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Abstract

Local electricity markets (LEMs) are a promising approach to integrate flexible ap-
pliances into electricity systems and manage system constraints on the distribution
level. In this article, we suggest an approach to derive bidding functions for time-
interdependent electricity-based services and use our framework to analyze the welfare
implications of an LEM. Previous work has left such bidding functions undefined which
are, however, an important bridge between customer preferences and technology in a
smart grid. Furthermore, while welfare analyses exist for the transmission level, we
are not aware of equivalent studies for residential distribution systems. We specify a
bidding function for Heating, Ventilation, and Air Conditioning (HVAC) systems — a
major load in residential distribution systems — and pursue a case study of 437 houses.
We find that, over a year, the introduction of an LEM can realize welfare gains of more
than 17,000 USD. These benefits are largely driven by savings in energy procurement
costs during a few weeks. Moreover, all houses contribute to this gain and houses which
contribute more benefit over-proportionally. Furthermore, LEMs can contribute to the
management of constrained systems. We derive the marginal value of investment and
show that optimal grid expansion is less than under a fixed retail tariff. Our results
demonstrate that LEMs can provide system benefits, however, important design ques-

tions remain open, for instance who should incorporate the role of an LEM operator.
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1 Introduction

With the ongoing deployment of variable renewable energy resources such as solar or wind
energy and new flexible loads such as heat pumps, electric vehicles, or residential battery
storage, today’s electricity systems are becoming increasingly decentralized and volatile.
Given this development, it is discussed if the current hierarchical and centralized structure
of power markets is still suitable [e.g. [Parag and Sovacool, [2016, Gramlich and Hogan, 2019].
As an alternative, local electricity markets (LEMs) have been proposed. Following Weinhardt
et al.| [2019], we ‘define LEMs as market platforms for trading locally generated (renewable)
energy among residential agents within a geographic and social community. Supply security
is ensured through connections to a superimposed electricity system (e. g. superimposed
grid or adjacent LEMs).” While the direct integration of consumers or even appliances in
wholesale markets would be very complex, LEMs cover a smaller part of the power system
and could be able to locally coordinate customers, prosumers, and generators at reduced
transaction costs and leverage their flexibility according to the spatial and temporal scarcities
present [e.g. [Rosen and Madlener], 2016|, |(Gramlich and Hogan, 2019, Kiesling et al|2019]. In
practice, LEMs could be operated by (local) integrated utilities or cooperatives, community
choice aggregators, distribution system operators, or a third party provider.

Like other approaches for demand-side management, LEMs can provide a variety of
benefits |Strbac, 2008|. First, by propagating real-time costs of energy supply to partic-
ipating appliances, LEMs can help to incentivize efficient dispatch and increase customer
welfare [Borenstein and Holland|, [2005, Borenstein, 2007]. Second, unlike pure real-time
prices, LEMs can help to manage congestion by reflecting the local value of electricity supply
[Hammerstrom), [2007, Widergren et al., 2014]. Local congestion is becoming more relevant as
generation and new flexible loads are increasingly deployed on the distribution level [Strbac],
2008]. Third, recent research has demonstrated that customers experience additional value
from local and/or renewable energy |Tabi et al. [2014] |[Ecker et al.; 2018, Mengelkamp et al.|

2018c, |Ableitner et al.| 2020]. LEMs provide customers with the possibility to access these



qualities, express preferences through bidding, and directly engage in the energy transition.
Fourth, LEMs can help to operate local electricity systems even when they are disconnected
from the public grid, e.g. as a result of natural disaster. In that case, LEMs increase the
resiliency of the system and avoid lost load [e.g. Khodaei, 2014, Moslehi and Kumar} 2019].
Furthermore, the efficient short-term dispatch of resources enables long-term efficiency of the
power system, e.g. through investment in appropriate generation capacity [e.g. Borenstein),
2007) or flexibilization of residential load [e.g. |Comello and Reichelstein) 2019].

Despite these benefits, real-world LEMs have hardly exceeded the piloting stage [e.g.
Weinhardt et al., 2019]. The reasons are manifold and include the unclear implications
on residential customers [Widergren et al [2017], the distribuion of benefits between them
[Burger et al.; 2019], unresolved operational challenges |Parag and Sovacool, |2016], or the
need for a comprehensive market design framework [Parag and Sovacool,2016], among others.
Furthermore, it is unclear how customers should participate in such markets. Automation has
been recognized as key to accessing demand flexibility [Faruqui and Sergici, [2010], however,
it is unclear how customer preferences could automatically be represented in such a market.
A major challenge is that customers usually have a preference towards the service provided
by the appliance but not the electricity consumption itself.

In this article, we contribute to these open questions by, first, suggesting an approach
to derive bidding functions for time-interdependent electricity-based services and, second,
analyze the implications of LEM operations for the system, customers, as well as the utility.
Specifically, we use an intertemporal optimization approach to derive a bidding function
and specify it for HVAC systems, a major load in residential systems. Previous work has
used bids which did not reflect the opportunity cost of intertemporal dispatch [e.g. Ableitner
et al., 2020, reduced optimal dispatch to a scheduling problem [Lin et al., [2015, [Vrettos
and Andersson, 2016, or approached it in a simplistic way [Hammerstrom, 2007, Widergren
et al., 2014], without explicitly addressing the trade-off between comfort and cost. Second,

we use our framework to perform an extensive case study and analyze the impacts of the



introduction of an LEM in a residential system. We find that substantial welfare gains can
be realized through energy procurement cost savings. However, they are driven by a few
weeks during the year and are not equally distributed among customers. Customers with
high utility bills under a fixed retail rate benefit the most. These customers can largely be
characterized by large houses and their savings are over-proportional as compared to the
actual welfare gains they provide to the system. Furthermore, LEMs can help to manage
system constraints and, therefore, provide value beyond the mere introduction of real-time
prices. We find that the marginal value of grid investment is non-monotonously decreasing
and less than under a fixed retail rate which indicates that optimal grid investment can be
reduced by the deployment of an LEM. While tools exist to evaluate the cost and benefits
of investments on the transmission or wholesale level [e.g. [CAISO)|, 2017, [ENTSO-E| [201§],
to the best of our knowledge, no such framework for the analysis of welfare effects exists for
residential systems. However, with the growing relevance of distribution systems and the
increasing prevalence of smart home devices, such tools will be needed to efficiently address
local operations and planning problems.

Our work has promising implications for policy makers and management. First, LEMs
enable the integration of flexible appliances into electricity markets. Dispatching flexible
loads through an LEM increases customer welfare and enables the management of a capac-
ity constraint. These benefits, however, are largely driven by a few days or weeks within
a year. Second, while savings can be substantial, they depend on the local system charac-
teristics. For instance, welfare changes can be small if wholesale market prices are largely
constant. Therefore, benefits need to be accessed and compared to applicable costs such as
the deployment of a suitable information and communication system. Third, the institu-
tional framework for LEMs has to be clarified and the rules of LEMs need to be detailed.
Importantly, it needs to be clarified which stakeholder would be able to operate an LEM
to avoid adverse incentives. Other open questions are how balancing is organized and how

unresponsive loads are integrated in the system. Finally, LEMs and automated dispatch can



provide opportunities for innovative business models. Suitable bidding functions provide a
mapping between customer preferences and electricity prices and are key to the automated
dispatch of devices. Furthermore, LEMs can be open to new stakeholders, for instance load
aggregators, which act on behalf of customers to insure against time-varying costs or deploy
forecast-based bidding.

We proceed as follows: Section [2] describes the relevant literature on LEMs. In Section 3]
we formalize the setup of an LEM, characterize our customer model, and specify bidding
functions for HVAC systems. Subsequently, in Section [d], we introduce our case study of 437
residential customers in Austin, Texas. We provide our results for customers and the utility
in Section [5l Section [6] concludes this paper by a discussion of our contributions, managerial

and policy implications, as well as a research outlook.

2 Literature Review

In the following section, we present an overview of the literature relevant to our work and
contributions. First, we summarize the literature on customer utility and bidding func-

tions (Section [2.1)). Then, we provide the relevant literature on the evaluation of LEMs

(Section [2.2)).

2.1 Customer Utility and Bidding Functions

The operation of LEMs requires active bidding of customers, i.e. a submission of a willing-
ness to pay for the consumption of a unit of energy. One strain of the relevant literature
consists of theoretical and simulation studies which have largely focused on testing and
demonstrating various characteristics of LEMs such as efficiency or the control of a capacity
constraint. For this purpose, the literature has mainly based their analysis on an abstract
utility description of non-specified electricity services. These include bids which are based

on randomly drawn willingness to pay [e.g. [lic et al., 2012], linear demand function with



random price elasticity [e.g. Olivella-Rosell et al., 2016, Mieth and Dvorkin, [2020], or quasi-
linear utility functions over sets of possible consumption [e.g. Morstyn et al.,[2019]. [Bompard
and Han| [2013] suggest a demand function which allows for a trade-off between comfort and
price by introducing an abstract comfort parameter. Furthermore, the listed approaches do
not consider temporal interdependencies which are common in energy services such as inter-
nal temperature regulation, water heating, or electric vehicle charging. As a consequence,
these bidding functions and utility frameworks can hardly be used to evaluate real-world
distribution systems.

Theoretical studies which consider the intertemporal optimization in LEMs with active
bidding for storage operations include Mengelkamp et al. [2018b] and Liith et al.|[2018]. |Men-
gelkamp et al.| [2018b] use a Reinforcement Learning approach to derive bids and minimize
electricity costs. |Liith et al.| [2018] use the dual variables of an intertemporal optimization as
a basis for bids for revenue-maximizing electric storage deployment. As such, their setting
resembles an optimal scheduling problem. While many studies assume that electric storage
will play an important role in future distribution systems, it does not necessarily face the
same complexity of other potentially flexible electricity-based services for which an additional
trade-off between customer-specific comfort/quality /reliability and cost exists. To the best
of our knowledge, the trade-off of such services — for instance internal temperature regulation
by HVAC system operations, water heating, or electric vehicle charging — has so far been in-
sufficiently addressed. Existing studies mostly focus on the cost-minimizing dispatch of such
devices for a given comfort level, such as |Lin et al.| [2015] or [Vrettos and Andersson| [2016]
for HVAC systems. We extend this work by proposing a general inter-temporal valuation
framework for flexible energy services which we specify for HVAC systems, a major load in
residential distribution systems.

In extension of the theoretical studies mentioned, an increasing number of LEM demon-
stration projects investigates the bidding behavior of actual customers [Weinhardt et al.|

2019]. Many allow for the manual user input of bidding prices [e.g. Mengelkamp et al.



2018a, Worner et al., 2019, |Ableitner et al.) [2020]. These projects focus on customers’
general willingness to pay for local and renewable energy and do not expose customers
to varying wholesale market-based prices [Mengelkamp et al. 2018a, Worner et al.l 2019,
Ableitner et al., [2020]. Previous work has, however, argued that the response to real-time
prices enables efficiency in the electricity system [Borenstein) 2005]. Furthermore, research
has shown that automation is more effective in increasing load response than manual user
input |[Faruqui and Sergici, 2010]. Other demonstration projects have therefore worked with
automated near real-time bidding strategies, including the Olympic Peninsula project [Ham-
merstrom, 2007] and the Columbus project [Widergren et al., 2014] in the US. These two
projects included local generation, HVAC systems, and water heaters. Real-time bids were
derived based on heuristics, e.g. that prices increase if the internal temperature diverges
from the comfort temperature. Because of the missing utility framework, it has, however,
not been demonstrated that such strategies increase customer welfare. In contrast to the
contributions mentioned, we motivate our suggestion for a bidding function based on an
inter-temporal utility function and tailor it to a specific energy service — temperature control
in a house. Therefore, we are able to provide an economically well-founded derivation of the

bidding strategy which also makes it useful for the direct evaluation of customer surplus.

2.2 LEM Evaluation

The existing literature has provided multiple measures to evaluate the benefits of LEMs.
Criteria deployed have been self-sufficiency of households or the distribution system [e.g.
Ableitner et al 2020, Worner et al., [2019] or the ability to manage grid constraints [e.g.
Hammerstrom, 2007, Widergren et al., 2014]. The benefits of investments and policy mea-
sures on the transmission or wholesale level, however, are usually evaluated by the impact on
social welfare. The literature on wholesale energy markets and transmission has developed
a consistent theory on the valuation of load flexibility [Bohn et al., |1984] Borenstein, 2005,

2007], market design [Bohn et al., 1984} [Stoft|, [1997], and transmission constraints |[Hogan),



1992 Joskow and Tirole, 2005]. Those approaches are widely used in practice [CAISO,
2017, [ENTSO-E| 2018] [CAISO)| 2020, [PJM Capacity Market & Demand Response Oper-
ations, |2020]. These approaches are, however, not directly applicable to the distribution
system as they largely operate based on aggregated demand elasticities and can leverage
available locational price information. Hammerstrom et al.| [2016] have proposed a com-
prehensive valuation framework for distribution systems but have abstained from specifying
the (subjective) utility change for customers from flexible operations. Furthermore, bids
collected in demonstration projects cannot directly be used to evaluate consumer welfare
because they reflect the opportunity costs of electricity consumption in time rather than
the actual marginal value of the electricity-based service. Likewise, other LEM projects
known to us have abstained from analyzing consumer surplus given the lack of an eco-
nomically grounded bidding function and a consistent valuation framework, as discussed in
Section 2.1} In our work, however, we propose a theoretical framework which captures the
trade-off between customer utility and costs. The framework can be parametrized based
on the dispatch behavior of customers under a fixed retail rate. Furthermore, in contrast
to theoretical studies using social welfare as a criterion [e.g. Block et al., 2008, Bompard
and Han| [2013] |Olivella-Rosell et al., 2016], we are able to estimate benefits in a realistic
case study, providing detailed insights into the distribution of welfare changes throughout a

typical year and between customers.

3 Model of a Local Electricity Market Framework

We consider an LEM according to the definition provided by Weinhardt et al. [2019]. In the
following section, we describe the setup of an LEM in Section [3.1] characterize the demand

model for flexible electricity-based services in Section [3.2] and specify the demand model for
HVAC systems in Section [3.3]



Symbol Description Symbol Description
Market variables and parameters Customer variables and parameters
t Time index u(xy) Utility provided by energy service
i Buyer index Ty Quality of energy service
I Set of buyers Ur Disposal utility
bf’i Buy price bid in ¢ A Lagrange multipliers
q;i o Demand bid in ¢ T Optimization horizon
j Supplier index f(zy) Quality transition function
J Set of suppliers 9(qt) Impact of electricity supply on quality
of energy service
b; J Supply price bid in t Cload Energy service constraints
C'Z Marginal supply costs 0 Internal temperature
q; J Supply bid in ¢ geom Comfort temperature
¢lax Maximum supply capacity « Comfort preference
Dy LEM price dy Dispatch of the HVAC system in ¢
Corid Grid constraint set m HVAC mode (heating/cooling)
pVs Wholesale market price in ¢ P HVAC rated power
at Additional import costs gout Outside temperature
153 Thermal characteristics
vy HVAC efficiency

Table 1: Variables and parameters

3.1 General LEM Model

In this section, we describe the supply and demand side of an LEM, present the deployed
auction mechanism, and characterize the LEM equilibrium. All variables and parameters

are described in Table [Tl

Supply. On the supply side, LEMs usually coordinate two types of resources: supply pro-
cured at the wholesale market and local (distributed) generation. Based on typical assump-
tions usually made for the analysis of wholesale markets [e.g. |Al-Gwaiz et al., 2017, Sunar
and Birge, |2019] Sunar and Swaminathan|, 2020], we propose the following specifications of
the supply functions.

First, the marginal costs c{" of wholesale market supply correspond to the applicable
real-time price p}"® and additional potential import costs or fees a;, i.e. ¢'® = p/"*+a;. The
real-time price can, for instance, correspond to the locational marginal price and the import
costs to applicable grid losses. Furthermore, we assume that the imported wholesale market

s, WS

supply ¢ can be continuously adjusted in order to balance local supply and demand,



i.e. it is residual. This is in line with typical contract arrangements, e.g. for cooperatives.

Therefore, the wholesale market supply function is described as follows,

0, for p, <"
¢ (p) = y Ny . (1)
> (pe) — Zj;éWS g7 (pt), for p;>ct'”.

Second, local distributed gemeration is typically represented by photovoltaics (PV) or
conventional back-up generators. A local generator j exhibits constant marginal supply

costs of ¢. Accordingly. the continuous supply function can be described as follows,

0, for p;<cl;

¢ (P) = Y0 0) — Xy @7 (pr), for p=di; (2)

sd - for py>cl.

max?

A local supply resource j supplies no electricity if the local LEM price p; is lower than the

marginal supply cost ¢/. Vice versa, it supplies at maximum capacity ¢ , if the price
increases above CZ . If it is the marginal supply resource, it is only partially dispatched
such that demand and supply are balanced, if possible. If this is technically not possible,
we assume that the additional supply gets absorbed by a behind-the-meter storage or by a

decrease in the wholesale market contribution to the local supply.

Demand. The demand side of the LEM is characterized by unresponsive load and flexible
appliances. The unresponsive load ¢™""*" is not price-dependent. We assume that loads
are unresponsive because they can either not be operated in a flexible way (e.g., important

medical devices) or because they lack the ICT infrastructure to participate in the market

clearing. In both cases, the retailer submits a constant demand function on their behalf,

d,unres unres
q "(p) = { gmmet - for V. (3)



In contrast, customers with flexible appliances submit a demand function on their own.
As most appliances work with an ON/OFF control, electricity demand for appliance i is
characterized by a piece-wise constant function with a jump at the valuation or price bid
bf’i. This willingness to pay to switch on appliance is derived as described in Section .

The demand function is described by the following expression,

1. Pt for p, < by
¢ (p) = g (4)
0, for p;>by".

This requirement corresponds to typical appliance behavior. For instance, an HVAC system

can only be fully dispatched at P’ (dispatch d; = 1) or not at all (d} = 0).

Auction mechanism. Bids are cleared in a centralized double auction with discrete trad-
ing times ¢,¢+1,.... This is an established concept for the design of LEMs [Weinhardt et al.|
2019] and furthermore corresponds to wholesale market designs. At the beginning of each
market interval At, the LEM operator collects the bids of appliances i € I and generators
J € J submitted by the market participants. I also includes unresponsive load and J whole-
sale market supply, for instance submitted by the local retailer. The LEM operator collects

the bids and maximizes social welfare by the choice of the LEM price py,

HELX{Z(bf’i — pt)qf’i(pt) — Z(pt — bf’j)q;’j(pt)} (5)

J

s.t. Z qf’i(pt) = Z Q;S%j(pt)a
i J

Cgrid

Social welfare is the sum of consumer surplus (first part of the sum) and producer rent
second part of the sum). e optimization is subject to the balance of aggregate deman
d part of th The optimization is subject to the bal f te d d

and supply as well as a set of grid constraints C9"%. The latter can, for instance, consist of

10



a maximum import capacity from the wholesale market.

Equilibrium. Given the constant marginal cost of supply and willingness to pay, respec-
tively, the aggregate demand and supply function are staircase functions. As a result, in

min ., max

some cases, multiple prices p; € [p/"", p{***] can solve Eq. . For our further analysis and

case study, we assume that p; = p/"". However, the price could be differently chosen to
affect the distribution of the surplus between consumers, (local) suppliers, and the market

max

operator. For instance, the price could be p; = p/*** or even differ for the demand and supply

side.

3.2 Model of Flexible Demand

Customers deploy flexible appliances to receive utility or comfort from the operations of an
electricity-based service, for instance temperature support by an HVAC system or topping
up the mileage of an electric vehicle. The dispatch of these appliances is motivated by an

inter-temporal utility maximization problem as described in Eq. @,

max B{Y " [uar) - pePds(b)AM] + U ()} )

s.t. Tiy1 = f(.il?t) + g(dt(bt)),Vt € {0, ,T — 1}

z, € C vt € {0,...,T — 1}.

At each stage t of the optimization horizon T', the customer experiences a utility u(z;) which
is a function of the quality z; of a service provided by an electric appliance. For instance, x;
can reflect the internal temperature of a house (for the service of an HVAC system) or the
range charged by the battery of an electric vehicle (for driving). The quality of service z;
is usually coupled in time and can be influenced by the discrete dispatch of the respective
appliance, d; € {0,1}. This relationship is generally described by the transition function

Tip1 = f(z) + g(dy). The dispatch of the appliance is subject to electricity costs. Pd;At

11



describes the energy consumed during the market interval At. p; is the price per energy unit.
Furthermore, the service provided by the electric appliance is subject to a set of constraints
Clead  For instance, this constraint set can describe the maximum or minimum internal
temperature or the minimum mileage of the battery of an electric vehicle at the estimated
time of departure. Ur(xr) describes the disposal utility after the end of the optimization
horizon. Furthermore, we assume that customer utility is linear in money.

We can describe the value of optimal dispatch for a given expected price vector using the

Bellman equation and finding the value function Vy(xo),

Vo(zo) = mng{Z[u(a:t) — pePdy (b)) At) + Up(xr)} (7)

s.t. Ti41 = f(CE't) + g(dt(bt)),‘v’t S {O, ,T - ]_}

z, € Cl vt € {0,..,T — 1}.

For a given vector of prices, the customer is indifferent between dispatching (dy = 1) and

not dispatching (dy = 0) if the value of dispatching equals the value of not dispatching,

u(zg) — poPAt + Vi(z1|dy = 1) = u(xg) + Vi(x1|do = 0) (8)

Therefore, given future prices, py characterizes the maximum price at which the customer
is willing to dispatch in the current time period. This price corresponds to the bid b3 which

the customer would submit to express his maximum willingness to pay,

Vi(1|do = 1) — Vi(z1]|do = 0)

d __
b = PAt

- (9)
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3.3 Model of HVAC Demand

In the following section, we will specify the demand model for an HVAC system. We describe
the decision problem of the customer (Section [3.3.1) and solve it by deriving the willingness

to pay if the customer is a price taker ((Section [3.3.2)).

3.3.1 Decision Problem of Customers

We start by specifying Eq. @ for the customer’s intertemporal utility maximization problem

for HVAC operation,
T-1
maxE Y " (u(6,) — pePdi(br) At) + U(6r). (10)
t=0

The customer experiences comfort u(6;) from a convenient temperature. He can control the
temperature 6; through the operation d; of his electric HVAC system, with d; € {0,1}. The
HVAC system will be dispatched if p; < b; and is off otherwise. The operation of the HVAC
system causes total electricity cost p; Pd;At where p; the LEM price in time ¢, P denotes
the power required by the HVAC system, and At the duration of dispatch. In the LEM,
At corresponds to the length of a market interval. U(fr) is the disposal utility at the end
of the optimization period. Furthermore, the customer is only one LEM participant among
many. Therefore, the customer is a price taker, i.e. the LEM price p; is not a function of
the bidding behavior of the customer. The comfort from HVAC operations, measured in

monetary terms, is described by Eq. (1),
u(f) =1 — af — ™). (11)

The provision of temperature control provides a baseline utility u to the customer. The
comfort is a function of the current temperature #; and the optimal comfort temperature

6°°™. We furthermore assume that the customer evaluates positive and negative deviations of

13



Qcom

the temperature #; from the comfort temperature as equally discomforting. The comfort

of the customer decreases with an increasing difference between the internal temperature and

du(0)

To—geom] < 0, and that comfort deteriorates more intensively

the comfort temperature, i.e.

d?u(0)

at larger temperature differences, i.e. q—geor]?

< 0. Comfort is furthermore scaled by a
comfort preference v which can differ among customers. We describe the dynamics of the
internal temperature 6; by the following equation, using a modified version of the transition

function proposed by Mathieu et al.| [2013],
01 =00 + (1 — B)H"“t + myPd;At. (12)

B describes the thermal properties of the house. Higher 3 are associated with larger thermal
inertia of the house, e.g. because of better insulation, and slow down the speed of conver-
gence between the outdoor temperature °“* and the indoor temperature 6,. The internal
temperature ; can be controlled through the operation of the HVAC system. For m = —1,
the HVAC system is in cooling mode and decreases the internal temperature; for m = 1, it
is in heating mode and increases the internal temperature. ~ indicates the efficiency of the

HVAC system.

3.3.2 Optimal Bidding Behavior

To solve for the intertemporal optimality condition, we formulate the Lagrange function, as
a function of optimal dispatch d;. This is possible because customers are assumed to be price

takers,

T-1

L M NP A7) = S [ul8h) — pePdi A + U (6r)

t=0
T-1

+ At[ﬁet + (]_ — /B)GOUt + m’)/Ptht — Qt—l-l]
t=0
T-1 T-1

+Y AL —dy) + A (dy — 0). (13)
t=0 t=0
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We assume that the smart home system does not have any detailed information about
the future development of supply costs and outside temperatures. Therefore, it optimizes
dispatch based on the assumption that these values stay constant over the short time horizon
which is relevant for HVAC operations: on average, the temperature difference between the
outside and inside temperature more than halves within one hour for typical parametrizations
and HVAC systems therefore usually dispatch several times within one hour.

Given the expectation of external parameters staying constant, the smart home system
aims to keep the internal temperature constant at the respective utility-maximizing level. As
this is not entirely possible due to the discrete dispatch behavior of the HVAC system and
resulting temperature oscillations, we instead look at the average dispatch and the average

temperature. We redefine average dispatch as follows,

d = %Zdt (14)

As d; € {0, 1}, consequently, d is continuously defined, i.e. d € [0, 1]. d can be interpreted as
the share of periods within which the HVAC system is active (‘duty cycle’) or the probability
of dispatch in a certain period. Given stochastic dispatch, we can re-write the transition

function Eq. for expected temperatures as follows,
Eb 1 = BEO + (1 — B)0° + myPdAt (15)

The average dispatch d is associated with an average temperature 6 which is defined equiva-
lently to Eq. . Consequently, we can re-write Eq. using E0; = E 6,1 = 0 to describe

the relationship between the average temperature € and the average dispatch d,

1—p

_ __ pout
_mvPAt(e ) (16)

We now re-write the inter-temporal optimization problem of Eq. to a problem which

15



maximizes the average utility from HVAC operations,
V(d) =u(0(d)) — pPdAt. (17)

Inserting Eq. , we can write average utility as a function of temperature, take the first
derivative with respect to #, and solve for the optimum temperature #* as a function of price,

1—
o =gom - 20, (18)

2amy
Inserting Eq. , the optimal dispatch is described by the following theorem.

Theorem 3.1 (Optimal Average Dispatch.)

1-5 (1-p)
d* = geom _ Qout _ 1
mvP( ) 20v2 P p (19)

We now turn to the derivation of the optimal bidding behavior. Importantly, a bid
cannot be an average bid but must be period-specific. Otherwise, for instance, provided that
external parameters stay indeed constant, the HVAC system would always be on or off and
would not reach the optimal average dispatch or duty cycle. To achieve the close tracking of
a certain desired temperature 0*, instead, it is optimal if the HVAC system switches on for
one market interval, reaching a change from 6, to 6;.,, and remains off until time ¢ when
0, = 0;. Such a behavior will result in an average empirical temperature of 0. Given that,

we can derive the willingness to pay at a time ¢ given the current internal temperature 6,.

Theorem 3.2 (Willingness to Pay.) The customer’s willingness to pay under stationary

conditions is described by,

—B(ewm —0). (20)



Proof 1 The theorem follows directly from Eq. .

We find that the bid price b increases linearly in the difference between the empirical
average temperature  and the comfort temperature #°". In the case of heating (6, <
gcem), the HVAC system is dispatched whenever p; < b¢. Let us now assume that the
electricity price moves from a low to a medium level. In that case, the HVAC system first
follows a relatively high temperature close to the comfort temperature. The willingness to
pay is relatively low but given low prices, bids often exceed the price level and the HVAC
system dispatches. When the price increases, the bids do not get cleared anymore and
the temperature in the house decreases to a cooler level. With the lower temperature, the
difference between the empirical and the comfort temperature increases and the bid increases
until it gets cleared again. Through this mechanism, the customer can constantly adjust to
new equilibria if the price fluctuates throughout the day.

Theorem B.3] furthermore describes the demand function.

Theorem 3.3 (Demand Function.) The price-dependent demand function is described

by,
0, for p;> M(ecom - 5);
¢’ (pe) = 21 ’ - (21)
P, for p < —f‘jgl(@com —9).

4 Case Study

In this section, we present the setup of our case study. We describe how we compile our
simulation model (Section [4.1]), describe the benchmark scenario of a fixed retail rate (Sec-

tion [4.2)), and explain the chosen market design (Section [4.3).
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4.1 Simulation Model and Data

We consider a local electricity system in Austin, Texas, which consists of 437 residential
households on a distribution feeder with one connection to the aggregated system level. We
characterize the building stock based on [US Energy Information Administration| [2015] and
US Environmental Protection Agency [2001] which provide data on the geography-specific
floor area, house weatherization, HVAC system characteristics, etc. The base load of houses
(non-flexible load) is derived from household data provided by Inc. Pecan Street| [2019]
for the year 2016. The electric distribution system is represented by the IEEE 123 feeder
[IEEE Power Engineering Societyl [2014]. The size of the system represents a geographic and
social community and therefore complies with the LEM definition provided by [Weinhardt
et al.| [2019]. We use the distribution system software GridLAB-D [SLAC, [2020] to simulate
the internal temperature of houses, the operation of HVAC systems, and the distribution
system. Further details on the population of the feeder and the technical characterization of
houses are described in Section [§] We furthermore use real-time price data from ERCOT,
the system operator of Texas, provided for the Southern Load Zone for the year 2016 [Ercot],
2019, [2020].

4.2 Benchmark Scenario

We now describe the base case, i.e. the system when it is operated at a fixed retail rate.
We simulate one year of operations in five minute intervals, with HVAC systems dispatching

according to their internal control.

System. Fig. [l shows the resulting average system load for each hour of the day in each
month of the year, as measured at the point of connection to the aggregate system level.
Summer months are depicted in dark colours, winter months in light colours. We use dashed
lines to represent the months of the first half of the year and solid lines for the months of

the second half. We can see that, in the summer months, system load is generally higher
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Figure 1: Average hourly aggregate system load for each month, from January (‘1’) to
December (‘12)

during the day. It reaches its maximum around 3 to 5pm and decreases afterwards. In
contrast, in the winter months, average system load reaches its maximum between 7 and
9 am. Aggregate load is generally higher for the middle of the summer and the middle of
the winter. This is driven by electricity consumption of HVAC systems during hot and cold
temperatures. HVAC systems are the dominant consumers of electricity and account for
75.5% of total residential electricity consumption.

We further analyze the cost structure of energy procurement. The average cost of a MWh
imported to the distribution system is 27.01 USD/MWh and varies significantly throughout
the year. Average procurement costs are minimal (13 to 15 USD/MWh) during the month
of February and reach a maximum in the first week of August, with 68.91 USD/MWh.
Maximum real-time prices can even reach a level of 1,772.80 USD/MWh, as on March
31, 2016. Furthermore, weeks experience very different levels of price variations, ranging
from an unweighted standard deviation of 4.4 USD/MWh to 136.6 USD/MWh. A detailed
description can be found in Table [f]in the appendix.

Fig. [2| shows the load duration curve of the system for the whole year, i.e. for what

19



() W [}
1 1 ]

Measured system load [MW]

=
(9]
I

©
o

20 40 60 30 100
Percentiles [%]

(=)

Figure 2: Load duration curve over a year

share of the time a certain load level or higher is reached. The maximum of the system load
is 2.311 MW. Furthermore, in 1% of the time, the load is equal or higher than 2.124 MW
(91.9% of peak load) and, in 5% of the time, 1.723 MW (74.6%), respectively. This indicates
that the system peak load and required capacity is only driven by a few days within a year.
The maximum peak for each week as well as more details can further be found in Table []in

the appendix.

Customers. In the benchmark scenario with fixed retail rates, customers dispatch their
HVAC systems according to their internal control. The internal control aims to keep the
internal temperature 6; around a heating setpoint 0" (when §°“* < @"<*) or a cooling
setpoint #°°° (when 6°% > §°°!). Due to the ON/OFF control of the HVAC system, the
temperature 0, usually fluctuates around the applicable setpoint by +1°F.

Analyzing the drivers for HVAC bills under a fixed retail rate, we find that 90% of the
variance in bills for HVAC operations is explained by the floor area, the thermal character-
istics of the house 3, the type of heating system (gas or other), and the comfort preference
parameter . The bill increases with an increasing floor area (0.072 USD/sqf), decreases

with improving thermal characteristics (-2,886.62 USD), and increases with increasing com-
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fort preference (4.919e+05 °F?). Furthermore, electricity bills are on average 44.09 USD less
for houses which run on gas for heating. The summary of the regression results can be found
in Table [7in the appendix.

Based on HVAC system behavior in the benchmark scenario, we further parametrize
the transition and utility functions of the HVAC systems as established in Section [3.3]
We leverage the temperature time series to estimate house-specific parameters 5 and v of
Eq. . As, in the context our case study, HVAC parameters as well as comfort parameters
can change due to unobserved characteristics such as humidity or radiation, we estimate
HVAC parameters separately for each week, using linear regression. We further determine
the comfort parameters « by calibrating the utility function of each customer to reproduce
the given temperature setpoints for the week-specific cost-recovering average procurement
costs (including losses).

Figure 3: Mapping of comfort preference a to temperature setpoints in fixed retail rate
scenario (August 1 - 7, 2016)
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Fig. shows the resulting mapping between the allowable temperature range, i.e. the
difference between the cooling and the heating setpoints, as provided by the customer in
the fixed retail rate setting and the estimated comfort preference parameter a. Customers
who provided a narrow temperature band in the fixed retail rate scenario are optimally

participating in the LEM based on a higher comfort preference a.. As customers are unlikely
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to have a specific understanding of their comfort preference in numerical terms, the customer
could enter the comfort preference a by a slider as displayed in Fig. [Bb] Such a slider would
represent the trade-off between comfort and costs and can be intuitively set by the customer.
Importantly, the participation in an LEM does not require more information on the side of
the customer than under a fixed retail rate. Instead of two temperature setpoints, the

customer would be required to provide his comfort temperature and the comfort preference.

4.3 LEM Design

On the supply side, the load serving entity or retailer imports electricity at the wholesale
market price of the local transmission node. It passes on those costs to the LEM, including
a mark up which accounts for grid losses. This constant mark up is calculated based on the
benchmark scenario. The average relative grid loss in our study is 3.7%, with losses defined
as the difference between the electricity imported and the consumption of the households as
measured at their meters, divided by the total energy imported.

We run the LEM every five minutes. This is a reasonable time interval during which
HVAC systems can work efficiently. For comparison, the minimum run time of an HVAC
system as measured in the benchmark case for the month of August is three minutes and

the average duration of consecutive dispatch is 5.6min.

5 Results

Using the case study introduced in Section [l we quantify the general welfare effect of
introducing an LEM in Section [5.1} Then, we analyze the implications on customers and

the utility in Section [5.2] and Section [5.3] respectively.
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5.1 General Welfare Effects

We calculate welfare changes as the sum of comfort changes for customers, energy procure-
ment cost savings, and avoided congestion costs. This perspective does not require any

assumptions about the distribution of welfare gains between customers and the utility.

Unconstrained system. First, we consider the case of an unconstrained system, i.e.
transactions are not constrained by limitations of the grid. In that case, no congestion costs
apply. We find that, over the course of the year 2016, welfare changes of operating an HVAC
system under an LEM add up to 17,043 USD. Fig. 4a] shows realized welfare gains for the 51
full weeks of the year 2016 and the dependence on the standard deviation of the wholesale
market price, weighted by the system load. This figure allows for two important insights.
First, we find that, in most weeks, the system experiences significant positive welfare changes,
reaching up to 1,918 USD within a week. There are two weeks for which the welfare change
is slightly negative, adding up to a loss of 64 USD. We contribute this observation to an
imperfect description of the thermal dynamics of the system by the linear model. Second,
the welfare change is increasingly positive with a higher standard deviation of the wholesale
market price within a week, weighted by system load. With the weighted standard deviation
increasing by 1 USD/MWh, the welfare gain from switching from a fixed retail tariff to an
LEM increases by 11.00 USD. The correlation between the welfare gains and the weighted
standard deviation of the price is 0.85.

Fig. [4b| furthermore illustrates the cumulative distribution function of welfare gains over
households, sorted from the house contributing the most to the one contributing the least
to the overall welfare gain. We find that houses do not contribute equally to the welfare
gain but that the 50% most valuable households, for instance, realize 62.3% of maximum
welfare gains. The most valuable household contributes 92.86 USD while the least nearly
18.53 USD.
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Figure 4: Distribution of welfare changes under an LEM
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Constrained system. We further analyze the welfare effects of an LEM in a constrained
system. Fig. exemplarily demonstrates the ability of an LEM to integrate a capacity
constraint for the peak day of the year, December 19. In the benchmark scenario, the
aggregated system load (solid light grey line) reaches the system peak of 2.311 MW in the
early morning hours of the peak day. For demonstration purposes, Fig. [al showcases system
behavior for a capacity limit of 1.8 MW (dotted line). The dark grey solid line plots the
resulting aggregate system load which can successfully be controlled around the constraint.
This is achieved through an increase in the LEM price. If there is no congestion, the LEM
price is 1.69 USD/MWh above the wholesale market price, representing payments for losses
to the retailer. However, if the import constraint binds, the LEM price (dashed dark grey
line) deviates from the real-time price of the wholesale market (dashed light grey line) by
up to 20.76 USD/MWh. Local demand is reduced at the higher local equilibrium price and
equals the available supply, especially during the morning hours until approximately 11am.

Fig. further demonstrates how the load duration curve changes under an LEM with
different capacity constraints. Without an LEM, the maximum load equals the year-long
maximum of 2.3 MW. If an LEM is deployed without a capacity constraint, however, the

peak system load increases to 2.5 MW. The reason is that low prices and especially sudden
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Figure 5: Implication of a constraint limit (December 19 - 25, 2016)
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price drops can lead to a simultaneous dispatch of many HVAC systems. While this is
individually rational and decreases the cost of energy procurement, sudden load increases
can be problematic from a system operations perspective [Parag and Sovacool, 2016]. If a
binding capacity constraint is imposed, aggregate load can generally be effectively controlled
and decreased (here displayed for system constraints of 2.0 MW and 1.8 MW). It is notable
that the aggregate system load can be nearly but not entirely reduced below the capacity
constraint. There are multiple reasons for that. First, the system operator makes forecasting
errors with regard to the unresponsive load. If the unresponsive load is under-estimated, too
much capacity will be allocated to the flexible load in the LEM and the resulting aggregate
system load will exceed the capacity constraint. The maximum forecasting error is 140
kW. Second, the bids do not correspond to the actual generation or consumption of LEM
participants. For instance, the power drawn by appliances can deviate from their rated
power, depending on the grid conditions and other characteristics of the environment such
as the outdoor temperature or the voltage quality in the system. The maximum deviation
caused by HVAC systems not complying with their bids is 27kW. The error introduced by
these two channels are detailed in the appendix, see Fig. and Fig. [I0Ob Third, system

load will be too high if flexible demand is exhausted and unresponsive load in itself exceeds
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the capacity constraint.

Figure 6: Welfare effects of introducing an LEM in a constrained system (December 19 - 25,
2016)
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Exceeding such a capacity limit can come at considerable cost, e.g. through the degrada-
tion of grid components or because of the dispatch of expensive reserve capacity (e.g. diesel
generators). We calculate congestion costs by multiplying the energy consumed by excess
load (i.e., exceeding the respective capacity constraint) by an estimate for congestion costs.
In our analysis, we apply default cost of 50 USD/MWh which, for instance, corresponds to
the cost of operating a diesel generator. Then, for the peak load week of December 19 -
25, 2016, congestion costs can add up to 3,568 USD if the system is constrained to 1.5 MW
which is the tightest system constraint included in this analysis. Fig. |6a]illustrates how the
introduction of an LEM can then help to decrease congestion costs and, for a given capacity,
increase system welfare. In addition to energy procurement cost savings and welfare gains,
these include savings in congestion costs. We find that, for a given capacity constraint, an
LEM can realize significant savings of up to 1,651 USD over a fixed retail rate through its
capability to manage load, under congestion costs of 50 USD/MWh. The advantage of an
LEM over a fixed retail rate is generally higher for more constrained systems and higher
congestion costs. For the unconstrained system, the system does not experience conges-

tion costs, therefore, the value of introducing an LEM covers the changes in comfort and
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procurement costs, as discussed in the previous paragraph.

According to Joskow and Tirole| [2005], efficient investment in the grid infrastructure is
the result of a trade off of short-term cost of congestion and long-term cost of grid investment.
Fig. provides an insight on the marginal value of investment for the peak load week of
December 19 - 25, 2016. The marginal value of investment is calculated as the difference
between the welfare under the given constraint and the welfare under a constraint relaxed
by 0.1 MW. We observe the following facts: first, the marginal value of investment is not
monotonously decreasing. This indicates that relaxing some levels of grid constraints can
be particularly valuable. Importantly, the fact that the marginal value of investment is not
monotonously decreasing also adds another layer of complexity in the optimal grid investment
problem described by |Joskow and Tirole [2005]. Second, the marginal value of investment
under an LEM reaches it maximum at a lower capacity than under a fixed retail rate. Except
for the maximum, the marginal value lies below or is equal to the curve for the fixed retail
rate. That indicates that, under an LEM, grid investment is possibly less valuable and less
grid investment will be optimal than under a fixed retail rate, decreasing investment costs
in the long-run. We do not provide an estimate for the associated savings as the cost of grid
investment are non-trivial and depend on the topology of the grid, geographical conditions,

etc. Investment costs can, however, be substantial.

5.2 Implications for Customers

The introduction of LEMs impacts customers in two ways: through changes in operations of
their HVAC systems and the resulting comfort as well as their monthly bills. We will first
discuss each of these components separately and then consolidate our findings in a combined

analysis of customer surplus.

Comfort. Our evaluation framework allows to quantify the welfare changes associated with

these temperature changes. We find that the mean comfort change across households and
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throughout the year 2016 is -2.62 USD, with the maximum comfort increase of 17.88 USD
and a maximum decrease of 26.75 USD. Furthermore, customers with low comfort preference
tend to experience comfort increases while those with high comfort preferences experience

comfort losses. Fig. and Fig. provide more detailed evidence in the appendix.

Figure 7: Temperature as a function of comfort preference a (August 1 - 7, 2016)

0.030

0.025 4

0.020 4

0.015 1

0.010 4

0.005 4

Substitution elasticity A6/Ap[ ° F/USD]

Change of average comfort gap [ °F]

—4

T T T T T T T 0.000 T T T T T T
-10.0 -9.5 -9.0 -85 -8.0 -7.5 -7.0 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5
Comfort preference log(a) Comfort preference log(a)

(a) Average comfort gap and temperature (b) Substitution effect between temperature and
spread cost

We furthermore provide a detailed analysis of the internal temperature as the driver for
comfort changes. As operating modes (i.e. heating/cooling) change between seasons, we
focus on the first week of August (week 31) which requires constant operations of HVAC
systems because of high outside temperatures and exhibits the highest potential welfare
gains under an LEM. We find that, under a fixed retail rate, customers’ average internal
temperature differs from their comfort temperature by 1.7°F (‘average comfort gap’). The
average comfort gap is larger than zero as the cost of electricity is positive (see Eq. )
Under LEM participation, this gap reduces to 1.4°F on average which corresponds to a
decrease in the average comfort gap of 18.0%.

Fig. shows the dependence of the comfort gap change on the comfort preference of
customers, aggregated for customer classes log(@) of size 0.5 (e.g., log(@) = —8.0 covers
log(a) € [—8.25,—7.75]). We find that the customers of the lowest comfort preference ex-

perience the largest reduction in the average comfort gap (-2.0°F") while customers with the
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highest comfort preference hardly experience changes in their comfort gap (0.1°F). The
reason is that customers with low comfort preferences react particularly sensitive to price
changes and accordingly adjust their comfort when LEM prices drop below the fixed retail
rate which only represents the average price. This indicates that many periods with low
prices allow for a more comfortable dispatch of the HVAC system than in the benchmark
case where the relatively high constant retail rate is driven by few high-price periods. How-
ever, customers with low comfort preference also react particularly sensitive to high prices.
As a consequence, customers with a low preference parameter o experience higher tempera-
ture variations. The bars of Fig. [7alrepresent the temperature spread which is defined as the
difference of the 95% and the 5% quantile of the temperature distribution under LEM partic-
ipation. We find that, for customers with the lowest comfort preference, the temperature can
oscillate up to 6.1°F above and 2.4°F below the comfort temperature. For customers with
high comfort preference, this spread reduces to 1.8°F above and 1.8°F below. In general,
we find that the temperature range under an LEM is higher than under a fixed retail tariff

and increases from 3.0°F to 4.8°F, averaged over all customers.

Bill changes. The exact bill changes of customers generally depend on how savings from
energy procurement and grid infrastructure expansion will get re-distributed to customers.
For the further analysis, we will assume that 1) all savings get re-distributed to customers
(i.e. savings are not partially retained by the retailer/utility by increasing other fees), 2)
LEM participants pay a fee to cover grid losses, and 3) that the fixed retail rate for unre-
sponsive load is re-calculated based on its energy procurement cost. We find that customers
benefit from substantial bill savings. In total, customers save 18,188 USD which corresponds
to 41.62 USD per customer (14.5%). These bill changes are driven by more cost-effective
operations of HVAC systems which contribute 15,660 USD in savings. Savings for the unre-
sponsive load account for an additional 2,528 USD via reduced retail rates. The maximum

bill saving per household is 140.36 USD, the minimum bill saving 7.15 USD. The maximum
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relative bill saving per household is 21.4%, the minimum relative bill saving 8.6%. Fig.
visualizes the empirical substitution effect between cost and comfort. Customers with a
low comfort preference are willing to accept a temperature increase by up to 0.02 °F' if the
electricity price increases by 1 USD/MWh. Customers with a high comfort preference only
accept one fourth of a temperature increase, on average.

We furthermore provide an analysis of which customers profit the most. We find that
absolute bill savings can largely be explained by utility bills in the first place (79% of vari-
ance), as described in Section . Second, savings increase with the share of unresponsive
load as of total load, as a result of the decrease in the fixed retail rate for remaining loads.
Furthermore, savings are less for customers with a higher correlation of HVAC operations
under a fixed retail rate and the wholesale market price, as well as those with gas heating.
More details can be found in Table[§] Similar results can be derived for relative bill savings

which are higher for customers with higher bills under the fixed retail rate scenario.

Total welfare. Final consumer surplus is a combination between the changes in thermal
comfort and the bill. Fig.|8a]shows the distribution of consumer surplus changes by house for
the whole year. We find that the average change is 39.00 USD and consistently positive across
customers. The household with the maximum consumer surplus change gains 118.46 USD,
the one with the lowest 5.50 USD. The distribution of consumer surplus among customers
and weeks can be found in the appendix, see Fig.

Finally, we investigate to which extent consumer surplus gains of houses coincide with
their welfare contribution to the system. Fig. [8b|plots how these values line up. We find that
customers which contribute more to system welfare also experience higher consumer surplus
gains. This observation ensures that the most valuable customers also have a strong private
incentive to join the LEM. However, we also observe that the most valuable customers ex-
perience an over-proportional gain in consumer surplus while less valuable customers receive

under-proportional gains. This adds to the concerns with regard to the equity between cus-
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Figure 8: Distribution of consumer surplus changes of houses
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tomers which we observed earlier, with customers with large houses (and potentially higher

incomes) profiting the most from the introduction of an LEM.

5.3 Implications for Utility

In the following, we analyze how the situation of the retailer changes if an LEM is deployed.
Table 2| summarizes the most important facts. We find that the amount of electricity im-
ported by the retailer increases slightly (by 2.4%). However, thanks to the fact that 75.4% of
the consumption can be flexibilized through the LEM, energy procurement cost can be de-
creased by 14.6%. The flexible load requires only an under-proportional share of procurement
costs of 70.7%. The substantial decrease in procurement costs is reflected in a substantial
reduction of the fixed retail tariff for unresponsive loads by 75.5%, from 2.71 c¢t/kWh to
0.65 ct/kWh. Eventually, we find that the peak load increases by 26.7%, caused by the
synchronization of HVAC systems by the price.

We finally investigate the market income, i.e. the income from importing at the wholesale
market and re-selling at the LEM price. For that purpose, we analyze the market income
for the week of the year experiencing the load peak (December 19 - 25, 2016) under different

constraints, as documented by Table [3] If no constraint applies, the market income from
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No LEM LEM
Energy procured [MWHh] 4,607.646  4,716.519
Share of flexible load [%] 0.00 75.44
Procurement cost [USD] 125,063.16  106,850.66
Share of flexible procurement cost [%] 0.00 70.66
Average procurement price [USD/MWHh] 27.14 22.66
Fixed retail rate [USD/kWh] 0.027 0.007
Total peak load [MW] 2.311 2.928

Table 2: Changes in key measures of retail business

Capacity constraint [MW] | Market income [USD]
00 0.00
2.2 3.03
2.1 4.35
2.0 8.92
1.9 96.20
1.8 362.29
1.7 848.95
1.6 1439.96
1.5 2084.60

might create an incentive to delay or under-size investment in the grid.

6 Conclusion and Discussion

policy (Section and provide a research outlook (Section [6.3).
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Table 3: Market income under different capacity constraints for December 19 - 25, 2016

congestion is 0 USD. However, with the constraint of the grid being increasingly tight, the
market income increases to more than 2,000 USD. As explained for Fig. [6D] this market
income should ideally be invested in grid expansion. However, if the role of the market

operator is incorporated by the same entity which is responsible for grid enhancements, this

In this paper, we evaluate the economic impact of LEMs on customers and the utility. In
the following, we reflect on our contributions and how they are supported by our findings

(Section [6.1)). Furthermore, we discuss the implications of our findings for management and



6.1 Discussion of Contributions
6.1.1 Bidding Functions

In this article, we suggest an approach to derive bidding functions for time-interdependent
electricity-based services. Previous work has used bids which did not reflect the opportunity
cost of intertemporal dispatch [e.g. |Ableitner et al., [2020], reduced optimal dispatch to a
scheduling problem [Lin et al., [2015} [Vrettos and Andersson) 2016], or approached it in a
simplistic way [Hammerstrom, 2007, Widergren et al. 2014], without explicitly addressing
the trade-off between comfort and cost. Instead, we define a net utility framework which
combines the utility from consuming an electricity-based and time-interdependent service
and the cost of electricity. We specify the framework for the service of temperature control,
i.e. HVAC operations, and derive the willingness to pay based on the assumption of my-
opicity of consumers with regard to time-dependent but uncertain parameters. While this
assumption might be simplifying, our case study demonstrates that substantial savings can
still be realized. The resulting bidding function is a function of the temperature sensitivity,
the comfort temperature of the customer, as well as the physical characteristics of the house

and the HVAC system.

6.1.2 Welfare Effects

We furthermore use our framework in an extensive case study of 437 houses in a residential
system to evaluate the welfare impacts of introducing an LEM. While such studies are
common to evaluate the cost and benefits of investments on the transmission or wholesale
level [e.g. [CAISO) 2017, ENTSO-E| 2018|, to the best of our knowledge, no such framework
for the analysis of welfare effects exists for residential systems.

We first study the short-term effects of introducing an LEM. In general, for the uncon-
strained system, we find substantial welfare gains of 17,043 USD over the year studied which

can mostly be explained by energy procurement cost savings. However, we also observe that
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they are largely driven by a few weeks with high price variance on the wholesale market. This
indicates that systems which are exposed to higher wholesale market price variance profit
more than systems which are not. As increased price variance is becoming more prevalent
with higher shares of renewable energies, it is likely that LEMs may become more beneficial
in the future. With regard to customers, we find that all households studied contribute to the
welfare increase of the system although contributions are moderately unequally distributed.
The most valuable 50% of customers realize 62.3% of welfare gains. Our case study further-
more quantifies the finding of the theoretical model with regard to the price-dependence of
the internal temperature. We find that customers with a high comfort preference hardly
experience a change in their mean temperature and only small temperature variations. In
contrast, for customers with a low comfort preference, the internal temperature is on average
1.5°F closer to their comfort temperature. However, their temperature range can more than
double if price variation in the LEM is high. Finally, customers save on average 14.6% of
their utility bills when switching to an LEM. These savings can be explained by a more effi-
cient dispatch of HVAC systems and a decrease in fixed retail rates for other, unresponsive
loads. Customers which have high utility bills in the benchmark scenario profit the most
in absolute terms. As bills can largely be explained by the floor size of the house, LEMs
are potentially most beneficial for high income customers. This concern is reinforced by the
finding that consumer surplus increase for such customers is over-proportional as compared
to the actual welfare gain they provide to the system.

LEMs also have an impact on the long-term welfare of a system, in particular with regard
to DER investment and grid enforcement. First, customers benefit from the introduction of
an LEM by up to 120 USD per year. This provides an individual incentive to invest into the
necessary infrastructure to flexibilize HVAC operations and connect it to the LEM. Second,
LEMs enable active constraint management and, therefore, decrease congestion costs and
necessary grid investments. This functionality cannot be provided by the introduction of

real-time prices alone. In fact, real-time prices can aggravate capacity violations through
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effects of price-coordinated simultaneous dispatch. If no capacity constraint applies, real-
time prices propagated through the LEM increase peak load by more than 10%. However, we
also find that capacity constraint management is not perfect and depends on the quality of
unresponsive load forecast and bids. Third, our results show that the marginal value of grid
investment is consistently positive but not monotonously decreasing. This indicates that the
marginal value of grid investment is highest in moderately constrained systems and declines
substantially for only slightly constrained systems. Finally, we find that the marginal value
of investment is often lower in an LEM than if a fixed retail rate applies. This suggests that

optimal grid investment may be reduced if an LEM is deployed.

6.2 Managerial and Policy Implications

Our work has important implications for utilities and policy makers. First, LEMs enable the
integration of flexible appliances into electricity markets and realize important value streams
like energy procurement cost savings and managing capacity constraints. Furthermore, LEMs
provide a large amount of controllability of local system load. This controllability can be
leveraged to also provide other ancillary services of additional value, including avoiding
coincident aggregate system peaks, providing resiliency services, or implement carbon pricing
on a local level. Policy makers should study the cost and benefits of LEMs and the required
infrastructure more closely and consider them in the relevant legislation. This concerns,
for instance, the consideration of LEMs for generation and grid capacity planning or the
determination of regulated tariffs.

Second, policy makers and utilities should study where the deployment of LEMs makes
sense and which consumers and appliances should be included. Our analysis has shown that
LEMs are particularly valuable in systems with a high wholesale market price variance and
slightly constrained systems. Additional value might be realized through ancillary services,
resiliency, and customer preference for a local market. Aggregate benefits must outweigh the

cost associated with an LEM, most importantly the setup of the relevant information and
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communication technology as well as operations. With regard to customers and appliances,
we have seen that some customers are more valuable than others and that targeting HVAC
systems already flexibilizes 75% of energy consumption in our system. An effective LEM
might therefore optimally only incorporate the most valuable customers with their most
flexible and largest loads. However, the impacts on customers with less ability to flexibilize
—e.g. because they do not own their house or apartment, have financial constraints, or whose
dispatch is inelastic because of medical reasons — should be closely studied. While our case
study has demonstrated that the flexibilization of HVAC load decreased the fixed retail rate
for unresponsive load as well, an increase would also be possible.

Third, the deployment of LEMs requires a change in the responsibilities of current stake-
holders and the detailing of market rules. One important question is who should incorporate
the role of the market operator. Our analysis has shown that the income from market op-
erations due to capacity constraints might incentivize under-investment in the grid. Also,
artificial shortening of grid capacity in the market can reduce consumer surplus. To avoid
this kind of behavior, the roles of the utility, the grid operator, and the retailer /load serving
entity have to be well defined and it needs to be clarified how an abusive shortening of avail-
able grid capacity can be identified. Moreover, our analysis has shown that, by deploying an
LEM, the procurement cost risk of the load serving entity will be reduced to the remaining
24.4% of unresponsive consumption. The flexible loads bear the wholesale market price risk
directly and, depending on who incorporates the role of the market operator, only require
the utility as a trader and/or grid provider. If the application of LEMs extend to an increas-
ing share of the consumption, this can significantly change the role of utilities and retailers.
Other important questions include the requirement of balancing, billing, or the recollection
of fixed cost components like grid investment or maintenance.

Finally, automated bidding functions and LEMs can provide opportunities for innovative
business models and new energy services. Our bidding functions can, for instance, be de-

ployed as a basis for demand response decisions of load aggregators. An open LEM trading
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platform can further enable the participation of other agents such as aggregators which can
act on the LEM on the customers’ behalf. By doing so, they can provide additional value,
first, to customers by providing insurance against volatile prices and, second, to the system
by including more sophisticated bidding strategies with professional forecasting information.
An LEM also incentives the flexibilization of load which could extend to smart appliances
like electric vehicles, washing machines, dish washers, etc. Those appliances could be able
to connect to the LEM and adjust their schedule optimally to the LEM price. Competi-
tive advantages of suppliers could then be a particularly smart bidding algorithm of devices
and technical adjustments which allow for more flexible operations of appliances (e.g. by

interrupting and resuming operations in between).

6.3 Research Outlook

Our research provides multiple opportunities for future research. First of all, the analysis
should be extended to other appliances, including batteries, electric vehicles, and water
heaters, as well as local generation. This can enable the analysis of residential systems
where heating and cooling loads are not the major end-uses of electricity. Second, other
distribution systems should be explored. We expect the benefits of LEMs to differ depending
on the wholesale market price variance, the correlation of price with residential load, and
the available load portfolio. These characteristics can also have an important impact on
the distribution of welfare effects among customers. Finally, while this work has assumed a
time-discrete centralized double auction, other market designs are possible. Potential design
aspects include uniform versus nodal pricing, central versus peer-to-peer trading, and a
discrete versus a continuous orderbook. It should be explored which market design choice is
most suitable and if additional services such as ramping or reserve capacity provision should

be considered.
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7 Data

House data. To parametrize the houses, we randomly generate the floor area as well as
temperature setpoints based on mean and standard deviation values as reported by US En-
ergy Information Administration| [2015]. Furthermore, to specify the thermal characteristics
of the building stock, we rely on parameters as reported by the |US Environmental Protec-
tion Agency| [2001]. Those include, in particular, the rate at which air is exchanged with the

exterior.

Residential load. In order to characterize residential base load, we took advantage of
the smart meter data published by the Pecan Street data project |Inc. Pecan Street| 2019].
We chose a dataset from Austin as of 2016 for the reason that, during that time, the most

year-long profiles of town homes and single-family homes were available.

Price data. We use Ercot price data. Austin is part of the Southern Hub |Ercot| [2018§]
and we use the historical price data for 2016 which is available for the Southern Hub in one

hour intervals for Day-Ahead and 15 min intervals for the Real-Time market [Ercot), 2019].

Weather data. We use tmy3 data (722540TYA) for Austin [NREL;, 2015].

Feeder. To represent the physical network, we choose the IEEE 123 feeder. It operates
at a nominal voltage of 4.16 kV and represents a typical residential distribution grid. The
feeder is connected to the overlaying voltage level by a single transformer where congestion
potentially happens. The maximum hosting capacity is 3.6 MW. The feeder itself branches
out, representing multiple streets with electrical loads connected to it in regular spaces. The
feeder is represented in Fig. [9

We further established a routine to populate the feeder to build an electrically balanced

distribution system which is described by Section [8|
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Figure 9: IEEE 123 feeder ﬂIEEE Power Engineering Society|7 |2014ﬂ

8 Assembly of the Feeder

We accommodate 2,000 detached single-family houses for an initial hosting capacity analysis.
For the technical characterization, we randomly classify houses as having one or two stories

and, using a normal distribution, assign the floor area according to the survey results provided

by the [US Energy Information Administration| [2015]. For the heating and cooling systems,

we consider the most important technologies resistive heating, heat pump, and natural gas
(for heating) as well as electric cooling with or without a heat pump (for cooling). For each
feasible combination, we estimate the probabilities for a house operating a certain type of

HVAC system as well as heating and cooling setpoints based on the data for the West South

Central CENSUS region provided by the US Energy Information Administration| [2015]. For

the other technical characteristics, we use the recommendations for default parameters as
provided by GridLAB-D [SLAC| [2020]. Table 4| and Table [5| summarize the parameters.
Furthermore, we calculate natural air changes by hour for one and two story buildings in

Zone 2 under normal conditions, using the AC Hsq value specific to climate zone 2A and the

LBL factor provided by |[US Environmental Protection Agency| [2001].

We simulate electric load for the month of July, using GridLAB-D [SLAC 2020]. We
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Parameter ‘ Average Value ‘ Standard Deviation ‘ Share

Floor size [ft?]
- 1 story 1976.96 47.05 72.09
- 2 stories 3202.38 226.41 27.91

Heating [%)]

- resistive 49.60
- heat pump 8.80
- natural gas 41.60

Cooling [%]
- heat pump 83.04
- electric, no heat pump 16.07

Setpoints [°F|
- heating 70.77 2.93
- cooling 73.70 3.33

Table 4: Parametrization of detached single-family houses (West South Central)

HVAC System ‘ 1 story ‘ 2 stories
Electric cooling / NG heating 24.90% | 9.64%
Electric cooling / resistive heating | 29.69% 11.49%
Heat pump 17.50% 6.77%

Table 5: HVAC system statistics for housing types

determine the average power per house at the time of maximum load, the After Diversity
Maximum Demand (ADMD) factor, which is 4.59 kW.

In a second step, we use this factor to randomly assign houses to nodes of the IEEE123
feeder while respecting the maximum hosting capacity of each node. The maximum hosting
capacity of each node is provided by the specifications of the IEEE123 model [IEEE Power
Engineering Society, [2014]. We determine the design capacity by multiplying this value with
a safety factor of 0.66 and iteratively assign houses to nodes until none of the nodes is able
to accommodate more load of the size described by the ADMD anymore. We find that 437

houses in total can be accommodated.
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9 Detailed Results for Base Case

Table [6] presents key figures for each week of the simulation year 2016. The first three columns
provide information on the energy procurement cost. The average procurement cost describe
the average price which the utility pays for energy imported from the wholesale market,
weighted by the energy consumed in each period. The maximum price is the maximum real-
time price on the wholesale market during this week. The standard deviation of the wholesale
market price reflects the price variability during the week. The last column provides the
maximum feeder load, measured at the connection to the aggregate system level. The feeder
load is important for the sizing of the transformer at the connection to the aggregate system

level and a relevant cost driver.

Av. procurement Max. price Standard deviation Max. load

Week cost [USD/MWh] [USD/MWh] price [USD/MW h] [MW]
01/04 - 01/10 20.76 639.13 26.023 2.116
01/11-01/17 17.03 355.41 24.656 1.539
01/18 - 01/24 17.73 340.31 14.373 2.260
01/25 - 01/31 21.87 306.75 42.504 1.802
02/01 - 02/07 13.45 61.67 4.387 1.818
02/08 - 02/14 14.71 108.95 6.675 1.453
02/15 - 02/21 14.53 363.37 26.223 1.441
02/22 - 02/28 14.65 972.00 45911 1.462
02/29 - 03/06 14.70 360.59 28.310 1.316
03/07 - 03/13 23.25 538.92 50.576 1.731
03/14 - 03/20 33.40 277.84 38.529 1.281
03/21 - 03/27 20.43 799.56 44.566 0.995
03/28 - 04/03 26.73 1772.80 136.637 1.430
04/04 - 04/10 17.47 350.21 20.482 1.241
04/11 - 04/17 19.48 211.40 16.814 1.484
04/18 - 04/24 32.33 235.26 28.651 1.369
04/25 - 05/01 32.79 1507.76 72.479 1.348
05/02 - 05/08 18.95 500.21 28.521 1.244
05/09 - 05/15 29.81 638.87 34.401 1.346
05/16 - 05/22 30.88 860.73 61.269 1.615
05/23 - 05/29 27.30 415.24 29.861 1.471
05/30 - 06/05 21.23 165.89 9.796 1.454
06/06 - 06/12 26.83 338.21 20.587 1.714
06/13 - 06/19 27.97 214.30 13.541 1.599
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Av. procurement Max. price Standard deviation Max. load

Week cost [USD/MWh] [USD/MWh] price [USD/MWh) (MW
06,20 - 06,26 25.14 163.41 8.543 1.622
06,27 - 07/03 33.72 548.80 28.132 1.523
07/04 - 07/10 26.97 183.80 12.440 1.684
07/11 - 07/17 28.81 397.44 21.364 1.652
07/18 - 07/24 46.52 665.79 50.329 2.079
07/25 - 07/31 34.72 693.30 38.253 1.659
08,/01 - 08/07 68.91 899.52 86.736 1.674
08,08 - 08,14 34.30 221.10 15.130 1.621
08/15 - 08,21 25.08 313.94 18.239 1.751
08/22 - 08,28 34.16 377.76 30.518 1.698
08,/29 - 09,04 26.34 64.64 5.753 1.536
09/05 - 09/11 29.20 297.98 20.420 1.514
09/12 - 09/18 55.08 871.30 71.342 1.383
09/19 - 09/25 35.22 417.36 26.327 1.231
09/26 - 10,02 31.32 319.19 21.474 1.421
10/03 - 10/09 48.31 734.63 46.305 1.448
10/10 - 10/16 27.75 329.99 14.999 1.316
10/17 - 10/23 24.96 749.98 35.899 0.985
10/24 - 10/30 28.77 443 .80 24.266 1.123
10/31 - 11/06 23.81 379.71 17.515 1.257
11/07 - 11/13 17.50 271.73 11.926 1.246
11/14 - 11/20 18.87 450.85 22.181 0.958
11/21 - 11/27 20.70 340.64 24.628 1.176
11/28 - 12/04 28.19 812.22 72.477 1.654
12/05 - 12/11 24.75 504.45 30.528 1.501
12/12 - 12/18 20.78 505.19 23.617 2.194
12/19 - 12/25 21.22 398.08 24.170 2.311

Table 6: Load and price summary for each week of the year
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10 Further Analyses for Case Study

Figure 10: System deviations from market results (December 19-25, 2016)
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Fig. illustrates forecasting errors with regard to the unresponsive load (by the retailer). The unrespon-
sive load covers the unresponsive load share of customers as well as grid losses. Fig. [I0a] shows that the
actual unresponsive load tends to be over-estimated. The maximum absolute deviation is up to 140 kW.
Furthermore, system imbalances can occur if the actual dispatch of flexible appliances deviate from the bid
placed in the LEM. Fig. shows the distribution of such deviations, aggregated over all customers. While
deviations exist, they are distributed close to zero, with a maximum net deviation of 22 kW. This is much
less than the error introduced by the unresponsive load forecast and suggests that potential deviations are

not or only slightly correlated across devices.
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Table 7: OLS regression results: Determinants of utility bills under a fixed retail rate

Dependent variable:

(1)
const 2762.033***
(148.145)
floor_area 0.072**
(0.002)
«Q 491943.471**
(22039.625)
I5; -2886.618***
(157.644)
GAS -44.094**
(3.372)
Observations 437
R? 0.903
Adjusted R? 0.902
Residual Std. Error 25.647(df = 432)
F Statistic 1002.101** (df = 4.0; 432.0)
Note: *p<0.1; *p<0.05; **p<0.01

The table illustrates to which extent house-specific parameters explain the utility bills for electricity un-
der a fixed retail rate. We find that bills are driven by the floor area, temperature sensitivity, thermal
characteristics, and gas versus electricity-based heating.
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Table 8: OLS regression results: Determinants of absolute bill savings with LEM deployment

Dependent variable:

(1) (2)
const 1.573 12.018**
(1.043) (2.151)
fixed_cost_HVAC 0.184** 0.173***
(0.004) (0.003)
share_unresp 0.277*
(0.012)
corr_ HVAC_WS -168.208***
(25.300)
GAS -5.867**
(0.858)
Observations 437 437
R? 0.794 0.923
Adjusted R? 0.794 0.923
Residual Std. Error 7.683(df = 435) 4.707(df = 432)
F Statistic 1681.540™* (df = 1.0; 435.0)  1301.690*** (df = 4.0; 432.0)
Note: *p<0.1; *p<0.05; **p<0.01

The table illustrates to which extent house-specific parameters explain the utility bill savings when houses
participate in an LEM. We find that utility bills under a fixed retail rate explain 79% of the variance in
savings, i.e. households with large bills are likely to save more. Additional significant factors are the share
of unresponsive load, the correlation of HVAC dispatch and WS prices under a fixed retail rate, and the
existence of a heating system.
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Figure 11: Welfare changes attributed to comfort change
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(a) Histogram of comfort changes by household (b) House-wise comfort changes by comfort pa-
rameter

Fig. displays the distribution of welfare changes attributed to internal temperature changes. This is

detailed by Fig. which additionally shows the comfort change as a function of the comfort parameter

«. While households with a low comfort preference largely experience positive comfort changes, we observe

a deterioration in comfort in particular for households with high comfort preferences despite only small

temperature changes indicated by Fig. [7a]

Figure 12: Distribution of welfare changes of houses
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Fig. further disentangles the consumer surplus changes for each week.
Each grey circle represents an individual house during a specific week, the
black circle represents the mean consumer surplus change. We find that
changes differ throughout the year but can be high for some weeks and
some customers both of which drive overall welfare gain.
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