopicName: 'access_server',

 ClusterId: 'pulsar-vgb3w9ezndvx',

 };

 const headers = {

 'Content-Type': 'application/json',

 Host: 'tdmq.tencentcloudapi.com',

 'X-TC-Action': 'DescribeSubscriptions',

 'X-TC-Version': '2020-02-17',

https://cloud.tencent.com/document/product/1484/78104
https://cloud.tencent.com/document/product/248/88844
https://cloud.tencent.com/document/product/248/88844

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第439 共531页

 'X-TC-Timestamp': timestamp toString. (),

 'X-TC-Region': 'ap-guangzhou',

 };

 // 调用方法

 headers Authorization = util cloudAPISignatureV3. . ({

 secretID: 'xxx',

 secretKey: 'xxx',

 service: 'tdmq',

 method: 'POST',

 timestamp,

 headers,

 body,

 });

 const resp = http post 'https://tdmq.tencentcloudapi.com' body . (, , {

 headers,

 });

 console log resp body. (.);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第440 共531页

util.md5Sum
最近更新时间：2023-05-17 10:10:20

在脚本执行过程中，util.md5Sum 用于进行 md5 加密。

md5Sum data: string | ArrayBuffer : string()

参数

参数 类型 描述

data string 或 ArrayBuffer 要加密的数据

返回

类型 描述

string 加密结果

样例

调用方法进行 md5 加密

import util from 'pts/util';

export default function () {

 console log util md5Sum '12345' // 827ccb0eea8a706c4c34a16891f84e7b. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第441 共531页

util.sloginEncrypt
最近更新时间：2023-05-17 10:10:20

在脚本执行过程中，util.sloginEncrypt 用于 QQ slogin 加密。

sloginEncrypt salt: number pwd: string vcode: string : string(, ,)

参数

参数 类型 描述

salt number QQ 号码数字

pwd string 用户的明文密码

vcode string appid，即 aid 字段

返回

类型 描述

string 加密后的密码

样例

调用方法进行 qq slogin 加密：

import util from 'pts/util';

export default function () {

 // lXYi46n51i4I2E6rFgaR75Lnp9kt4S4ZTq9ZTCxPv-

Ce0jWsjCss2uCl9Hed163KGkCLUxFivS9BTGRyR7YuWrDa9*tGcqal6q3BW2jxPR2M3Si3Q2

prGGIM5sIgwaaBeQWo1w-67Hgd-Qt*N4fszGRSS55VDl-

b4THwmOAp6eKA*sG80HEzbLRUWmNnfmg8wdmtyxiZisYtyWI2HJozH1EKuN2u9byOvFnMdzC

MlL7kPIZACk3zt84DM5byfCVpBII5N1EM6IMZ*u7A2WOd2c2RerWbVwAyu1raYoZwTODeOx1

8xw2uTnGi8aLJTz4PIG*3svujqwMayIgtzhq1IQ__

 console log util sloginEncrypt 123456 'abcdef' '14'. (. (, ,));

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第442 共531页

util.toArrayBuffer
最近更新时间：2023-05-17 10:10:20

在脚本执行过程中，util.toArrayBuffer 用于将参数转换成 JS 中的字节数组。

toArrayBuffer data: string | ArrayBuffer : ArrayBuffer()

参数

参数 类型 描述

data string 或 ArrayBuffer 要转换的数据

返回

类型 描述

ArrayBuffer 转换后的结果

样例

调用方法进行数据的转换：

import util from 'pts/util';

export default function () {

 console log util toArrayBuffer '12345' // [object ArrayBuffer]. (. ());

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第443 共531页

util.uuid
最近更新时间：2023-05-17 10:10:20

在脚本执行过程中，util.uuid 用于生成 uuid，使用 uuid v4 版本。

uuid : string()

返回

类型 描述

string uuid 字符串

样例

调用 util.uuid：

import util from 'pts/util';

export default function () {

 console log util uuid // 5fbf1e59-cabf-469b-9d9f-6622e97de1ec. (. ())

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第444 共531页

CloudAPISignatureV3Param
最近更新时间：2023-05-09 17:33:25

CloudAPISignatureV3Param 是调用 方法进行签名时的参数 Object。util.cloudAPISignatureV3

字段

字段 类型 描述

secretID string 密钥 ID，标识 API 调用者身份

secretKey string 密钥 Key，验证 API 调用者的身份

service string 产品名称

method string 调用方法，如 "POST"

timestamp string 时间戳

body
string、object 或

ArrayBuffer
请求体

query Record<string, string> 请求参数

headers Record<string, string> 请求头

样例

调用 util.cloudAPISignatureV3 方法进行签名：

import util from 'pts/util';

import http from 'pts/http';

export default function () {

 const timestamp = parseInt new Date getTime / 1000((). ());

 const body = {

 EnvironmentId: 'wtp',

 TopicName: 'access_server',

 ClusterId: 'pulsar-vgb3w9ezndvx',

 };

 const headers = {

 'Content-Type': 'application/json',

 Host: 'tdmq.tencentcloudapi.com',

https://cloud.tencent.com/document/product/248/88839

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第445 共531页

 'X-TC-Action': 'DescribeSubscriptions',

 'X-TC-Version': '2020-02-17',

 'X-TC-Timestamp': timestamp toString. (),

 'X-TC-Region': 'ap-guangzhou',

 };

 // 调用 util.cloudAPISignatureV3，内部的参数即 CloudAPISignatureV3Param

 headers Authorization = util cloudAPISignatureV3. . ({

 secretID: 'xxx',

 secretKey: 'xxx',

 service: 'tdmq',

 method: 'POST',

 timestamp,

 headers,

 body,

 });

 const resp = http post 'https://tdmq.tencentcloudapi.com' body . (, , {

 headers,

 });

 console log resp body. (.);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第446 共531页

pts/ws

模块概览
最近更新时间：2023-05-17 10:10:21

JavaScript API 中的 pts/ws 模块用于实现基于 Websocket 协议的基本功能。

方法

方法 返回类型 描述

﻿

connect(url, callback,

[headers])
﻿ ﻿Response

建立 Websocket 连接，并在回调函数中定义业务逻

辑，执行完回调函数后，ws.connect 返回

ws.Response 对象。

对象

对象 描述

﻿Socket 概览
ws.connect 建立成功后，传递 ws.Socket 对象进入

callback 回调函数，用以定义 Websocket 的请求逻辑。

﻿Response
ws.connect 执行完回调函数后，返回的 ws.Response

对象。

样例

import ws from 'pts/ws';

import check sleep from 'pts'{ , } ;

export default function () {

 const res = ws connect 'ws://localhost:8080/echo' function socket . (, () {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'message received: '

data

. (, () . (,

));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket on 'ping' => console log 'ping'. (, () . ());

 socket on 'pong' => console log 'pong'. (, () . ());

 socket on 'error' e => console log 'error happened' e error. (, () . (, . ()));

 socket send 'message'. ();

 socket setTimeout function . (() {

https://cloud.tencent.com/document/product/248/88847
https://cloud.tencent.com/document/product/248/88847
https://cloud.tencent.com/document/product/248/88848
https://cloud.tencent.com/document/product/248/88850
https://cloud.tencent.com/document/product/248/88848

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第447 共531页

 console log '3 seconds passed, closing the socket'. ();

 socket close. ();

 3000},);

 socket setInterval function . (() {

 socket ping. ();

 500},);

 socket setLoop function . (() {

 sleep 0.1()

 socket send 'loop message'. ()

 });

 });

 check 'status is 101' => res status === 101(, () .);

};

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第448 共531页

ws.connect
最近更新时间：2024-06-19 11:04:52

ws.connect 根据指定参数建立 Websocket 连接，并执行用户定义的逻辑，返回 对象。Response

connect url: string callback: socket: Socket => void

headers?: Record<string string> : Response

(, () ,

,)

参数

参数 类型 描述

url string 请求连接的地址。

callback function
回调函数，在完成连接后将 ws.Socket 对象传入该回调函

数，用户可以在该函数中定义 Websocket 请求逻辑。

headers

（可选）

Record<string,

string>
请求连接时的 headers 配置。

返回

类型 描述

﻿Response object，包含 ws.connect 返回的响应结果。

样例

建立连接：

import ws from 'pts/ws';

export default function () {

 const res = ws connect "ws://localhost:8080/echo" function socket . (, () {

 socket on 'open' => . (, () {

 console log 'connected'. ();

 socket close. ();

 });

 });

}

https://cloud.tencent.com/document/product/248/88848
https://cloud.tencent.com/document/product/248/88848

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第449 共531页

建立连接，并指定 headers 参数：

import ws from 'pts/ws';

export default function () {

 const headers = {

 'X-MyApplication': 'PTS',

 'X-MyScript': 'Websocket',

 }

 const res = ws connect "ws://localhost:8080/echo" function socket . (, () {

 socket on 'open' => . (, () {

 console log 'connected'. ();

 socket close. ();

 });

 headers},);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第450 共531页

Response
最近更新时间：2023-05-17 10:10:21

ws.Response 是 返回的响应结果。ws.connect

字段

字段 类型 描述

body string 响应包体内容

headers Record<string, string> 响应头参数

status number 状态码

url string 请求地址

https://cloud.tencent.com/document/product/248/88847

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第451 共531页

Socket

Socket 概览
最近更新时间：2024-12-27 11:58:52

在 Websocket 连接建立成功后，PTS 将创建好的 ws.Socket 对象传递进入回调函数，用户通过调用 Socket

的方法进行 WebSocket 请求逻辑的定义。

方法

方法 返回类型 描述

﻿close() void 关闭连接

﻿on(event, callback) void

消息事件 event 监听，并根据 callback 处理事件；目

前 PTS 支持的事件列表如下：

open：建立连接

close：关闭连接

message：接受文本消息

binaryMessage：接受二进制消息

ping：接收 ping 消息

﻿ping() void 发送 ping 消息

﻿send(msg) void 发送文本消息

﻿sendBinary(msg) void 发送二进制消息

﻿

setInterval(callback,

intervalMs)
void 设置轮询函数

﻿setLoop(callback) void 设置循环执行函数

﻿

setTimeout(callback,

intervalMs)
void 设置定时函数

https://cloud.tencent.com/document/product/248/88851
https://cloud.tencent.com/document/product/248/88852
https://cloud.tencent.com/document/product/248/88853
https://cloud.tencent.com/document/product/248/88855
https://cloud.tencent.com/document/product/248/88856
https://cloud.tencent.com/document/product/248/88857
https://cloud.tencent.com/document/product/248/88857
https://cloud.tencent.com/document/product/248/88858
https://cloud.tencent.com/document/product/248/88859
https://cloud.tencent.com/document/product/248/88859

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第452 共531页

Socket.close
最近更新时间：2023-05-17 10:10:21

Socket.close 用于关闭连接。

close : void()

返回

类型 描述

void 无返回内容

样例

import ws from 'pts/ws';

import check sleep from 'pts'{ , } ;

export default function () {

 const res = ws connect 'ws://localhost:8080/echo' function socket . (, () {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'Message received: '

data

. (, () . (,

));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket send 'message'. ();

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

 // 关闭连接

 socket close. ();

 3000},);

 socket setInterval function . (() {

 socket ping. ();

 500},);

 socket setLoop function . (() {

 sleep 0.1();

 socket send 'loop message'. ();

 });

 });

 check 'status is 101' => res status === 101(, () .);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第453 共531页

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第454 共531页

Socket.on
最近更新时间：2023-05-17 10:10:21

Socket.on 用于消息事件监听。

on event: string callback: ...args: any[] => void : void(, (()))

参数

参数 类型 描述

event string

事件名，支持的事件列表如下：

open，建立连接；

close，关闭连接；

message，接受文本消息；

binaryMessage，接受二进制消息；

pong，接收 pong 消息；

ping，接收 ping 消息；

callback function 回调函数

返回

类型 描述

void 无返回内容

样例

import ws from 'pts/ws';

import check sleep from 'pts'{ , } ;

export default function () {

 const res = ws connect 'ws://localhost:8080/echo' function socket . (, () {

 // 消息事件监听

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'Message received: '

data

. (, () . (,

));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket send 'message'. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第455 共531页

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

 socket close. ();

 3000},);

 socket setInterval function . (() {

 socket ping. ();

 500},);

 socket setLoop function . (() {

 sleep 0.1();

 socket send 'loop message'. ();

 });

 });

 check 'status is 101' => res status === 101(, () .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第456 共531页

Socket.ping
最近更新时间：2023-05-17 10:10:21

Socket.ping 用于发送 ping 消息。

ping : void()

返回

类型 描述

void 无返回内容

样例

import ws from 'pts/ws';

import check sleep from 'pts'{ , } ;

export default function () {

 const res = ws connect 'ws://localhost:8080/echo' function socket . (, () {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'Message received: '

data

. (, () . (,

));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket send 'message'. ();

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

 socket close. ();

 3000},);

 socket setInterval function . (() {

 // 发送 ping 消息

 socket ping. ();

 500},);

 socket setLoop function . (() {

 sleep 0.1();

 socket send 'loop message'. ();

 });

 });

 check 'status is 101' => res status === 101(, () .);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第457 共531页

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第458 共531页

Sokcet.send
最近更新时间：2023-05-17 10:10:22

Socket.send 用于文本消息发送。

send msg: string : void()

参数

参数 类型 描述

msg string 文本内容

返回

类型 描述

void 无返回内容

样例

import ws from 'pts/ws';

import check sleep from 'pts'{ , } ;

export default function () {

 const res = ws connect 'ws://localhost:8080/echo' function socket . (, () {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'Message received: '

data

. (, () . (,

));

 socket on 'close' => console log 'disconnected'. (, () . ());

 // 文本消息发送

 socket send 'message'. ();

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

 // 关闭连接

 socket close. ();

 3000},);

 socket setInterval function . (() {

 socket ping. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第459 共531页

 500},);

 socket setLoop function . (() {

 sleep 0.1();

 socket send 'loop message'. ();

 });

 });

 check 'status is 101' => res status === 101(, () .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第460 共531页

Socket.sendBinary
最近更新时间：2023-05-17 10:10:22

Socket.sendBinary 用于文本消息发送。

sendBinary msg: ArrayBuffer : void()

参数

参数 类型 描述

msg ArrayBuffer 二进制内容

返回

类型 描述

void 无返回内容

样例

import ws from 'pts/ws';

import check sleep from 'pts'{ , } ;

export default function () {

 const res = ws connect 'ws://localhost:8080/echo' function socket . (, () {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'Message received: '

data

. (, () . (,

));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket send 'message'. ();

 // 二进制消息发送

 socket sendBinary new ArrayBuffer 1. (());

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

 socket close. ();

 3000},);

 socket setInterval function . (() {

 socket ping. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第461 共531页

 500},);

 socket setLoop function . (() {

 sleep 0.1();

 socket send 'loop message'. ();

 });

 });

 check 'status is 101' => res status === 101(, () .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第462 共531页

Socket.setInterval
最近更新时间：2023-05-17 10:10:22

Socket.setInterval 用于设置轮询函数。

setInterval callback: => void intervalMs: number : void((()),)

参数

参数 类型 描述

callback function 回调函数

intervalMs number 设置时间，单位为毫秒

返回

类型 描述

void 无返回内容

样例

import ws from 'pts/ws';

import check sleep from 'pts'{ , } ;

export default function () {

 const res = ws connect 'ws://localhost:8080/echo' function socket . (, () {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'Message received: '

data

. (, () . (,

));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket send 'message'. ();

 socket sendBinary new ArrayBuffer 1. (());

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

 socket close. ();

 3000},);

 // 设置轮询函数

 socket setInterval function . (() {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第463 共531页

 socket ping. ();

 500},);

 socket setLoop function . (() {

 sleep 0.1();

 socket send 'loop message'. ();

 });

 });

 check 'status is 101' => res status === 101(, () .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第464 共531页

Socket.setLoop
最近更新时间：2023-05-17 10:10:22

Socket.setLoop 用于设置循环执行函数。

setLoop callback: => void : void((()))

参数

参数 类型 描述

callback function 回调函数

返回

类型 描述

void 无返回内容

样例

import ws from 'pts/ws';

import check sleep from 'pts'{ , } ;

export default function () {

 const res = ws connect 'ws://localhost:8080/echo' function socket . (, () {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'Message received: '

data

. (, () . (,

));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket send 'message'. ();

 socket sendBinary new ArrayBuffer 1. (());

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

 socket close. ();

 3000},);

 socket setInterval function . (() {

 socket ping. ();

 500},);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第465 共531页

 // 设置循环执行函数

 socket setLoop function . (() {

 sleep 0.1();

 socket send 'loop message'. ();

 });

 });

 check 'status is 101' => res status === 101(, () .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第466 共531页

Socket.setTimeout
最近更新时间：2023-05-17 10:10:22

Socket.setTimeout 用于设置定时函数。

setTimeout callback: => void intervalMs: number : void((()),)

参数新增

参数 类型 描述

callback function 回调函数

返回

类型 描述

void 无返回内容

样例

import ws from 'pts/ws';

import check sleep from 'pts'{ , } ;

export default function () {

 const res = ws connect 'ws://localhost:8080/echo' function socket . (, () {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'Message received: '

data

. (, () . (,

));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket send 'message'. ();

 socket sendBinary new ArrayBuffer 1. (());

 // 设置定时函数

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

 socket close. ();

 3000},);

 socket setInterval function . (() {

 socket ping. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第467 共531页

 500},);

 socket setLoop function . (() {

 sleep 0.1();

 socket send 'loop message'. ();

 });

 });

 check 'status is 101' => res status === 101(, () .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第468 共531页

pts/redis

模块概览
最近更新时间：2024-11-29 11:04:52

JavaScript API 中的 pts/redis 模块用于建立同 Redis 实例的连接 Client，并通过该 Client 进行操作。

对象

对象 描述

﻿Client Redis client 实例

https://cloud.tencent.com/document/product/248/113155

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第469 共531页

Client

Client 概览
最近更新时间：2024-11-29 11:04:52

通过 new redis.Client 方法，您可以创建一个 Client 实例。该方法的参数为目标 redis 的地址。

构造函数

new Client url: string : Client()

参数

参数 类型 描述

url string
目标 redis 的地址，例如 redis://<user>:

<password>@<host>:<port>/<db_number>

方法

方法 返回类型 描述

﻿get(key) string 获取指定 key 的值

﻿

set(key, value,

expiration?)
string 设置指定 key 的值

﻿del(...keys) number 删除已存在的 key

﻿lPush(key, ...values) number 将一个或多个值插入到列表头部

﻿rPush(key, ...values) number 将一个或多个值插入到列表尾部

﻿lPop(key) string 移除并获取列表的第一个元素

﻿rPop(key) string 移除并获取列表的最后一个元素

﻿

lRange(key, start,

stop)
string[] 获取列表指定范围内的元素

﻿lIndex(key, index) string 通过索引获取列表中的元素

﻿lLen(key) number 获取列表长度

https://cloud.tencent.com/document/product/248/113156
https://cloud.tencent.com/document/product/248/113157
https://cloud.tencent.com/document/product/248/113157
https://cloud.tencent.com/document/product/248/113158
https://cloud.tencent.com/document/product/248/113159
https://cloud.tencent.com/document/product/248/113160
https://cloud.tencent.com/document/product/248/113161
https://cloud.tencent.com/document/product/248/113162
https://cloud.tencent.com/document/product/248/113163
https://cloud.tencent.com/document/product/248/113163
https://cloud.tencent.com/document/product/248/113164
https://cloud.tencent.com/document/product/248/113165

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第470 共531页

﻿lSet(key, index, value) string 通过索引设置列表元素的值

﻿

lRem(key, count,

value)
number 移除列表元素

﻿hSet(key, ...members) number 设置哈希表 key 中的字段和值

﻿hGet(key, field) string 获取存储在哈希表中指定字段的值

﻿hDel(key, ...fields) number 删除一个或多个哈希表字段

﻿hLen(key) number 获取哈希表中字段的数量

﻿sAdd(key, ...members) number 向集合添加一个或多个成员

﻿

sRem(key,

...members)
number 移除集合中一个或多个成员

﻿

sIsMember(key,

member)
boolean

判断 member 元素是否是集合 key 的

成员

﻿sMembers(key) string[] 返回集合中的所有成员

﻿sRandMember(key) string 随机返回集合中一个元素

﻿sPop(key) string 随机移除并返回集合中的一个元素

示例

同 Redis 建立连接并进行操作。

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let resp = client set "key" "hello, world" 0. (, ,);

 console log `redis set ${resp}` // OK. ();

 let val = client get "key". ();

 console log `redis get ${val}` // hello, world. ();

 let cnt = client del "key". ();

 console log `redis del ${cnt}` // 1. ();

 let lpushResp = client lPush "list" "foo". (,);

 console log `redis lpush ${lpushResp}` // OK. ();

https://cloud.tencent.com/document/product/248/113166
https://cloud.tencent.com/document/product/248/113167
https://cloud.tencent.com/document/product/248/113167
https://cloud.tencent.com/document/product/248/113168
https://cloud.tencent.com/document/product/248/113169
https://cloud.tencent.com/document/product/248/113170
https://cloud.tencent.com/document/product/248/113171
https://cloud.tencent.com/document/product/248/113172
https://cloud.tencent.com/document/product/248/113173
https://cloud.tencent.com/document/product/248/113173
https://cloud.tencent.com/document/product/248/113174
https://cloud.tencent.com/document/product/248/113174
https://cloud.tencent.com/document/product/248/113175
https://cloud.tencent.com/document/product/248/113176
https://cloud.tencent.com/document/product/248/113177

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第471 共531页

 let lpopResp = client lPop "list". ();

 console log `redis lpop ${lpopResp}` // foo. ();

 let listLen = client lLen "list". ();

 console log `redis llen ${listLen}` // 0. ();

 let hashSetResp = client hSet "hash" "k" 1 // [k1, v1, k2, v2,

...]

. (, ,);

 console log `redis hset ${hashSetResp}` // 1. ();

 let hashGetResp = client hGet "hash" "k". (,);

 console log `redis hget ${hashGetResp}` // 1. ();

 let hashDelResp = client hDel "hash" "k". (,);

 console log `redis hdel ${hashDelResp}` // 1. ();

 let setAddResp = client sAdd "set" "hello". (,);

 console log `redis sadd ${setAddResp}` // 1. ();

 let setPopResp = client sPop "set". ();

 console log `redis spop ${setPopResp}` // hello. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第472 共531页

Client.get
最近更新时间：2024-11-29 11:04:52

get 方法用于获取指定 key 的值。

get key: string : string()

参数

参数 类型 描述

key string 键名

返回

类型 描述

string 值

样例

import redis from "pts/redis";

let client = new redis.Client "redis://<password>@<host>:6379/0"();

export default function main () {

 let setResp = client set "key" "hello, world" 0. (, ,);

 console log `redis set ${setResp}` // OK. ();

 let getResp = client get "key". ();

 console log `redis get ${getResp}` // hello, world. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第473 共531页

Client.set
最近更新时间：2024-11-29 11:04:52

set 方法用于设置指定 key 的值。

set key: string value: string expiration?: number : string(, ,)

参数

参数 类型 描述

key string 键名

value string 值

expiration number
可选，过期时间，单位秒。不填表示不设置过期时间，-1 表示

keepttl

返回

类型 描述

string 成功时，返回 "OK"

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let setResp = client set "key" "hello, world" 0. (, ,);

 console log `redis set ${setResp}` // OK. ();

 let getResp = client get "key". ();

 console log `redis get ${getResp}` // hello, world. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第474 共531页

Client.del
最近更新时间：2024-11-29 11:04:52

del 方法用于删除已存在的 key。

del ...keys: string : number([])

参数

参数 类型 描述

...keys string[] 键名

返回

类型 描述

number 成功，返回被删除条目的数量

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let setResp = client set "key" "hello, world" 0. (, ,);

 console log `redis set ${setResp}` // OK. ();

 let delResp = client del "key". ();

 console log `redis del ${delResp}` // 1. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第475 共531页

Client.lPush
最近更新时间：2024-11-29 11:04:52

lPush 方法用于将一个或多个值插入到列表头部。

lPush key: string ...values: string | number : number(, ()[])

参数

参数 类型 描述

key string 键名

...values
(string |

number)[]
值

返回

类型 描述

number 成功时，返回插入后 list 的长度

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let lPushResp = client lPush "list" "foo". (,);

 console log `redis lPush ${lPushResp}` // 1. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第476 共531页

Client.rPush
最近更新时间：2024-11-29 11:04:52

rPush 方法用于将一个或多个值插入到列表尾部。

rPush key: string ...values: string | number : number(, ()[])

参数

参数 类型 描述

key string 键名

...values
(string |

number)[]
值

返回

类型 描述

number 成功时，返回插入后 list 的长度

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let rPushResp = client rPush "list" "foo". (,);

 console log `redis rPush ${rPushResp}` // 1. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第477 共531页

Client.lPop
最近更新时间：2024-11-29 11:04:52

lPop 方法用于移除并获取列表的第一个元素。

lPop key: string : string()

参数

参数 类型 描述

key string 键名

返回

类型 描述

string 成功时，返回列表中的第一个元素

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let lPushResp = client lPush "list" "foo". (,);

 console log `redis lPush ${lPushResp}` // 1. ();

 let lPopResp = client lPop "list". ();

 console log `redis lPop ${lPopResp}` // foo. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第478 共531页

Client.rPop
最近更新时间：2024-11-29 11:04:52

rPop 方法用于移除并获取列表的最后一个元素。

rPop key: string : string()

参数

参数 类型 描述

key string 键名

返回

类型 描述

string 成功时，返回列表中的最后一个元素

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let rPushResp = client rPush "list" "foo". (,);

 console log `redis rPush ${rPushResp}` // 1. ();

 let rPopResp = client rPop "list". ();

 console log `redis rPop ${rPopResp}` // foo. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第479 共531页

Client.lRange
最近更新时间：2024-11-29 11:04:52

lRange 方法用于获取列表指定范围内的元素。

lRange key: string start stop: number : string(, ,) []

参数

参数 类型 描述

key string 键名

start string 起始位置

stop string 结束位置

返回

类型 描述

string[] 成功时，返回 [start, stop] 区间的元素

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let lPushResp = client lPush "list" "foo" "bar" "zoo". (, , ,);

 console log `redis lPush ${lPushResp}` // 3. ();

 let lRangeResp = client lRange "list" 0 1. (, ,);

 console log `redis lRange ${lRangeResp}` // zoo,bar. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第480 共531页

Client.lIndex
最近更新时间：2024-11-29 11:04:52

lIndex 方法用于通过索引获取列表中的元素。

lIndex key: string index: number : string(,)

参数

参数 类型 描述

key string 键名

index number 索引

返回

类型 描述

string 成功时，返回索引对应的元素

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let lPushResp = client lPush "list" "foo" "bar" "zoo". (, , ,);

 console log `redis lPush ${lPushResp}` // 3. ();

 let lIndexResp = client lIndex "list" 1. (,);

 console log `redis lIndex ${lIndexResp}` // bar. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第481 共531页

Client.lLen
最近更新时间：2024-11-29 11:04:52

lLen 方法用于获取列表长度。

lLen key: string : number()

参数

参数 类型 描述

key string 键名

返回

类型 描述

number 成功时，返回列表的长度

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let lPushResp = client lPush "list" "foo" "bar" "zoo". (, , ,);

 console log `redis lPush ${lPushResp}` // 3. ();

 let lLenResp = client lLen "list". ();

 console log `redis lLen ${lLenResp}` // 3. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第482 共531页

Client.lSet
最近更新时间：2024-11-29 11:04:52

lSet 方法用于通过索引设置列表元素的值。

lSet key: string index: number value: string | number : string(, ,)

参数

参数 类型 描述

key string 键名

index number 索引

value
string |

number
值

返回

类型 描述

string 成功时，返回“OK”

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let lPushResp = client lPush "list" "foo" "bar" "zoo". (, , ,);

 console log `redis lPush ${lPushResp}` // 3. ();

 let lSetResp = client lSet "list" 1 "bar2". (, ,);

 console log `redis lSet ${lSetResp}` // OK. ();

 let lIndexResp = client lIndex "list" 1. (,);

 console log `redis lIndex ${lIndexResp}` // bar2. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第483 共531页

Client.lRem
最近更新时间：2024-11-29 11:04:52

lRem 方法用于移除列表元素。

lRem key: string count: number value: string | number : number(, ,)

参数

参数 类型 描述

key string 键名

count number
移除的数量，正数表示从表头开始，负数表示从表尾开始，0 代表

全部移除

value
string |

number
移除元素的值

返回

类型 描述

number 成功时，返回移除元素的数量

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let lPushResp = client lPush "list" "foo" "bar" "zoo" "foo"

"bar" "zoo"

. (, , , , ,

,);

 console log `redis lPush ${lPushResp}` // 6. ();

 let lRemResp1 = client lRem "list" 1 "bar". (, ,);

 console log `redis lRem ${lRemResp1}` // 1. ();

 let lRemResp2 = client lRem "list" -1 "foo". (, ,);

 console log `redis lRem ${lRemResp2}` // 1. ();

 let lRangeResp = client lRange "list" 0 4. (, ,);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第484 共531页

 console log `redis lRange ${lRangeResp}` // zoo,foo,zoo,bar. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第485 共531页

Client.hSet
最近更新时间：2024-11-29 11:04:52

hSet 方法用于设置哈希表 key 中的字段和值。

hSet key: string ...members: string | number : number(, ()[])

参数

参数 类型 描述

key string 键名

...members
(string |

number)[]
hash 成员，以 key1、value1、key2、value2 形式输入

返回

类型 描述

number 成功时，返回添加成功的条数

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let hSetResp = client hSet "hash" "k" 1 // [k1, v1, k2, v2, ...]. (, ,);

 console log `redis hSet ${hSetResp}` // 1. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第486 共531页

Client.hGet
最近更新时间：2024-11-29 11:04:52

hGet 方法用于获取存储在哈希表中指定字段的值。

hGet key: string field: string : string(,)

参数

参数 类型 描述

key string 键名

field string 字段名

返回

类型 描述

string 成功时，返回对应字段的值

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let hSetResp = client hSet "hash" "k" 1 "k1" 2 // [k1, v1, k2,

v2, ...]

. (, , , ,);

 console log `redis hSet ${hSetResp}` // 2. ();

 let hGetResp = client hGet "hash" "k". (,);

 console log `redis hGet ${hGetResp}` // 1. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第487 共531页

Client.hDel
最近更新时间：2024-11-29 11:04:52

hDel 方法用于删除一个或多个哈希表字段。

hDel key: string ...fields: string : number(, [])

参数

参数 类型 描述

key string 键名

...fields string[] 字段名

返回

类型 描述

number 成功时，返回被删除条目的数量

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let hSetResp = client hSet "hash" "k" 1 "k1" 2. (, , , ,);

 console log `redis hSet ${hSetResp}` // 2. ();

 let hDelResp = client hDel "hash" "k". (,);

 console log `redis hDel ${hDelResp}` // 1. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第488 共531页

Client.hLen
最近更新时间：2024-11-29 11:04:53

hLen 方法用于获取哈希表中字段的数量。

hLen key: string : number()

参数

参数 类型 描述

key string 键名

返回

类型 描述

number 成功时，返回条目的数量

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let hSetResp = client hSet "hash" "k" 1 "k1" 2. (, , , ,);

 console log `redis hSet ${hSetResp}` // 2. ();

 let hLenResp = client hLen "hash". ();

 console log `redis hLen ${hLenResp}` // 2. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第489 共531页

Client.sAdd
最近更新时间：2024-11-29 11:04:53

sAdd 方法用于向集合添加一个或多个成员。

sAdd key: string ...members: string | number : number(, ()[])

参数

参数 类型 描述

key string 键名

...members
(string |

number)[]
待添加的成员

返回

类型 描述

number 成功时，返回添加成功的数量

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let sAddResp = client sAdd "set" "hello". (,);

 console log `redis sAdd ${sAddResp}` // 1. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第490 共531页

Client.sRem
最近更新时间：2024-11-29 11:04:53

sRem 方法用于移除集合中一个或多个成员。

sRem key: string ...members: string | number : number(, ()[])

参数

参数 类型 描述

key string 键名

...members
(string |

number)[]
待删除的成员

返回

类型 描述

number 成功时，返回删除成功的数量

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let sAddResp = client sAdd "set" "hello" "world". (, ,);

 console log `redis sAdd ${sAddResp}` // 2. ();

 let sRemResp = client sRem "set" "hello". (,);

 console log `redis sRem ${sRemResp}` // 1. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第491 共531页

Client.sIsMember
最近更新时间：2024-11-29 11:04:53

sIsMember 方法用于判断 member 元素是否是集合 key 的成员。

sIsMember key: string member: string | number : boolean(,)

参数

参数 类型 描述

key string 键名

member
string |

number
待查询的成员

返回

类型 描述

boolean 存在时返回 true，否则返回 false

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let sAddResp = client sAdd "set" "hello" "world". (, ,);

 console log `redis sAdd ${sAddResp}` // 2. ();

 let sIsMemberResp = client sIsMember "set" "hello". (,);

 console log `redis sIsMember ${sIsMemberResp}` // true. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第492 共531页

Client.sMembers
最近更新时间：2024-11-29 11:04:53

sMembers 方法用于返回集合中的所有成员。

sMembers key: string : string() []

参数

参数 类型 描述

key string 键名

返回

类型 描述

string[] 成功时，返回所有的元素

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let sAddResp = client sAdd "set" "hello" "world". (, ,);

 console log `redis sAdd ${sAddResp}` // 2. ();

 let sMembersResp = client sMembers "set". ();

 console log `redis sMembers ${sMembersResp}` // hello,world. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第493 共531页

Client.sRandMember
最近更新时间：2024-11-29 11:04:53

sRandMember 方法用于随机返回集合中一个元素。

sRandMember key: string : string()

参数

参数 类型 描述

key string 键名

返回

类型 描述

string 成功时，随机返回一个元素

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let sAddResp = client sAdd "set" "hello" "world". (, ,);

 console log `redis sAdd ${sAddResp}` // 2. ();

 let sRandMemberResp = client sRandMember "set". ();

 console log `redis sRandMember ${sRandMemberResp}` // world. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第494 共531页

Client.sPop
最近更新时间：2024-11-29 11:04:53

sPop 方法用于随机移除并返回集合中的一个元素。

sPop key: string : string()

参数

参数 类型 描述

key string 键名

返回

类型 描述

string 成功时，随机删除一个元素并返回

样例

import redis from "pts/redis";

let client = new redis.Client "redis://:<password>@<host>:6379/0"();

export default function main () {

 let sAddResp = client sAdd "set" "hello" "world". (, ,);

 console log `redis sAdd ${sAddResp}` // 2. ();

 let sPopResp = client sPop "set". ();

 console log `redis sPop ${sPopResp}` // world. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第495 共531页

pts/socketio

模块概览
最近更新时间：2024-06-24 11:46:11

JavaScript API 中的 pts/socketio 模块实现了 socketio 相关的功能。

方法

方法 返回类型 描述

﻿

connect(url,

callback, [option])

﻿

﻿

Respons

e

建立 Socket.IO 连接，并在回调函数中定义业务逻辑，执行

完回调函数后，返回 Response 对象。

对象

对象 描述

﻿

Optio

n
使用 connect 方法建立连接时的可选配置项。

﻿

sock

etio

若连接建立成功，创建好的 SocketIO 对象会被传入 callback 回调函数。您可在回调函数里，

定义您的请求逻辑，发送/收取事件消息。

﻿

Resp

onse
执行完回调函数，connect 方法会返回 Response 对象。

样例

// SocketIO API

import socketio from 'pts/socketio';

import check from 'pts'{ } ;

import util from 'pts/util';

export default function () {

 const res = socketio connect 'http://localhost:8080' function

socket

. (,

() {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'message received: '

data

. (, () . (,

));

https://cloud.tencent.com/document/product/248/93062
https://cloud.tencent.com/document/product/248/93062
https://cloud.tencent.com/document/product/248/93071
https://cloud.tencent.com/document/product/248/93071
https://cloud.tencent.com/document/product/248/93063
https://cloud.tencent.com/document/product/248/93063
https://cloud.tencent.com/document/product/248/93065
https://cloud.tencent.com/document/product/248/93065
https://cloud.tencent.com/document/product/248/93071
https://cloud.tencent.com/document/product/248/93071

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第496 共531页

 socket on 'binaryMessage' data => console log 'binaryMessage

received: ' data

. (, () . (

,));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

 socket close. ();

 3000},);

 // 设置定时任务

 socket setTimeout function . (() {

 socket emit 'message' 'hello'. (,);

 socket emit 'binaryMessage' util base64Decoding 'aGVsbG8='

'std' 'b'

. (, . (,

,));

 socket emit 'ackMessage' 'hello ack' function msg . (, , () {

 console log 'ack message received: ' msg. (,)

 })

 500},);

 // 设置定期执行的任务

 socket setInterval function. ((){

 socket emit 'message' 'interval message'. (,);

 500},);

 }, {

 // 支持 polling、websocket 协议

 protocol:'websocket',

 headers: {

 token: 'ZER3XSR',

 }

 });

 check 'status is 200' => res status === 200(, () .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第497 共531页

socketio.connect
最近更新时间：2025-01-03 14:11:02

socketio.connect 根据指定参数建立 socketio 连接，并执行用户定义的逻辑，返回 对象。Response

connect(url: string, callback: (socketIO:) => void,

option?:): ﻿

SocketIO

Option Response

参数

参数 类型 描述

url
stri

ng
请求连接的地址。

callb

ack

fun

ctio

n

回调函数，在完成连接后将 socketio 对象传入该回调函数，用户可以在该函数中定义

请求逻辑。

optio

n

﻿

Opt

ion

可选，配置参数。

返回

类型 描述

﻿Response object，包含 ws.connect 返回的响应结果。

样例

发起 socketio connect 请求。

import socketio from 'pts/socketio';

import check sleep from 'pts'{ , } ;

import util from 'pts/util';

export default function () {

 const res = socketio connect 'http://localhost:8080' function

socket

. (,

() {

 socket on 'open' => console log 'connected'. (, () . ());

https://cloud.tencent.com/document/product/248/93071
https://pts-js-api-1313158848.cos-website.ap-guangzhou.myqcloud.com/docs/interfaces/socketio.SocketIO.html
https://pts-js-api-1313158848.cos-website.ap-guangzhou.myqcloud.com/docs/interfaces/socketio.Option.html
https://pts-js-api-1313158848.cos-website.ap-guangzhou.myqcloud.com/docs/interfaces/socketio.Response.html
https://cloud.tencent.com/document/product/248/93063
https://cloud.tencent.com/document/product/248/93063
https://cloud.tencent.com/document/product/248/93071

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第498 共531页

 socket on 'message' data => console log 'message received: '

data

. (, () . (,

));

 socket on 'binaryMessage' data => console log 'binaryMessage

received: ' data

. (, () . (

,));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket on 'error' e => console log 'error happened'

e error

. (, () . (,

. ()));

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

 socket close. ();

 3000},);

 socket setInterval function . (() {

 socket emit 'message' 'interval message'. (,);

 socket emit 'binaryMessage' util base64Decoding 'aGVsbG8='

'std' 'b'

. (, . (,

,));

 socket emit 'ackMessage' 'ack message' function msg . (, , () {

 console log 'received ackMessage: ' msg. (,)

 })

 500},);

 }, {

 headers: {

 token: 'VR23EQ2R' ,

 },

 protocol: 'webscoket'

 });

 check 'status is 200' => res status === 200(, () .);

};

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第499 共531页

Option
最近更新时间：2024-06-24 11:46:11

Option 是配置参数，对于不同类型的请求可以设置不同的配置。

参数

参数 类型 描述

headers
Record<string,stri

ng>
请求头

protocol string 协议类型，支持 polling/websocket

样例

// SocketIO API

import socketio from 'pts/socketio';

import check sleep from 'pts'{ , } ;

import util from 'pts/util';

export default function () {

 const res = socketio connect 'http://localhost:8080' function

socket

. (,

() {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'message received: '

data

. (, () . (,

));

 socket on 'binaryMessage' data => console log 'binaryMessage

received: ' data

. (, () . (

,));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

 socket close. ();

 3000},);

 // 设置定时任务

 socket setTimeout function . (() {

 socket emit 'message' 'hello'. (,);

 socket emit 'binaryMessage' util base64Decoding 'aGVsbG8='

'std' 'b'

. (, . (,

,));

 socket emit 'ackMessage' 'hello ack' function msg . (, , () {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第500 共531页

 console log 'ack message received: ' msg. (,)

 })

 500},);

 // 设置定期执行的任务

 socket setInterval function. ((){

 socket emit 'message' 'interval message'. (,);

 500},);

 // 设置循环执行任务，socket/context 关闭自然退出

 socket setLoop function . (() {

 sleep 0.1();

 socket emit 'message' 'loop message'. (,);

 });

 }, {

 // 支持 polling、websocket 协议

 protocol:'websocket',

 headers: {

 token: 'xxx',

 }

 });

 check 'status is 200' => res status === 200(, () .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第501 共531页

socketio

socketio.close
最近更新时间：2024-10-22 14:10:21

socketio.close 用于关闭连接。

close : void()

返回

类型 描述

void 无返回内容

样例

// SocketIO API

import socketio from 'pts/socketio';

import check sleep from 'pts'{ , } ;

import util from 'pts/util';

export default function () {

 const res = socketio connect 'http://localhost:8080' function

socket

. (,

() {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'message received: '

data

. (, () . (,

));

 socket on 'binaryMessage' data => console log 'binaryMessage

received: ' data

. (, () . (

,));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

 socket close. ();

 3000},);

 // 设置定时任务

 socket setTimeout function . (() {

 socket emit 'message' 'hello'. (,);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第502 共531页

 socket emit 'binaryMessage' util base64Decoding 'aGVsbG8='

'std' 'b'

. (, . (,

,));

 socket emit 'ackMessage' 'hello ack' function msg . (, , () {

 console log 'ack message received: ' msg. (,)

 })

 500},);

 // 设置定期执行的任务

 socket setInterval function. ((){

 socket emit 'message' 'interval message'. (,);

 500},);

 // 设置循环执行任务，socket/context 关闭自然退出

 socket setLoop function . (() {

 sleep 0.1();

 socket emit 'message' 'loop message'. (,);

 });

 }, {

 // 支持 polling、websocket 协议

 protocol:'websocket',

 headers: {

 token: 'xxx',

 }

 });

 check 'status is 200' => res status === 200(, () .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第503 共531页

socketio.emit
最近更新时间：2024-06-24 11:46:11

socketio.emit 发送文本/二进制消息。

emit event: string msg: any callback?: ...args: any[] => void : void(, , ())

参数

参数 类型 描述

event string 事件

msg any 文本内容/二进制文件

callback function 可选，回调函数

返回

类型 描述

void 无返回内容

样例

// SocketIO API

import socketio from 'pts/socketio';

import check sleep from 'pts'{ , } ;

import util from 'pts/util';

export default function () {

 const res = socketio connect 'http://localhost:8080' function

socket

. (,

() {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'message received: '

data

. (, () . (,

));

 socket on 'binaryMessage' data => console log 'binaryMessage

received: ' data

. (, () . (

,));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket setTimeout function . (() {

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第504 共531页

 console log '3 seconds passed, closing the socket'. ();

 socket close. ();

 3000},);

 // 设置定时任务

 socket setTimeout function . (() {

 socket emit 'message' 'hello'. (,);

 socket emit 'binaryMessage' util base64Decoding 'aGVsbG8='

'std' 'b'

. (, . (,

,));

 socket emit 'ackMessage' 'hello ack' function msg . (, , () {

 console log 'ack message received: ' msg. (,)

 })

 500},);

 // 设置定期执行的任务

 socket setInterval function. ((){

 socket emit 'message' 'interval message'. (,);

 500},);

 // 设置循环执行任务，socket/context 关闭自然退出

 socket setLoop function . (() {

 sleep 0.1();

 socket emit 'message' 'loop message'. (,);

 });

 }, {

 // 支持 polling、websocket 协议

 protocol:'websocket',

 headers: {

 token: 'xxx',

 }

 });

 check 'status is 200' => res status === 200(, () .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第505 共531页

socketio.on
最近更新时间：2024-10-21 22:06:01

socketio.on 监听消息事件。

on event: string callback: ...args: any[] => void : void(, ())

参数

参数 类型 描述

event string 事件

callback function 回调函数

返回

类型 描述

void 无返回内容

样例

// SocketIO API

import socketio from 'pts/socketio';

import check sleep from 'pts'{ , } ;

import util from 'pts/util';

export default function () {

 const res = socketio connect 'http://localhost:8080' function

socket

. (,

() {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'message received: '

data

. (, () . (,

));

 socket on 'binaryMessage' data => console log 'binaryMessage

received: ' data

. (, () . (

,));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第506 共531页

 socket close. ();

 3000},);

 // 设置定时任务

 socket setTimeout function . (() {

 socket emit 'message' 'hello'. (,);

 socket emit 'binaryMessage' util base64Decoding 'aGVsbG8='

'std' 'b'

. (, . (,

,));

 socket emit 'ackMessage' 'hello ack' function msg . (, , () {

 console log 'ack message received: ' msg. (,)

 })

 500},);

 // 设置定期执行的任务

 socket setInterval function. ((){

 socket emit 'message' 'interval message'. (,);

 500},);

 // 设置循环执行任务，socket/context 关闭自然退出

 socket setLoop function . (() {

 sleep 0.1();

 socket emit 'message' 'loop message'. (,);

 });

 }, {

 // 支持 polling、websocket 协议

 protocol:'websocket',

 headers: {

 token: 'xxx',

 }

 });

 check 'status is 200' => res status === 200(, () .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第507 共531页

socketio.setInterval
最近更新时间：2024-10-22 14:10:22

socketio.setInterval 设置轮询函数。

setInterval callback: => void intervalMs: number : void(() ,)

参数

参数 类型 描述

callback function 回调函数

intervalMs number 设置时间，单位毫秒

返回

类型 描述

void 无返回内容

样例

// SocketIO API

import socketio from 'pts/socketio';

import check sleep from 'pts'{ , } ;

import util from 'pts/util';

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第508 共531页

socketio.setLoop
最近更新时间：2024-06-24 17:37:21

socketio.setLoop 循环执行函数。

setLoop callback: => void : void(())

参数

参数 类型 描述

callback function 回调函数

返回

类型 描述

void 无返回内容

样例

// SocketIO API

import socketio from 'pts/socketio';

import check from 'pts'{ } ;

import util from 'pts/util';

export default function () {

 const res = socketio connect 'http://localhost:8080' function

socket

. (,

() {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'message received: '

data

. (, () . (,

));

 socket on 'binaryMessage' data => console log 'binaryMessage

received: ' data

. (, () . (

,));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

 socket close. ();

 3000},);

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第509 共531页

 // 设置定时任务

 socket setTimeout function . (() {

 socket emit 'message' 'hello'. (,);

 socket emit 'binaryMessage' util base64Decoding 'aGVsbG8='

'std' 'b'

. (, . (,

,));

 socket emit 'ackMessage' 'hello ack' function msg . (, , () {

 console log 'ack message received: ' msg. (,)

 })

 500},);

 // 设置定期执行的任务

 socket setInterval function. ((){

 socket emit 'message' 'interval message'. (,);

 500},);

 }, {

 // 支持 polling、websocket 协议

 protocol:'websocket',

 headers: {

 token: 'ZER3XSR',

 }

 });

 check 'status is 200' => res status === 200(, () .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第510 共531页

socketio.setTimeout
最近更新时间：2024-10-22 14:10:22

socketio.setTimeout 设置定时函数。

setTimeout callback: => void intervalMs: number : void(() ,)

参数

参数 类型 描述

callback function 回调函数

intervalMs number 设置时间，单位毫秒

返回

类型 描述

void 无返回内容

样例

// SocketIO API

import socketio from 'pts/socketio';

import check sleep from 'pts'{ , } ;

import util from 'pts/util';

export default function () {

 const res = socketio connect 'http://localhost:8080' function

socket

. (,

() {

 socket on 'open' => console log 'connected'. (, () . ());

 socket on 'message' data => console log 'message received: '

data

. (, () . (,

));

 socket on 'binaryMessage' data => console log 'binaryMessage

received: ' data

. (, () . (

,));

 socket on 'close' => console log 'disconnected'. (, () . ());

 socket setTimeout function . (() {

 console log '3 seconds passed, closing the socket'. ();

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第511 共531页

 socket close. ();

 3000},);

 // 设置定时任务

 socket setTimeout function . (() {

 socket emit 'message' 'hello'. (,);

 socket emit 'binaryMessage' util base64Decoding 'aGVsbG8='

'std' 'b'

. (, . (,

,));

 socket emit 'ackMessage' 'hello ack' function msg . (, , () {

 console log 'ack message received: ' msg. (,)

 })

 500},);

 // 设置定期执行的任务

 socket setInterval function. ((){

 socket emit 'message' 'interval message'. (,);

 500},);

 // 设置循环执行任务，socket/context 关闭自然退出

 socket setLoop function . (() {

 sleep 0.1();

 socket emit 'message' 'loop message'. (,);

 });

 }, {

 // 支持 polling、websocket 协议

 protocol:'websocket',

 headers: {

 token: 'xxx',

 }

 });

 check 'status is 200' => res status === 200(, () .);

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第512 共531页

Response
最近更新时间：2024-10-22 14:10:22

socketio 是 返回的响应结果。socketio.connect

字段

字段 类型 描述

body string 响应包体内容

headers Record<string, string> 响应头参数

status number 状态码

url string 请求地址

https://cloud.tencent.com/document/product/248/93062

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第513 共531页

pts/socket

模块概览
最近更新时间：2024-10-22 14:10:22

JavaScript API 中的 pts/socket 模块用于建立 Socket 实例，然后通过该实例发送或接收 TCP/UDP 数据。

对象

对象 描述

﻿Conn Socket 实例

https://cloud.tencent.com/document/product/1484/90603

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第514 共531页

conn

Conn 概览
最近更新时间：2025-01-03 14:11:03

通过 new socket.Conn 方法，您可以创建一个 Socket 实例。该方法的参数为协议名（ tcp 或 udp ）、服

务地址、服务端口。

构造函数

new Conn : Conn()

参数

参数 类型 描述

network string
用于建立连接的协议名（tcp 或

udp）

host string 服务的 IP 地址

port number 服务的端口

方法

方法 返回类型 描述

﻿send() number 发送请求数据

﻿recv() ArrayBuffer 接收响应数据

﻿close() void 关闭连接

样例

建立 socket 连接发起 tcp/udp 请求。

import socket from "pts/socket";

import util from 'pts/util';

import sleep from 'pts'{ } ;

export default function () {

https://cloud.tencent.com/document/product/248/93076
https://cloud.tencent.com/document/product/248/93077
https://cloud.tencent.com/document/product/248/93078

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第515 共531页

 const tcp_socket = new socket.Conn 'tcp' '127.0.0.1' 80(, ,);

 const send_data = `GET /get HTTP/1.1

Host: 127.0.0.1

User-Agent: pts-engine

\r\n`;

 tcp_socket send util toArrayBuffer send_data. (. ());

 const bytes_read = tcp_socket recv 512. ();

 tcp_socket close. ();

 console log bytes_read. ();

 sleep 1();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第516 共531页

Conn.send
最近更新时间：2024-10-22 14:10:22

send 方法用于发送请求数据。

send b: ArrayBuffer : number()

参数

参数 类型 描述

b
ArrayBuffe

r
待发送的二进制数据

返回

类型 描述

number 发送的字节数

样例

发送请求数据：

import socket from "pts/socket";

import util from 'pts/util';

export default function () {

 const tcp_socket = new socket.Conn 'tcp' '127.0.0.1' 80(, ,);

 const data = `GET /get HTTP/1.1

Host: 127.0.0.1

\n`;

 const sent_bytes = tcp_socket send util toArrayBuffer data. (. ());

 console log sent_bytes // 35. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第517 共531页

Conn.recv
最近更新时间：2024-10-22 14:10:22

recv 用于接收数据。

recv size: number : ArrayBuffer()

参数

参数 类型 描述

size number 可接收的最大字节数限制

返回

类型 描述

ArrayBuffer 接收到的二进制数据

样例

接收请求的响应数据：

import socket from "pts/socket";

import util from 'pts/util';

export default function () {

 const tcp_socket = new socket.Conn 'tcp' '127.0.0.1' 80(, ,);

 const send_data = `GET /get HTTP/1.1

Host: 127.0.0.1

\n`;

 tcp_socket send util toArrayBuffer send_data . (. ());

 tcp_socket recv 512. ();

 tcp_socket close. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第518 共531页

Conn.close
最近更新时间：2024-06-19 11:04:52

close 用于关闭连接。

close : void()

返回

类型 描述

void 无返回内容

样例

关闭连接：

import socket from "pts/socket";

import util from 'pts/util';

export default function () {

 const tcp_socket = new socket.Conn 'tcp' '127.0.0.1' 80(, ,);

 const send_data = `GET /get HTTP/1.1

Host: 127.0.0.1

\n`;

 tcp_socket send util toArrayBuffer send_data . (. ());

 tcp_socket recv 512. ();

 tcp_socket close. ();

}

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第519 共531页

常见问题
最近更新时间：2024-11-01 14:55:01

常用术语

VU（并发用户数）

VU（Virtual User）：虚拟用户数。用来模拟真实场景中，在同时执行操作的用户数量，所以也叫“并发用户

数”。

VU 代表了施压端向被压端施压的能力。

压测系统通常用一个线程实现一个 VU，每个 VU 重复执行压测脚本。因此，当多线程/多 VU 并发时，就能模

拟真实场景中，多个用户同时执行操作的情形。

每个 VU 执行脚本的次数：一般靠压测时长和迭代次数来规定，任一参数达到上限即停止。例如：压测时长为 1

小时，则每个 VU 在1小时内持续反复执行脚本，直到1小时结束。（在 PTS 里，支持配置时长，暂不支持配置

迭代次数。）

VU 跟真实用户的区别：一个 VU 执行完一次脚本，会继续重复执行。其关注点不在于代表某个固定的真实用

户，而在于跟其他 VU 一起，在每个时刻模拟出足够的并发用户数量。也即，施压端会按照施压配置，在相应的

时刻，保证满足所配置的 VU 数量、对被压端产生足够压力。

VU 跟在线用户的区别：在线用户不一定在做操作；而 VU 一定在做脚本里的相关操作，持续不断地给被压端造

成压力。

在 PTS 中，VU 的数值是在场景的施压配置中提前设置好的。

并发模式下：直接设置 VU，可按时间梯度递增。

RPS 模式下：1 个压测资源 = 500VU。

RT（响应时间）

从客户端发出请求，到客户端完全接收服务器响应的时间消耗。

为了衡量 RT 指标，施压端会采集一个时间窗口内的所有请求从发出到收到响应的耗时，再聚合计算这批数据，得

到多种维度的特征值，例如：平均值、最大值、最小值、分位值（50/90/95/99 百分位）。

在 PTS 压测报告中：

概览里的响应时间，是以压测任务的整个时长为时间窗口、以平均值为特征值，计算整个压测任务期间所有请求

的平均响应时间。

各个实时曲线里的响应时间，是以一个很小的时间窗口随着时间轴移动、以平均值为特征值，模拟计算压测任务

期间的各个时刻，实时的平均响应时间。

RPS（每秒请求数）

RPS（Requests per Second），每秒请求数，也叫“吞吐量”。在 PTS 中，有两处用到了 RPS：

施压配置 > RPS 模式下的调速参数，用于配置 PTS 每秒发出请求的上限；

压测报告里的 RPS 性能指标，用于体现 PTS 收到服务端响应的速度。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第520 共531页

详细解释如下：

在绝大多数情况下，压测领域的 RPS 是指收响应的速度，用作性能指标。（若将“发请求+收响应”定义为一

个“事务”，则也可将该指标称作 TPS/Transaction Per Second/每秒事务数。）

在施压端统计每秒收到响应的请求数，来反映被压系统的处理能力。

每秒响应结束的请求数，包括施压端作为客户端正常收到服务端响应的请求、以及主动结束的请求。

在 PTS 中，您可观察压测报告里的 RPS 指标，得知 RPS 的概览值和实时值：

概览里的 RPS，是以压测任务的整个时长为时间窗口，计算整个压测任务期间的 RPS。

各个实时曲线里的 RPS，是以一个很小的时间窗口随着时间轴移动，模拟计算压测任务期间的各个时

刻，实时的 RPS。

RPS 的值跟 VU 和 RT 密切相关，详见下文对三者关系的描述。

在 PTS 中，除了上述反映被压系统处理能力的 RPS 指标，还存在一个控制施压端每秒发出请求数的 RPS 调

速参数。

在 RPS 模式的施压配置中，起始 RPS/最大 RPS/动态调速 RPS，都属于 RPS 调速参数。

PTS 实现该 RPS 调速参数的方式，是在发请求时配置了限流。所以该参数本质上是每秒发出请求数的上

限。

在配置 RPS 调速参数时，PTS 会自动调整压测资源数（1 压测资源 = 500 VU），来保证施压端有能力在

每秒发出足够的请求。

受限于被压系统的处理能力是否平稳、网络状况是否平稳、带宽资源是否充足等条件，客户端发请求的速度上限，不

一定等于客户端收到服务端响应的速度。因此，施压时配置的 RPS 调速参数，不一定等于呈现在压测报告里的

RPS 性能指标。

VU、RPS、RT 的关系

VU = RPS × RT（也即：并发数 = 吞吐量 × 响应时间）

此公式基于 Little 定律得出。Little 定律的完整表述是：在系统的稳定状态下（尚未达到系统资源过载的拐点、响

应时间基本稳定、到达系统的 RPS = 离开系统的 RPS），系统中平均同时服务的用户数量 = 用户请求到达系统的

速度 × 每个用户请求平均在系统中等待的时间。

例如：假设系统某接口的响应时间为100ms，那么在 1 秒内，施压端的 1 个 VU 能连发10个请求并获得响应，反

映了被压端的系统吞吐量是10个请求每秒（RPS 为 10）；那么，当同时做操作的用户数翻了100倍，也即100个

VU 同时并发施压，如果被压接口的响应耗时仍为100ms，则在 1 秒内，每个 VU 都能发送10次请求并获得响应，

反映了被压端在 1 秒内处理了 1000 个请求，也即 RPS 达到 1000。

以上换算建立在被压系统表现稳定、响应时间保持不变的理想状况下。然而实际上，随着并发数增大、系统负载升

高，被压接口的响应时间不一定能保持在100 ms，而可能呈现以下的增大趋势：

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第521 共531页

1. 刚开始为 “线性增长区”，此时响应时间（RT）基本稳定，吞吐量（RPS）随着并发用户数（VU）的增加而

增加，三者关系符合 Little 定律：VU = RPS × RT。

2. 随着 VU 增大、系统的资源利用率饱和，系统到达 “拐点”，若继续增大 VU，响应时间开始增大，RPS 开始

下降。

3. 继续增加 VU，系统超负荷、进入过饱和区，此时响应时间急剧增大、RPS 急剧下降。

失败率

一批请求中结果出错的请求所占比例，以校验响应结果是否符合期望。（不同系统对错误率的要求不同，但一般不超

出千分之六，即成功率不低于99.4%。）

PTS 通过统计一批请求中失败响应码所占比例，来计算请求失败率。响应码大于或等于 400，视为请求失败。

（其中包含 PTS 端认为被压端不可达而主动取消请求的情况，相关响应码详见 。）错误代码手册

请求失败率不包含检查点断言失败的情况（检查点情况参见检查点明细）。

在 PTS 压测报告中：

概览里的失败率，是以压测任务的整个时长为时间窗口，计算整个压测任务期间所有请求的失败率。

各个实时曲线里的失败率，是以一个很小的时间窗口随着时间轴移动，模拟计算压测任务期间的各个时刻，实时

的失败率。

常见问题

PTS 调试失败/没有日志，如何去定位问题？

PTS 提供了全面的日志定位手段，分别为引擎日志/用户日志/请求日志，主要有三个阶段：

引擎日志：JavaScript 脚本编写出现语法错误、空指针错误等问题，导致引擎解析脚本失败，可以按照日志提

示的报错点进行修复。

https://cloud.tencent.com/document/product/1484/82578

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第522 共531页

请求日志：已经产生网络 I/O 请求，对应请求包已经发到服务端，但服务端解析失败。可以根据请求采样中、或

调试功能中的请求/响应包体的详细信息，定位哪个协议字段存在问题。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第523 共531页

用户日志：您在脚本中通过 console.log 打印相关变量，可以在用户日志中查看，调试相关变量的结构体/返回

值定义。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第524 共531页

测试报表会在云压测中保存多久？

测试报表包含指标数据及日志数据，默认保留45天，45天后将自动清理过期数据。在过期前，用户可下载测试报

表，在本地进行保存。用户也可将测试报表设置为基线报表，基线报表将永久保存。

如何保护被压端服务，防止被压端服务异常影响业务可用性？

当被压端服务异常时，通过实时测试报表，您可以看到请求 RT 变高，甚至出现请求失败。

为了防止服务异常，您可以在测试场景编排中，设置被压服务 SLA（服务可用性指标），例如：限制响应

RT<100ms，请求失败率<0.1%。当压测指标触发被压服务 SLA 水位线时，可通过告警通知到您，也可根据设置

自动停止压测任务。

另外为避免服务异常，也建议您：

设置合理的压力模型。

将起步压力设置较低，通过梯度模型或者手动逐步调高压力，观察服务整体可用性。

PTS 支持 JMeter 压测吗？

用户只需要在场景编排中导入 jmx 文件，即可以原生方式运行 JMeter 压测。PTS 支持以分布式方式运行

JMeter 引擎，提供便捷的横向扩容能力和实时测试报表。

HTTP 服务请求失败率高，返回大量的 net/http: request canceled 错误信息？

在压测报告可以看到详细的错误率，用户可以在采样日志看具体的耗时分布，如果是服务端返回超时，可自定义配置

全局 option http timeout 参数，默认为 10s。

export const option = {

 http: {

 // 单位ms

 timeout: 10000,

 }

}

HTTP 请求出现 x509: cannot validate certificate 返回错误？

支持两种解决方案：

全局配置参数 insecureSkipVerify:true

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第525 共531页

export const option =

 tlsConfig:

 'localhost':

 insecureSkipVerify: true

{

{

{

}

}

}

上传单独 TLS 证书

这种方法是将服务器返回的 TLS 证书上传至压测工具中，并在发送 HTTP 请求时指定证书路径，从而避免证书验

证失败。这种方法相对更加安全，但需要手动上传证书文件。在使用腾讯云云压测时，可以按照以下步骤上传证书文

件：

1. 登录 。腾讯云可观测平台

2. 在左侧菜单栏中单击云压测 > 测试场景。

3. 在项目列表中单击新建场景 > 简单模式。

4. 在项目列表页单击文件管理 > 请求文件 > 上传文件。

https://console.cloud.tencent.com/monitor

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第526 共531页

5. 上传 TLS 证书 ，如下示例：

例如，在使用 JMeter 进行压测时，可以在 HTTP 请求中设置 sslManager 属性，指定证书路径：

比如上传了根域名证书：ca crt 客户端证书：client crt，客户端key: client key

export const option =

 tlsConfig:

 'localhost':

 insecureSkipVerify: false

 rootCAs: open 'ca.crt'

 certificates:

 cert: open 'client.crt'

 key: open 'client.key'

. , . .

{

{

{

,

[()],

[

{

(),

()

}

],

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第527 共531页

 serverName: "xxx.com"

}

}

}

注意：

上传证书文件需要一定的时间进行审核和生效，因此在上传证书后可能需要等待一段时间才能使用。

PTS 支持哪些扩展方法，具体的参数定义去哪里查看？

，包括 HTTP、WebSocket 等常用协议。PTS 脚本示例

。JavaScript API 列表概述

，包括随机数/base64 编解码/math 函数等。PTS 常用工具函数

PTS 支持完整 ES6 语法，还支持 （如 crypto.js 这种 PTS 暂时没有集成的能力）。第三方包引用

PTS 如何从测试文件读取数据？

PTS 支持 dataset 读取测试数据，用户在压测场景完成文件上传，引擎会解析 csv 文件并按行轮询进行读取，具

体的语法如下：

import dataset from 'pts/dataset';

export default function () {

 const value = dataset get "MyKey". ()

 //@ts-ignore 忽略校验

 const postResponse = http post "http://httpbin.org/post" data:

value

. (, {

});

 console log postResponse. ()

};

说明

详细使用指引： 。使用参数文件

PTS 报表显示 VU = 0，或者跟施压配置的值对应不上？

VU=0：PTS 报表显示请求的 VU（并发用户数） 为瞬时指标，当处于任务结束时，其瞬时值有可能为 0。

跟施压配置的值对应不上：由于大部分用户设置的是梯度发压模型，VU 值会随时间梯度变化，其瞬时值应以图表显

示的 VU 曲线变化为准。

https://cloud.tencent.com/document/product/248/87320
https://cloud.tencent.com/document/product/248/87322
https://cloud.tencent.com/document/product/248/87330
https://cloud.tencent.com/document/product/248/87340

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第528 共531页

导入的 csv 出现乱码，如何解决？

含中文的 csv 导入后乱码的问题：

因为 Windows 默认导出的 csv 使用的是 GBK 编码，并且旧版本的 Excel 2016 前会不保存 Bom (byte

order mark)。

解决方法：将 csv 导出为 utf-8 格式：

Windows 可以使用记事本打开 csv 文件后，另存为 utf-8 格式。

Mac 上使用 iconv -f GBK -t UTF-8 xxx.csv > utf-8.csv 。

状态码 999 是什么错误，如何排查？

施压端没能从被压服务端得到有效的 HTTP 响应状态码，则会将状态码置为 999 Unknown。这些请求会被视为

错误请求，计入压测报告的错误率。

错误原因可能是请求本身的协议/地址等有误，或者是网络原因、服务端的 DNS/防火墙/SSL 证书/超时断连等原

因，导致服务不可达。

如需排查，可参考请求采样里的错误信息、施压机日志里的报错信息，还可使用调试模式调试请求。

常见原因如下：

施压端没能正常发出请求。

请求采样里的报错信息： Error net/http: request canceled while waiting for connectio

n 。可能的原因：

施压端到被压端服务端口之间的网络不通。

被压端服务的 DNS/防火墙/SSL 证书等配置错误。

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第529 共531页

施压端已正常发出请求，但没能在超时时间内获得有效的响应状态码。

例如，目前 HTTP 协议默认 10 秒钟超时，可观察压测报告里的响应时间是否已超过 10 秒、请求采样里的

错误信息是否为 Error net/http: request canceled 。若确实是超时导致，可排查为何被压服务响

应慢、优化其处理请求的能力。

若需调大 HTTP 超时时间，可在脚本模式下配置，详见： 。配置选项

压测任务结束释放资源时，若有部分请求尚未完成，则会被施压端自动取消掉，此时请求采样里的报错信息为：

Error

context deadline exceeded 。

调试模式下，为什么我的请求只执行了一部分？

PTS 在调试模式下，压测引擎最多执行10秒，之后会自动退出。

如果您场景里编排的请求无法在10秒内全部完成，则会表现为只执行了部分请求。

建议直接以较小的 VU 数运行压测任务，来代替调试模式，避免其10秒无法执行全部请求的问题。

压测结束时，概览里的并发数（VUs）为什么突然下降了？

压测运行时，在报告页的概览栏里，并发数（VUs）的数值是实时值，与图表里代表并发数的蓝色梯度线在每个时

刻的值是一致的。

压测结束时，PTS 会将资源回收，所以实时 VU 可能表现为瞬间下降，这是符合预期的正常行为。

您可参考图表里的蓝色线，观察并发数（VUs）随时间轴的变化，可以发现它是在将您配置的梯度发压如期完成

后，在压测结束时刻才下降的。

采样日志的采样策略是什么样的，采样比例是多少？

PTS 使用首次采样与比例采样结合的方法来对用户请求进行采样。

https://cloud.tencent.com/document/product/248/87325

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第530 共531页

首次采样策略

我们将请求[service, method, status, result] 四个维度组合起来作为请求特征， 如果一组请求特征没有被

记录过，那么这样的请求会被采样记录下来。

比例采样策略

按千分之一的比例采样用户请求。首次采样策略命中的请求不计入该比例中。比例采样策略简化后：采样第1个请

求，采样第1001个请求，以此类推。

以压测 http get 请求 https://mockhttpbin.pts.svc.cluster.local/get 请求为例:

第1个请求状态码返回200， 请求特征["https://mockhttpbin.pts.svc.cluster.local/get", "get", "200",

"ok"]，这个特征首次出现，请求将被采样。

第2个请求返回status 200，比例采样策略命中该请求，该请求被记录下来。

第10个请求时候，出现了500错误，请求特征["https://mockhttpbin.pts.svc.cluster.local/get", "get",

"500", "internal error"]，首次采样策略观测到这是首次出现的特征，该请求也会被采样。

第1002个请求返回 status 200，比例采样策略命中该请求，该请求也被记录下来。

报告中服务明细内出现 tooManyService 是什么意思，该如何处理？

PTS 压测报告的服务明细中，默认将每个 URL 归类为一个“服务 service”，展示压测期间发送的所有请求的明

细信息。如果 URL 数量较多，控制台仅展示 64 个不同的服务 service，更多的会以 tooManyService 标签汇

总起来。

服务 service 数量过大，不对 URL 进行分类，对于报告的解读和分析有不利的影响；因此，把同一类的请求

service 汇总起来，对于统计分析具有较大的帮助。通过设置请求中 Request 的 service 字段，可以把同一类的

请求分到同一个服务明细的展示行里面；如何配置，可以参考 。Request

// Send a http get request

import http from 'pts/http';

import check sleep from 'pts'{ , } ;

export default function () {

 const resp1 = http get "http://mockhttpbin.pts.svc.cluster.local/get" . (,

{

腾讯云可观测平台

版权所有：腾讯云计算（北京）有限责任公司 第531 共531页

 service: "url-1",

 });

 const resp2 =

http post "http://mockhttpbin.pts.svc.cluster.local/post" "" . (, , {

 service: "url-2",

 });

}

PTS 使用的是同步压测还是异步压测？为什么？

PTS 使用的是同步压测，即 PTS 的一个 VU（并发用户）会在发送请求后等待响应，直到接收到响应后才会发送

下一个请求。

而异步压测是指一个 VU（并发用户）会在发送一个请求后，立即继续发送下一个请求，而不等待前一个请求的响

应。

同步压测具有以下优点：

简单易懂；

更接近真实用户的行为（用户通常会等待请求的响应）；

易于调试（由于每个请求都是顺序执行的，调试和分析问题相对容易）。

异步压测缺点：

实现和调试相对复杂；

单个 VU（并发用户）可能占用过多资源；

无法准确模拟真实用户的行为（尤其是在用户需要等待响应的场景中）。

综上，PTS 平台选择同步压测的方式，以更好地模拟真实用户的行为。

