Face Recognition Vendor Test
Ongoing

Still Face and Iris 1:N Identification

Application Programming Interface
VERSION 3.1

Patrick Grother

Mei Ngan

Kayee Hanaoka

Information Access Division
Information Technology Laboratory

December 6, 2024

NST

National Institute of
Standards and Technology
U.S. Department of Commerce

FRVT Ongoing 1:N

Revision History

Date Version = Description

FRVT 2018 Prior evaluation documented in NIST IR 8238

April 1, 2019 1.0 Initial document

September 9, 2020 1.0.1 - Update link to General Evaluation Specifications document
- Adjust the legal similarity score range

August 16, 2021 1.0.2 Removed FRVT 1:1 pre-requisite. Developers may now participate in FRVT 1:N
without having to participate in FRVT 1:1

November 3, 2021 1.0.3 - Added clarification that multi-threading is allowed in the finalizeEnrollment()
function

- Removed holdover text from 2018
- Added clarification on function time limits to be based on a single core

January 7, 2022 2.0 Add second version of createTemplate() function from Section 8.4.4 that supports
the existence of multiple people in an image

April 6, 2023 3.0 1. Add support for iris images, allowing 1:N evaluation of iris recognition
algorithms — this replaces the previous IREX 10 submission protocol.

2. Allow evaluation of multimodal (face + iris) algorithms.

3. Specify new time limits and faster CPU processor for measurement of
processing duration.

4. Add support for non-visible illumination wavelengths for iris and face
December 6, 2024 3.1 - Added more information about timing requirements for 1:N lIris in Section 5.1

NIST API Page 2 of 15

OO NOOULLE WN P

el e el e ol
0ONOULDWNRO

[y
©

W W INDNNNNNNNNN
RO WVWoKLNOOULLD WNEO

w
N

FRVT Ongoing 1:N

Table of Contents

Lo FRVT LiN ittt ettt sttt st ettt e b e st e e b et s be e s bt e sa bt e sate s et e e s b teeabeesbt e e abeenhbe e a ke e eaee e a ke e sh e e e beesh b e e beenabeenbeenate e beeebeenbeeeas 4
1.1. Yol] o= ISP P PP PP R RRRORPRORPRPIRE 4
2. General Evaluation SPeCiCatioNS.cccciiiiciee ettt et e s e e e ta e e st e e ertb e e e eateeeeabaae e abeeeentaeesnaee e nreeeanraeeennees 4
T 0o T¢I ool U | - Tor YA o 4 1] o o [PP UPPPPTPPPPP N 4
B Y o Yo [Tor=Yu Lo T W =1 L=V =Y o Lol Y SRS PPNt 4
T W {1 1 £ TP ST OPPT PR 5
5.1. THMIE TIMIIES weeetieeteeitee sttt ettt ettt et e st e e s aee et e e sateeaae e baesabeebeesabeesasesabeesaeeenbeesseeenseenete e baansseenbeesnsaensensns 5
5.2. TEMPIALE SIZE JIMIES ..eeiiiiieeiiie ettt e ettt e e et e e e st e e e tbeeeetbaeesbee e e sseeeessaeesabsseansseeeassaaesaseseansseseansseesaseaann 5
6. Implementation LIDrary FIIENAMEuoiiii ettt e e ettt e e e e e ettt e e e e e ettt eeeeeessstaaeeeesesaeseeesesnsaeaeeeennsraneas 5
7. Data structures SUPPOITING the AP ...couiiiiiii ettt e st e e st et e st e e s sbteeesabe e e sabaeesabbeeasabaeesasaeesnsseesnnsaeennsees 6
7.1. File structure for enrolled template COHRCTIONc..iiiiiiiieiee bbb 6
T AN Y o T=T o) i Tor- Y o] o DT OO TP P R UT P PTUPPRRPTRN 8
8.1. [LT T LT o | TSP 8
8.2. NGMESPACE ...ttt et a e e a e e e sttt e s e a s e e e s bbbt e e s e b a e e e s s e ar e e e e s e sanres 8
8.3. OVBIVIBW. ..ttt ettt e ettt e e ettt e e e e sttt e e e e s b et e e e e s aabateeeeesaanteaeeasaanbaaeeee s sssbeeeesaasseeaeeesasbaaeeessansnbaeeesenassbaaesesanssaaeas 8
8.4. APttt sttt h e bt eh e s a et e bt e e a bt e b et et e e b et et e e nh e e ea bt e sh b e e bt e eh et e beeeaee e beeeabe e beesabeenaaeeateas 10
List of Tables
Table 1 — Processing time limits in seconds, per 640 X 480 IMAGE......ccvvueruirrieriuernieerireeseesreestessreeseeesseesseeesseesssesssessssessseesns 5
Table 2 — Enrollment dataset template Manifestttt sba e s beesate s beesabeebee e 6
Table 3 — Labels describing gallery COMPOSITIONiiciiiiiiiiieiieeieese ettt se e sbe e s e e bt e sbeessbaesasesbeesssasseeses 7
Table 4 — Structure fOr @ CANAITALE ...icviiiciiiiie ettt et e et e e st e e be e s teesseesateesbeeenbeesbeeenbaesssesabeesnsassensns 8
Table 5 — Procedural oVervieWw Of the LiIN tESTcccii ittt s re et st s e e s te e st e e ebeesbeeebaesasesbeesssesnseesns 9
Table 6 — Template creation INIHIAlIZATIONc.uuiiii e e e et e e e e et bt e e e e s esabaeeeeesansbaneaaean 11
Table 7 — Template Creation/Feature Extraction from one or more images of exactly one personccceeevveeveeecveeereeennen. 11
Table 8 — Template Creation/Feature Extraction of one or more people detected from an image.......ccceevveeevveereeecreeceeeennen. 13
Table 9 — ENrollment fiNaliZationoeee e st e e st e s te e e sbe e e s tte e e ba e e sbae e e abeeeeaeeeenres 13
Table 10 — Identification INTHIAlIZATIONcccueiiiieecec e s e e e et e s e ae e e sbe e e s s sbeeesaeeesnaeeesateeennseeesnsees 14
LI o) (I B A To 1Yo o N o T HEY =Y 1 of o F PRSP 15

NIST API Page 3 of 15

33

34

35
36
37

38
39
40

41

42
43
44

45

46
47
48
49

50
51
52

53
54

55
56

57
58
59

60
61

62
63

64
65

66

67

68

69
70
71

FRVT Ongoing 1:N
1. FRVT 1:N and IREX 1:N

1.1. Scope

This document establishes a concept of operations and an application programming interface (API) for evaluation of one-
to-many face recognition algorithms, one-to-many iris recognition algorithms, and algorithms that can extract information
from face and iris images of the same person to implement multimodal one-to-many recognition.

Developers may submit a one-to-many search algorithm that operates on
— Face images only, or

— Irisimages only, or

— Multimodal samples comprised of both face and iris images. The implementation must handle some unimodal
samples — for example, a gallery for which 80% of enrolled samples are face and iris, but 10% of samples are
face-only, and 10% are iris-only.

2. General Evaluation Specifications

General and common information shared between all Ongoing FRVT tracks are documented in the FRVT General
Evaluation Specifications document - https://pages.nist.gov/frvt/api/FRVT _common.pdf. This includes rules for
participation, hardware and operating system environment, software requirements, reporting, and common data
structures that support the APlIs.

3. Core accuracy metrics
This test will execute open-universe searches. That is, some proportion of searches will not have an enrolled mate. From
the candidate lists returned by algorithms, NIST will compute and report accuracy metrics, primarily:

— False negative identification rate (FNIR) — the proportion of mated searches which do not yield a mate within the top
R ranks and at or above threshold, T.

— False positive identification rate (FPIR) — the proportion of non-mated searches returning any (1 or more) candidates
at or above a threshold, T.

— Selectivity — the average number of non-mated candidates returned at or above a threshold, T. This quantity has a
value running from 0 to L, the number of candidates requested. It may be fractional, as it is estimated as a count
divided by the number of non-mate searches.

These quantities are estimated from candidate lists produced by requesting the top L most similar candidates to the
search. We do not intend to execute searches requesting only those candidates above a specified input threshold.

We will report FNIR, FPIR and selectivity by sweeping the threshold over the interval [0, infinity). Error tradeoff plots (FNIR
vs. FPIR, parametric on threshold) will be the primary reporting mechanism.

We will also report FNIR by sweeping a rank R over the interval [1, L] to produce (the complement of) the cumulative
match characteristic (CMC).

We will report proportions of template generations that fail to produce a viable template —i.e. failure to enroll rate (FTE).

4. Application relevance

NIST anticipates reporting FNIR in two FPIR regimes:

— Investigation mode: Given candidate lists and a threshold of zero, the CMC metric is relevant to investigational
applications where human examiners will adjudicate candidates in decreasing order of similarity. This is common in
law enforcement “lead generation”.

NIST API Page 4 of 15

https://pages.nist.gov/frvt/api/FRVT_common.pdf

72
73
74

75
76

77

78

79
80
81
82

83
84

85

86

87
88
89
90

91
92

93

94
95
96
97
98
99
100
101
102

FRVT Ongoing 1:N

— Identification mode: We will apply (high) thresholds to candidate lists and report FNIR values relevant to
identification applications where human labor is matched to the tolerable number of false positives per unit time.
This is used in duplicate-ID detection searches for credential issuance and, more so, in surveillance applications.

Developers are encouraged to submit variants tailored to minimize FNIR in the two FPIR regimes, and to explore the
speed-accuracy trade space.

5. Limits

5.1. Time limits

The elemental functions of the implementations shall execute under the time constraints of Table 1. These time limits
apply to the function call invocations defined in section 8. Assuming the times are random variables, NIST cannot regulate
the maximum value, so the time limits are median values. This means that the median of all operations should take less
than the identified duration. Timing will be estimated from at least 1000 separate invocations of each elemental function.

Timing will be measured as wall clock time on a fixed Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz computer. Durations are
measured by wrapping API function in calls to the std::chrono() high-resolution timer.

Table 1 - Processing time limits in seconds, per 640 x 480 image

Function 1:N Face 1:N Iris

Template Generation: Conversion of one 640x480 image to | 1.5 sec (1 core) | 1.5 sec (1 core)
one template

1:N finalization (on gallery of 1 million enrolled templates) | 40000 sec 40000 sec
e.g. for building of a fast search data structure

1:N Face 10 sec (1 core)
1:N template search for:
— N=1million enrolled templates
— L=50returned candidates
1:N Iris 25 sec (1 core)
1:N template search for:
— N =500,000 enrolled templates
— L=50returned candidates
— Search templates are generated from two eyes

5.2, Template size limits

There are no template size limits. However, NIST anticipates evaluating performance with N in excess of 107. For
implementations that represent a gallery in memory with a linear data structure, the memory of our machines implies a
limit on template sizes. For example, given machines equipped with 768GB of memory, and N = 25 million, templates
cannot exceed 32KB without tapping into virtual memory.

The API, however, supports multi-stage searches and read access of the disk during the 1:N search. Disk access would
likely be very slow. In all cases, algorithms shall meet the duration limits given in Table 1, with linear gallery size scaling.

6. Implementation Library Filename

— The core library shall be named as libfrvt_1N_<provider>_<sequence>.so, with

— provider: non-infringing name of the main provider. Do not use names of product lines, and do not include
organizational legal organizational abbreviations such as LLC, Corp, Gmbh, Ltd. Example: acme.

— sequence: a three digit decimal identifier to start at 000 and incremented by 1 every time a library is sent to
NIST. Example: 007

Example core library names: libfrvt_1N_acme_000.so, libfrvt_1IN_myface_000.so, etc.

Important: Public results will be attributed with the provider name and the 3-digit sequence number in the submitted
library name.

NIST API Page 5 of 15

103

104
105
106

107

108
109
110

111
112
113

114
115

116

117
118

FRVT Ongoing 1:N

7. Data structures supporting the API

The general data structures supporting this APl are documented in the FRVT - General Evaluation Specifications document
available at https://pages.nist.gov/frvt/api/FRVT_common.pdf. The data structures specific to this particular test are
described within this document. The header files are published at https://github.com/usnistgov/frvt.

7.1. File structure for enrolled template collection

To support these 1:N tests, NIST will concatenate enrollment templates into a single large file, the EDB (i.e. enroliment
database). The EDB is a simple binary concatenation of proprietary templates. There is no header. There are no
delimiters. The EDB may be many gigabytes in length.

This file will be accompanied by a manifest; this is an ASCII text file documenting the contents of the EDB. The manifest
has the format shown as an example in Table 2. If the EDB contains N templates, the manifest will contain N lines. The
fields are space (ASCIl decimal 32) delimited. There are three fields. Strictly speaking, the third column is redundant.

Important: If a call to the template generation function fails, or does not return a template, NIST will include the Template
ID in the manifest with size 0. Implementations must handle this appropriately.

Table 2 - Enrollment dataset template manifest

Field name Template ID Template Length Position of first byte in EDB
Datatype required std::string uint64_t uint64_t
Example lines of a manifest file appear [90201744 1024 0
to the right. Lines 1, 2, 3 and N appear. | person01 1536 1024
7456433 512 2560
subject12 1024 307200000

The EDB scheme avoids the file system overhead associated with storing millions of small individual files.

NIST API Page 6 of 15

https://pages.nist.gov/frvt/api/FRVT_common.pdf
https://github.com/usnistgov/frvt

119 7.1.1.
120

Gallery Type

CONSOLIDATED G1 CONSOLIDATED G2

A

B i
A
i
2

b4

II!I

FRVT Ongoing 1:N

UNCONSOLIDATED G3

CONSOLIDATED
MULTIMODAL G4

two IDs

Same
person
under

CONSOLIDATED
MULTIMODAL G5

Num. people, N =6 Num. people, N=6
Num. images, M =6 Num. images, M =9
Num. identifiers, Q=6 Num. identifiers, Q=6
Num. createTemplate Num. createTemplate
calls, T=6 calls, T=6

Num. people, N =6 Num. people, N=6

Num. images, M =7 Num. images, M =12
Num. identifiers, Q=7 Num. identifiers, Q=6
Num. createTemplate calls, Num. createTemplate calls,
T=7 T=6

Num. people, N =6

Num. images, M = 18
Num. identifiers, Q=6
Num. createTemplate calls,
T=6

The algorithm is given
k =1 images of each
individual under a
single identifier.

The algorithm is given k
>=1images of each
individual under a single
identifier.

The algorithm is given k >=
1images of each individual
but under separate IDs.

The algorithm is given k >=
1 face images and n = 1 iris
images of each individual.

The algorithm is given k >=
1 face images and n = 2 iris
images of each individual.

121
122

The operational case
corresponds to event-based
enrollment where person
identity information is
either not known or
ignored.

Figure 1 — lllustration of consolidated versus unconsolidated enroliment database?

123 Figure 1 illustrates four examples of two types of galleries:

124 — Consolidated: The database is formed by enrolling all images of a subject under a common identity label. The result
125 is a gallery with N identities and N templates. This type of gallery presents us with the cleanest experimental design,
126 “one needle in a haystack” scenario. It allows algorithms to perform image and feature level fusion. Operationally it
127 requires high integrity biographical information to maintain.

128 — Unconsolidated: The database is formed by enrolling photographs without regard to whether the subject already has
129 already been enrolled or not. Under this scheme, different images of the same person can exist in the gallery under
130 different subject identifiers, that is, there are N identities, and M > N database entries.

131 During gallery finalization, algorithms will be provided with an enumerated label from Table 3 which specifies the type of

132 gallery being processed.

133 Table 3 - Labels describing gallery composition

Label as C++ enumeration

Meaning

enum class GalleryType {
Consolidated,

Unconsolidated

Consolidated, subject-based enroliment

Unconsolidated, event-based or photo-based enrollment

3 The face images contained in this figure are from the publicly available Special Database 32 - Multiple Encounter Dataset (MEDS).
https://www.nist.gov/itl/iad/image-group/special-database-32-multiple-encounter-dataset-meds

NIST

API

Page 7 of 15

https://www.nist.gov/itl/iad/image-group/special-database-32-multiple-encounter-dataset-meds

134

135
136

137

138

139

140
141
142

143
144
145
146

147

148
149

150

151
152

153

154
155

FRVT Ongoing 1:N
b | |

7.1.2. Data structure for result of an identification search

All identification searches shall return a candidate list of a NIST-specified length. The list shall be sorted with the most
similar matching entries list first with lowest rank. The data structure shall be that of Table 4.

Table 4 — Structure for a candidate

C++ code fragment Remarks

1. |typedef struct Candidate

2. |4

3. bool isAssigned; If the candidate computation succeeded, this value is set to true. False otherwise.

If value is set to false, score and templateld will be ignored entirely.

std::string templatelId; The Template ID from the enrollment database manifest defined in clause 7.1.

5. double score; Measure of similarity or dissimilarity between the identification template and the enrolled

candidate.
— For face recognition, a similarity score - higher is more similar

— Foriris recognition, a non-negative measure of dissimilarity (maybe a distance) -
lower is more similar

— For multimodal face and iris, a similarity score - higher is more similar

An algorithm is free to assign any value to a candidate. The distribution of values will have
an impact on the false-negative and false-positive identification rates.

The score values should be reported on the range that is used in the developer’s software

products. We require scores to be non-negative. Developers often use [0,1], for

example. Our test reports include various plots with threshold values e.g. FMR(T), to allow
end-users to set thresholds in operations. These plots may become difficult to interpret if

scores span many orders of magnitude.

6. |} Candidate;

8. API specification

FRVT 1:N and IREX 10 participants shall implement the relevant C++ prototyped interfaces of section 8. Full
documentation is available at https://usnistgov.github.io/IREX10/APl/class f r v.t 1 n 1 1 interface.html. C++ was
chosen in order to make use of some object-oriented features.

Please note that included with the FRVT 1:N validation package (available at https://github.com/usnistgov/frvt) is a “null”
implementation of this APl. The null implementation has no real functionality but demonstrates mechanically how one
could go about implementing this API.

8.1. Header File

The prototypes from this document will be written to a file named frvt1N.h and will be available to implementers at
https://github.com/usnistgov/frvt.

8.2. Namespace

All supporting data structures will be declared in the FRVT namespace. All APl interfaces/function calls for this track will
be declared in the FRVT 1N namespace.

8.3. Overview

The 1:N identification application proceeds in three phases: enrollment, finalization and identification. The identification
phase includes separate probe feature extraction and search stages.

NIST API Page 8 of 15

https://usnistgov.github.io/IREX10/API/class_f_r_v_t__1_n_1_1_interface.html
https://github.com/usnistgov/frvt
https://github.com/usnistgov/frvt

FRVT Ongoing 1:N

156 The design reflects the following testing objectives for 1:N implementations.
— support distributed enrollment on multiple machines, with multiple processes running in parallel
— allow recovery after a fatal exception, and measure the number of occurrences
— allow NIST to copy enrollment data onto many machines to support parallel testing
— respect the black-box nature of biometric templates
— extend complete freedom to the provider to use arbitrary algorithms
— support measurement of duration of core function calls
— support measurement of template size
— support measurement of template insertion and removal times into an enrollment database
157 Table 5 - Procedural overview of the 1:N test
e # Name Description Performance Metrics to
g be reported by NIST
E1 | Initialization initializeTemplateCreation(TemplateRole=Enrollment_1N)

o

S Give the implementation the name of a directory where any provider-supplied

é configuration data will have been placed by NIST. This location will otherwise be

(]

E empty.

The implementation is permitted read-only access to the configuration directory.

E2 |Parallel Enrollment |create{Face,lris,FaceAndIris}Template(TemplateRole=Enrollment_1N) Statistics of the times
For each of N individuals, pass K >= 1 images of the individual to the implementation for negd_ed to enroll an

. . ; . . individual.

conversion to a template. The implementation will return a template to the calling
application. Statistics of the sizes of
NIST's calling application will be responsible for storing all templates as binary files. created templates.
These will not be available to the implementation during this enrollment phase. The incidence of failed
Multiple instances of the calling application may run simultaneously or sequentially. template creations.
These may be executing on different computers.

F1 | Finalization finalizeEnrollment() Size of the enrollment

c Permanently finalize the enrollment directory. This supports, for example, adaptation d?tabasle ?S a fync"illon

2 of the image-processing functions, adaptation of the representation, writing of a ot population size .

= manifest, indexing, and computation of statistical information over the enrollment Duration of this

© dataset. operation. The time

[. L . . . needed to execute this

> The implementation is permitted read-write-delete access to the enroliment directory)

3] ; function shall be

= and read-only access to the configuration directory during this phase. .

8 reported with the
Note: finalizeEnrollment() will be called in a separate process than the enrollment Erecedlng enroliment
functions. imes.

S1 | Initialization initializeTemplateCreation(TemplateRole=Search_1N) Statistics of the time
Give the implementation the name of a directory where any provider-supplied nee(:et(,j f:r this

_5 configuration data will have been placed by NIST. This location will otherwise be operation.

S

@ empty.

S

) The implementation is permitted read-only access to the configuration directory.

= S2 | Template create{Face,lris,FaceAndIris}Template(TemplateRole=Search_1N) Statistics of the time

E . .

2 preparation For each probe, create a template from K >= 1 images. needeq for this

o operation.

e} . .

The result of this step is a search template.

c% P P Statistics of the size of
Multiple instances of the calling application may run simultaneously or sequentially. the search template.
These may be executing on different computers.

NIST

API

Page 9 of 15

FRVT Ongoing 1:N

S3 | Initialization initializeldentification() Statistics of the time

Tell the implementation the location of an enrollment directory that contains the needett?l for this
gallery files produced from the finalize() function. The enrollment directory will always operation.
contain a successfully finalized gallery (i.e. will never be empty). The implementation
should read all or some of the enrolled data into main memory, so that searches can
commence.
The implementation is permitted read-only access to the enroliment directory during
this phase.

ey

o

§ Note: The search functions (initializeldentification(), identifyTemplate()) will be called in
a separate process from the enrollment functions, therefore, you cannot assume that
initializeTemplateCreation() is called by the test harness prior to the search functions.

S4 |Search identifyTemplate() Statistics of the time

A template is searched against the enrollment database. needeq for this
operation.
Developers shall not attempt to improve the duration of the identifyTemplate() .
. . . Lo . . Accuracy metrics - Type
function by offloading any of its processing into the template creation function.
I + Il error rates.
Failure rates.
158 8.4. API
159 8.4.1. Interface
160 The software under test must implement the interface Interface by subclassing this class and implementing each
161 method specified therein.
C++ code fragment Remarks
1. |Class Interface
2.1
public:

3. static std: :Sharediptr<1nterface> getImplementation (), Factory method to return a managed pointer
to the Interface object. This function is
implemented by the submitted library and
must return a managed pointer to the
Interface object.

4. // Other functions to implement

5. 0};

162 There is one class (static) method declared in Interface. getImplementation () which must also be
163 implemented. This method returns a shared pointer to the object of the interface type, an instantiation of the
164 implementation class. A typical implementation of this method is also shown below as an example.

C++ code fragment

Remarks

#include

using namespace FRVT 1N;

NullImpl::

NullImpl::~ NullImpl

std::shared ptr<Interface>
Interface::getImplementation ()

{

return std::make shared<NullImpl>();

}

// Other implemented functions

“frvtlN.h”

NullImpl

O {1

O {1

NIST

API

Page 10 of 15

165

166
167

168

169

170
171

172
173
174

175
176
177

178
179
180
181
182

183
184
185

186

FRVT Ongoing 1:N

8.4.2. Initialization of template creation

Before any feature extraction/template creation calls are made, the NIST test harness will call the initialization function of
Table 6. This function will be called BEFORE any calls to fork() are made.

Table 6 — Template creation initialization

Prototype ReturnStatus initializeTemplateCreation(
const std::string &configDir, Input
TemplateRole role); Input
Description This function initializes the implementation under test and sets all needed parameters in preparation for template

creation. This function will be called N=1 times by the NIST application, prior to parallelizing M >= 1 calls to the
template creation function via fork () .

This function will be called from a single process/thread.

Input Parameters | configDir A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

role A value from the TemplateRole enumeration that indicates the intended usage of the
template to be generated. In this case, either Enrollment_1N or Search_1N.
Output None
Parameters
Return Value See General Evaluation Specifications document for all valid return code values.
8.4.3. Template Creation from one or more images of exactly one person

The functions of Table 7 supports role-specific generation of template data from one or more images of exactly one
person. A vector of face or iris or face+iris images is converted to a single template using this function.

NOTE: For any given submission, developers may only implement ONE of the functions in Table 7. That is, a single
submission may only support face recognition or iris recognition or multimodal recognition. For the functions that are not
implemented, the function shall return ReturnCode::NotImplemented.

Some of the proposed datasets include K > 2 images per of a person’s iris or face. This affords the possibility to model a
recognition scenario in which a new image of a person’s face or iris is compared against all prior images. Use of multiple
images per person has been shown to elevate accuracy over a single image.

For this test, NIST will enroll K >= 1 images under each identity. Normally the probe will consist of a single face image or
an image for each iris, but NIST may examine the case where multiple images of a single biometric are enrolled.
Ordinarily, the probe images will be captured after the enrolled images of a person. The method by which the face
and/or iris recognition implementation exploits multiple images is not regulated. The test seeks to evaluate developer
provided technology for multi-presentation fusion.

This document defines a template to be the result of applying feature extraction to a set of K >= 1 images. An algorithm
might internally fuse K feature sets into a single model or maintain them separately - in any case the resulting proprietary
template is contained in a contiguous block of data. All identification functions operate on such multi-image templates.

Table 7 — Template Creation/Feature Extraction from one or more images of exactly one person’s face or iris

Prototype for | ReturnStatus createFaceTemplate(

face const std::vector<Image> &faces, Input

recognition TemplateRole role, Input
std::vector<uint8_t> &templ, Output
std::vector<EyePair> &eyeCoordinates); Output

Prototype for | ReturnStatus createlrisTemplate(

iris const std::vector<Image> &irises, Input

recognition TemplateRole role, Input
std::vector<uint8_t> &templ, Output
std::vector<IrisAnnulus> &irisLocations); Output

NIST API Page 11 of 15

https://pages.nist.gov/frvt/api/FRVT_common.pdf

187

188
189
190
191

192
193
194

195
196

197
198
199

200
201

FRVT Ongoing 1:N

Prototype for
multimodal
face +iris
recognition

ReturnStatus createFaceAndlrisTemplate(

const std::vector<Image> &faceslrises, Input

TemplateRole role, Input

std::vector<uint8_t> &templ); Output

Description

Takes a vector of image(s) and outputs a proprietary template and associated coordinates. The vector to store the
template will be initially empty, and it is up to the implementation to populate it with the appropriate data.

For enrollment templates (TemplateRole=Enrollment_1N): If the function executes correctly (i.e., returns a successful
return code), the template will be enrolled into a gallery. The NIST calling application may store the resulting
template, concatenate many templates, and pass the result to the enroliment finalization function (see section 8.4.5).
The resulting template may also be inserted immediately into previously finalized gallery. When the implementation
fails to produce a template (i.e., returns a non-successful return code), it shall still return a blank template (which can
be zero bytes in length). The template will be included in the enrollment database/manifest like all other enrollment
templates but is not expected to contain any feature information.

IMPORTANT: NIST's application writes the template to disk. Any data needed during subsequent searches should be
included in the template or created from the templates during the enrollment finalization function of section 8.4.5.

For identification/probe templates (TemplateRole=Search_1N): The NIST calling application may commit the template
to permanent storage or may keep it only in memory (the developer implementation does not need to know). If the
function returns a non-successful return status, the output template will not be used in subsequent search
operations.

Input
Parameters

faces, irises, or facelrises | Input face, iris, or face+iris images

Note: For multimodal (face+iris), the implementation must handle some unimodal samples
- for example, a gallery for which 80% of enrolled samples are face and iris, but 10% of
samples are face-only, and 10% are iris-only.

role Label describing the type/role of the template to be generated. In this case, it will either
be Enrollment_1N or Search_1N.

Output
Parameters

templ The output template. The format is entirely unregulated. This will be an empty vector
when passed into the function, and the implementation can resize and populate it with the
appropriate data.

eyeCoordinates or The function shall return
irisLocations — For face images, eye coordinates — the estimated eye centers for left and right eyes
— For iris images — iris locations - estimates of the limbus center and pupil and limbus
radii

Return Value

See General Evaluation Specifications document for all valid return code values.

8.4.4.

Template Creation of one or more people detected from a face image

This function supports role-specific generation of one or more templates that correspond to one or more people’s faces
are detected in an image. Some of the proposed test images include K > 1 persons for some images and situations where
the subject of interest may or may not be the foreground face (largest face in the image). This function allows the
implementation to return a template for each person detected in the image. For testing, NIST will

1. Enroll one more templates from a single call to this function or the function of Table 7

Generate one or more search templates from a single call to this function or the function of Table 7

2
3. Search all templates generated from 2) against the enrollment database
4

Use the maximum similarity score or best rank across all searches from 3) in our calculation of FNIR and FPIR
(this applies to both genuine and imposter searches)

NOTE 1: The implementation must be able to match any combination of enroliment and search templates generated
from this function and the function of Table 7. In other words, the output template format should be consistent between
this function and the function of Table 7.

NOTE 2: This function will not be called with iris images.

NIST

API Page 12 of 15

https://pages.nist.gov/frvt/api/FRVT_common.pdf

202

203

204

205
206

207
208
209

210
211
212

213

FRVT Ongoing 1:N

Table 8 — Template Creation/Feature Extraction of one or more people detected from an image

Prototypes

ReturnStatus createFaceTemplate(

const Image &image, Input

TemplateRole role, Input

std::vector<std::vector<uint8_t>> &templs, Output

std::vector<EyePair> &eyeCoordinates); Output

Description

This function supports template generation from one or more people detected in a single image. It takes a single
input image and outputs one or more proprietary templates and associated eye coordinates based on the number of
people detected. The vectors to store the template(s) and eye coordinates will be initially empty, and it is up to the
implementation to populate them with the appropriate data.

For enrollment templates (TemplateRole=Enrollment_1N): If the function executes correctly (i.e. returns a successful
return code), the template(s) will be enrolled into a gallery. The NIST calling application may store the resulting
template(s), concatenate many templates, and pass the result to the enrollment finalization function (see section
8.4.5). The resulting template(s) may also be inserted immediately into previously finalized gallery. When the
implementation fails to produce a template (i.e. returns a non-successful return code), it shall still return a blank
template (which can be zero bytes in length). The template will be included in the enrollment database/manifest like
all other enrollment templates, but is not expected to contain any feature information.

IMPORTANT: NIST's application writes the template to disk. Any data needed during subsequent searches should be
included in the template, or created from the templates during the enrollment finalization function of section 8.4.5.

For identification/probe templates (TemplateRole=Search_1N): The NIST calling application may commit the
template(s) to permanent storage, or may keep it only in memory (the developer implementation does not need to
know). If the function returns a non-successful return status, the output template(s) will not be used in subsequent
search operations.

Input
Parameters

image A single image that contains one or more people in the photo

role Label describing the type/role of the template to be generated. In this case, it will either be
Enrollment_1N or Search_1N.

Output
Parameters

templs A vector of output template(s). The format of the template(s) is entirely unregulated. This will
be an empty vector when passed into the function, and the implementation can resize and

populate it with the appropriate data.

eyeCoordinates | For each person detected in the image, the function shall return the estimated eye centers. This
will be an empty vector when passed into the function, and the implementation shall populate it
with the appropriate number of entries. Values in eyeCoordinates[i] shall correspond to

templsli].

Return Value

See General Evaluation Specifications document for all valid return code values.

8.4.5.

Finalization

After all templates have been created, the function of Table 9 will be called. This freezes the enrollment data. After this
call the enrollment dataset will be forever read-only.

The function allows the implementation to conduct, for example, statistical processing of the feature data, indexing and
data re-organization. The function may alter the file structure. It may increase or decrease the size of the stored data.
No output is expected from this function, except a return code.

Implementations shall not move the input data. Implementations shall not point to the input data. Implementations
should not assume the input data will be readable after the call. Implementations must, at a minimum, copy the input
data or otherwise extract what is needed for search.

Table 9 — Enroliment finalization

Prototypes ReturnStatus finalizeEnrollment(
const std::string &configDir, Input
const std::string &enrollmentDir, Input
NIST API Page 13 of 15

https://pages.nist.gov/frvt/api/FRVT_common.pdf

214

215
216
217

218

219

220
221

FRVT Ongoing 1:N

const std::string &edbName,

Input

const std::string &edbManifestName,

Input

GalleryType galleryType); Input

This function takes the name of the top-level directory where the enroliment database (EDB) and its manifest have
been stored. These are described in section 7.1. The enrollment directory permissions will be read + write.

Description

The function supports post-enrollment, developer-optional, book-keeping operations, statistical processing and
data re-ordering for fast in-memory searching. The function will generally be called in a separate process after all
the enrollment processes are complete.

This function should be tolerant of being called two or more times. Second and third invocations should probably
do nothing.

This function will be called from a single process/thread. Implementation of this function does not need to be
single-threaded (i.e., developers may use multiple threads within this function).

Input
Parameters

configDir A read-only directory containing any developer-supplied configuration parameters or run-

time data files.

enrollmentDir The top-level directory in which enrollment data was placed. This variable allows an

implementation to locate any private initialization data it elected to place in the directory.

The name of a single file containing concatenated templates, i.e. the EDB of section 7.1.
While the file will have read-write-delete permission, the implementation should only alter
the file if it preserves the necessary content, in other files for example.

The file may be opened directly. It is not necessary to prepend a directory name. Thisis a
NIST-provided input — implementers shall not internally hard-code or assume any values.

edbName

edbManifestName The name of a single file containing the EDB manifest of section 7.1.
The file may be opened directly. It is not necessary to prepend a directory name. Thisis a

NIST-provided input — implementers shall not internally hard-code or assume any values.

galleryType A label from Table 3 specifying the composition of the gallery.

Output None

Parameters

Return Value See General Evaluation Specifications document for all valid return code values.

8.4.6.

The function of Table 10 will be called once prior to one or more calls of the searching function of Table 11 and the gallery
insert and delete functions of Section 0. The function might set static internal variables so that the enrollment database is
available to the subsequent identification searches. This function will be called BEFORE any calls to fork() are made.

Search Initialization

Table 10 — Identification initialization

Prototype ReturnStatus initializeldentification(
const string &configDir, Input
const string &enrollmentDir); Input
Description This function reads whatever content is present in the enrollmentDir, for example a manifest placed there by the

finalizeEnrollment() function.
This function will be called from a single process/thread.

A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

Input Parameters | configDir

enrollmentDir The read-only top-level directory in which enrollment data was placed. This directory
will contain the gallery files produced from the finalize() function. The enroliment

directory will always contain a successfully finalized gallery (i.e. will never be empty).

Return Value See General Evaluation Specifications document for all valid return code values.

8.4.7. Search

The function of Table 11 compares a proprietary identification template against the enrollment data and returns a
candidate list.

NIST API Page 14 of 15

https://pages.nist.gov/frvt/api/FRVT_common.pdf
https://pages.nist.gov/frvt/api/FRVT_common.pdf

FRVT Ongoing 1:N

222 Table 11 - Identification search
Prototype ReturnStatus identifyTemplate (
const std::vector<uint8_t> &idTemplate, Input
const uint32_t candidatelistLength, Input
std::vector<Candidate> &candidatelList); Output
Description This function searches a template against the enroliment set, and outputs a list of candidates. The candidatelList

vector will initially be empty, and the implementation shall populate the vector with candidatelListLength entries.

Input Parameters |idTemplate A template generated from the template creation function - If the value returned
by that function was non-zero the contents of idTemplate will not be used and
this function (i.e. identifyTemplate) will not be called.

candidateListLength The number of candidates the search should return
Output candidatelList A vector containing "candidateListLength " objects of candidates. The datatype is
Parameters defined in section 7.1.2. Each candidate shall be populated by the

implementation.

For face recognition: the candidates shall appear in descending order of similarity
score - i.e. most similar entries appear first.

For iris recognition: the candidates shall appear in ascending order of dissimilarity
- i.e. the least dissimilar entries appear first.

For multimodal face and iris, the candidates shall appear in descending order of
similarity score - i.e. most similar entries appear first.

Return Value See General Evaluation Specifications document for all valid return code values.

223

224 NOTE: Ordinarily the calling application will set the input candidate list length to operationally typical values, say 0 <L <
225 200, and L << N. We will measure the dependence of search duration on L.

227

NIST API Page 15 of 15

https://pages.nist.gov/frvt/api/FRVT_common.pdf

	1. FRVT 1:N and IREX 1:N
	1.1. Scope

	1.
	1.
	1.
	1.
	2. General Evaluation Specifications
	1.
	3. Core accuracy metrics
	4. Application relevance
	5. Limits
	5.1. Time limits
	5.2. Template size limits

	6. Implementation Library Filename
	7. Data structures supporting the API
	7.1. File structure for enrolled template collection
	7.1.1. Gallery Type
	7.1.2. Data structure for result of an identification search

	8. API specification
	8.1. Header File
	8.2. Namespace
	8.3. Overview
	8.4. API
	8.4.1. Interface
	8.4.2. Initialization of template creation
	8.4.3. Template Creation from one or more images of exactly one person
	8.4.4. Template Creation of one or more people detected from a face image
	8.4.5. Finalization
	8.4.6. Search Initialization
	8.4.7. Search

