Face Analysis Technology Evaluation (FATE)
MORPH

Performance of Automated Facial Morph Detection and
Morph Resistant Face Recognition Algorithms

Concept, Evaluation Plan and API
VERSION 5.0.2

Mei Ngan

Patrick Grother

Kayee Hanaoka

Information Access Division
Information Technology Laboratory

August 16, 2024

NST

National Institute of
Standards and Technology
U.S. Department of Commerce

Date

July 12, 2019
September 9, 2020
July 7, 2021

May 19, 2022

August 18, 2023
February 1, 2024

April 5, 2024

August 14, 2024

NIST

Version
2.0
2.0.1
2.1

3.0

3.0.1
5.0

5.0.1

5.0.2

FATE MORPH

Revision History

Description

Initial document

Update link to General Evaluation Specifications document

Add optional ageDeltaInDays input argument to function
detectMorphDifferentially (see Section 5.3.5)

- Remove optional ageDeltaInDays input argument to differential
morph detection function in Section 5.3.5

- Add new function to support differential morph detection with
additional subject metadata in Section 5.3.6

Updating project name from FRVT to FATE

Add new functions to perform demorphing (with and without a
reference probe photo) in Sections 5.3.8 and 5.3.9. Incrementing version
number to 5.0 to align with version of APl header file.

Updating frequency of submissions to one algorithm submission every
four calendar months (see Section 2.3).

In alighment with the draft ISO/IEC DIS 20059 standard deprecate APCER
and replace with MACER.

Concept, Evaluation Plan and API Page 2 of 14

00N O U b

(Y]

10
11
12
13

14
15
16

17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

36
37
38
39
40
41
42
43
44
45
46
47

48

FATE MORPH

Table of Contents

1. 1710 2] o N 4
1.1.) 00 -3 4
1.2. GENERAL EVALUATION SPECIFICATIONS .evvtuneerertneeerrunieerernneeeresuneessssneeessssneeesssssnsessssnesessssnesesssssnsessssnneeres 4
1.3. REP ORTING .. etuuiittettteetieetteereteerteetnneeeseessasersneessaeessnsessnssesnesssasessnsessnesssnsensnsessnesssnsessnsersnsersnsernnsennnns 4
1.4. ACCURACY IMIETRICS evutietunirtteetntesuertunersuerssersseesssessserssesssessssesssssssssesssessssssssnsssssersnesrsnsessnsessnssrsnes 4

2. RULES FOR PARTICIPATION ... cuituitiititeitcteiencierectesssssesssssesssssesssssssssssssasssssssssssssssssssssssssssssassassanss 5
2.1. IMPLEMENTATION REQUIREMENTS .. teeeeeeeeeeeee ittt e seeeeeeeeeeeaeaeseseseseeesaseeeeaesasenanseeessnenns 5
2.2. PARTICIPATION AGREEMENT 1uuivtuiettttetteetteersnserseeesaeessnsersneessnsessssessnssssssessssessnsessneessssessnsesssesssnsessnsersnns 5
2.3. NUMBER AND SCHEDULE OF SUBMISSIONS uuuevuuittneittiertniertneertntersntersneersssessssersnsersseessnsersssersseessnsessnsessnns 5
2.4, W ALIDATION 1. tttttttteti ettt ettt ettt etteetattesaaeraueessaersasessaesesasessasessansssnseesssesssnesssssesssesssnsessesessssessnesssnsenes 5

3. DATA STRUCTURES SUPPORTING THE APlccuiitiiiiiiiniiniiieiieeniniiaiieiraimimsississrsssressesssasssassses 6
3.1. SUBJECT IVIETADATA .. eettieetteeteeeeeete e e e ettt esetbeeeesataneesesaaeesstsasessssnaseerssnnssersssnseessssnsesnssnnsesnsrsneesssnnnserns 6
3.2. REQUIREIMENT 1ttuuiittueettnteeteresetersntersneeesneessasersseessseessssesssssssssessasessssessssessnsessnsessssessssessnsersnsersnsersnsennnns 6

4, IMPLEMENTATION LIBRARY FILENAMEcuciiiiiiiiiieiiieiiienieieetesesssessssssssssasssssassassassassassanss 6
4.1. FILE FORMATS AND DATA STRUCTURES ..vuuuiivvtteeeretiieeerteneeertsneessesneeessssneessssssessssneeesssssneessssnnsessssnneesssnns 6

4.1.1. Imagelabel describing the format Of AN iMQAQGEcccuveeeecuveeeesiiieeecieeeeeeeeeeveee e caee e e s caea e 6

5. API SPECIFICATION ... cuiiiiiiiiiniieniieeiaieiasieesisesississsssssesssossiosstasssssesssssssssssssssssssssssesssasssnsssnsssnsssnss 7
5.1. HEADER FILE cuuuiiittiiiiiiiie ittt ettt e et e ettt e tb e e e bt e sa e e eb e e aba e saa e s basabasesaasessassrasersasersansrsnnessnsennnns 7
5.2. INAMESPACE. ... ettueeeettteeeretteeeretteeereeteeerrsneesessnaeessssaeeesssnaeessssneessssaseessssnsessssnnesessssneeessssnseerssnsessssns 7
5.3. AP e ———————————————— ettt et aaaaeaaaeaaaeaaaaaaaeaeaeaaaeaaaaanaas 7

5.3.1. Implementation REQUITEIMENTS...........cc.uuueeeeeeeeeieiieee e e eeecttea e e e e ettt aaaaeeessssasasaaeessssssssaaaaessssanes 7
I N 11 =T g ([-SRI 7
G A A 1114 o] | 7o 14 (o] B UUPRR 8
5.3.4. Single-image MOIPh DELECLION...........ccc.eveeeeeeeeeeceieee e eeecteee e e ee sttt te e e e e e s s saaaeaaeeessssssensaaeesssnns 9
5.3.5. Two-image Differential MOIrph DEtECiONc....euueeieeeeeeciiiiieeeeeeiiiieeeeaeeeisctteaaaaeeeessssaaaaaeens 10
5.3.6. Two-image Differential Morph Detection with Subject Metadataccccevvveveeeeeeciiveenannnn. 10
5.3.7. 11 COMPALISON .c.cccccseieieieeieieeeeeeeeeee ettt ettt bttt aeaaaeaaasaaaaaasasasasasaaaaasees 11
5.3.8. Single-image DEMOIPRINGuveeeeeeeeecieeee ettt ee et eee e e e e sttt ea e e e e e st aa e e e essraanaaaeeas 12
5.3.9. Two-image Differential DEMOIPAINGoueeeeeeeeieieeeeeecceeeee e eeeccteeee e e e e sscttaaaaeeessssaaaaaaeens 13

List of Tables

Table 1 — Structure for @ SINEIE IMAEEoii e e e e te e e st e e e bt e e etbaeesabeeesstaeerasaeesateeeensteeennseas 6

LI Lo [AR I oY= £ (oY R U] o T Tot dY =) USSP 6

Table 3 — EnumMeration of iMmage @@lc..eee ittt e et e e e st e e e e ate e eeateeeeabaeeesaeeenreas 6

RIE] o] LI R Y I 0o Yot u o o [U UPPN 7

BIEL LRl LoV La =11} 4 o] o TSR UPPN 8

Table 6 — Single-image MOrph DETECLIONcoii i e e e e e e et e e e e s esate e e e e e s abaeeeeeeeessaaeeeeeensnrenaeaanns 9

Table 7 — Two-image Differential Morph DetECHIONccuiiiiiiiiiiei ettt see e st sbae e sbe e e s sabeeesans 10

Table 8 — Two-image Differential Morph Detection with Subject Metadata.........cccceriiiiiiiiiiniiic e 11

TabIE 9 = 1:1 COMPATISON euuiiiuiiiiiieieeet ettt et et et sh et et esb et e bt e sab e e bt e eabe e bt e sabe e bt e sateesabeeabeesbeeeaseenbeesabeenaeesabeesnnesaneees 12

Table 10 — Single-iMage DeMOIPRING ..c...iiitiiieiieeeeee ettt ettt st e bt e st e s bt e saseesbeesaseesaeeebeesaeesabeesneesanee e 12

Table 11 — Two-image Differential DeMOrPRING.......c.cocii ittt e sb e st e s b e saeesanee e 13

NIST Concept, Evaluation Plan and API Page 3 of 14

49

50

51
52
53
54
55
56

57

58
59

60
61

62
63

64
65

66
67
68

69

70
71
72
73

74

75
76
77
78
79
80
81
82
83
84

85

86
87
88

FATE MORPH

1. MORPH

1.1. Scope

Facial morphing (and the ability to detect it) is an area of high interest to a number of photo-credential issuance
agencies and those employing face recognition for identity verification. The FATE MORPH test will provide ongoing
independent testing of prototype facial morph detection technologies. The evaluation is designed to obtain an
assessment on morph detection capability to inform developers and current and prospective end-users. This
document establishes a concept of operations and an application programming interface (API) for evaluation of
different tasks:

1. Algorithmic capability to detect facial morphing (morphed/blended faces) in still photographs

a. Single-image morph detection of non-scanned photos, printed-and-scanned photos, and images of
unknown photo format/origin

b. Two-image differential morph detection of non-scanned photos, printed-and-scanned photos, and
images of unknown photo format/origin

2. Face recognition algorithm resistance against morphing
3. Demorphing

a. Single-image demorphing - algorithmic ability to recover images of the original identities from a
single morphed face

b. Two-image differential demorphing — algorithmic ability to recover the image of the “other
unknown identity” in a morphed image, given the availability of a reference image belonging to one
of the contributing subjects

1.2. General Evaluation Specifications

General and common information shared between all Ongoing FRTE/FATE tracks are documented in the General
Evaluation Specifications document - https://pages.nist.gov/frvt/api/FRVT_common.pdf. This includes rules for
participation, hardware and operating system environment, software requirements, reporting, and common data
structures that support the APIs.

1.3. Reporting

For all algorithms that complete the evaluation, NIST will provide performance results back to the participating
organizations. NIST may additionally report and share results with partner government agencies and interested
parties, and in workshops, conferences, conference papers, presentations and technical reports.

Important: This is a test in which NIST will identify the algorithm and the developing organization. Algorithm results
will be attributed to the developer. Results will be machine generated (i.e. scripted) and will include timing, accuracy
and other performance results. These will be provided alongside results from other implementations. Results will be
expanded and modified as additional implementations are tested, and as analyses are implemented. Results may be
regenerated on-the-fly, usually whenever additional implementations complete testing, or when new analyses are
added.

1.4. Accuracy metrics

This test will evaluate algorithmic ability to detect whether an image is a morphed/blended image of two or more
faces and/or to correctly reject 1:1 comparisons of morphed images against other images of the subjects used to
create the morph (but similarly, correctly authenticate legitimate non-morphed, mated pairs and correctly reject non-

NIST Concept, Evaluation Plan and API Page 4 of 14

https://pages.nist.gov/frvt/api/FRVT_common.pdf

89
90

91
92

93
94

95
96

97
98

99
100

101

102
103

104

105

106

107
108
109

110

111
112
113

114

115
116
117

118

119
120
121
122

FATE MORPH

morphed, non-mated pairs). Per established metrics®? for assessment of morphing attacks, NIST will compute and
report:

e Morphing Attack Classification Error Rate (MACER) — the proportion of morph attack samples incorrectly
classified as bona fide presentation

e Bona Fide Presentation Classification Error Rate (BPCER) — the proportion of bona fide samples incorrectly
classified as morphed samples

e Mated Morph Presentation Match Rate (MMPMR) - the proportion of comparisons where the morphed
image successfully authenticates against all constituents

e True Acceptance Rate (TAR) — the proportion of non-morphed, mated comparisons that correctly
authenticate

e False Match Rate (FMR) — the proportion of non-morphed, non-mated comparisons that incorrectly
authenticate

We will report the above quantities as a function of alpha (the fraction of each subject that contributed to the morph),
image compression ratio, image resolution, image size, and others.

We will also report error tradeoff plots (BPCER vs. MACER, MMPMR vs. FMR, parametric on threshold).
2. Rules for participation

2.1, Implementation Requirements

Developers are not required to implement all functions specified in this API. Developers may choose to implement
one or more functions of this APl — please refer to Section 5.3.1 for detailed information regarding implementation
requirements.

2.2, Participation agreement

A participant must properly follow, complete, and submit the FRTE/FATE MORPH Participation Agreement. This must
be done once, either prior or in conjunction with the very first algorithm submission. It is not necessary to do this for
each submitted implementation thereafter.

2.3. Number and Schedule of Submissions

Participants may send one submission as often as every four calendar months from the last submission for evaluation.
NIST reserves the right to amend this section with submission volume and frequency limits. NIST will evaluate
implementations on a first-come-first-served basis and provide results back to the participants as soon as possible.

2.4. Validation

All participants must run their software through the provided FATE MORPH validation package prior to submission.
The validation package will be made available at https://github.com/usnistgov/frvt. The purpose of validation is to
ensure consistent algorithm output between the participant’s execution and NIST’s execution. Our validation set is
not intended to provide training or test data.

1 International Organization for Standardization: Information Technology — Biometric presentation attack detection — Part 3: Testing
and reporting. ISO/IEC FDIS 30107-3:2017, JTC 1/SC 37, Geneva, Switzerland, 2017

2 U. Scherhag, A. Nautsch, C. Rathgeb, M. Gomez-Barrero, R. Veldhuis, L. Spreeuwers, M. Schils, D. Maltoni, P. Grother, S. Marcel, R.
Breithaupt, R. Raghavendra, C. Busch: "Biometric Systems under Morphing Attacks: Assessment of Morphing Techniques and
Vulnerability Reporting", in Proceedings of the IEEE 16th International Conference of the Biometrics Special Interest Group
(BIOSIG), Darmstadt, September 20-22, (2017)

NIST Concept, Evaluation Plan and API Page 5 of 14

https://www.nist.gov/sites/default/files/documents/2018/01/12/frvt_morph_participation_agreement.pdf
https://github.com/usnistgov/frvt

FATE MORPH

123 3. Data structures supporting the API

124 The data structures supporting this APl are documented in this section and in the General Evaluation Specifications
125 document available at — https://pages.nist.gov/frvt/api/FRVT_common.pdf with corresponding header file named
126 frvt_structs.h published at https://github.com/usnistgov/frvt.

127 3.1. Subject Metadata

128 Data structure representing information about a subject.

129 Table 1 - Structure for a single image

C++ code fragment Remarks
typedef struct SubjectMetadata

{

Sex sex; Sex of the subject

intl6_t ageInMonths; Age of subject (in months) in probe image; -1 indicates an
unassigned value

intl6_t ageDeltaInMonths; Age/time difference (in months) between probe and reference

image; -1 indicates an unassigned value

} SubjectMetadata;

130
131 Table 2 - Labels for subject sex
Label as C++ enumeration Meaning
enum class Sex {
Unknown=0, Either the label is unknown or unassigned
Female,
Male,
bi
132

133 3.2, Requirement
134 FATE MORPH participants should implement the relevant C++ prototyped interfaces of section 5. C++ was chosen in

135 order to make use of some object-oriented features. Any functions that are not implemented should return
136 ReturnCode: :NotImplemented.
137 4. Implementation Library Filename

138 The core library shall be named as libfrvt_morph_<provider>_<sequence>.so, with

139 e provider: single word, non-infringing name of the main provider. Example: acme

140 e sequence: a three digit decimal identifier to start at 000 and incremented by 1 every time a library is sent to
141 NIST. Example: 007

142

143 Example core library names: libfrvt_morph_acme_000.so, libfrvt_morph_mycompany_006.so.

144 Important: Public results will be attributed with the provider name and the 3-digit sequence number in the submitted

145 library name.
146 4.1. File formats and data structures

147 4.1.1. ImagelLabel describing the format of an image

148 Table 3 — Enumeration of image label

NIST Concept, Evaluation Plan and API Page 6 of 14

https://pages.nist.gov/frvt/api/FRVT_common.pdf
https://github.com/usnistgov/frvt

149

150

151
152
153

154

155
156

157

158
159

160

161

162
163
164

165

166
167

168

169

170

171
172

FATE MORPH

Return code as C++ enumeration Meaning

enum class ImageLabel {
Unknown=0, Image origin is unknown or unassigned
NonScanned=1 Non-scanned photo
Scanned=2, Printed-and-scanned photo

5. API specification

Please note that included with the FATE MORPH validation package (available at https://github.com/usnistgov/frvt) is
a “null” implementation of this API. The null implementation has no real functionality but demonstrates mechanically
how one could go about implementing this API.

5.1. Header File

The prototypes from this document will be written to a file named frvt_morph.h and will be available to implementers
at https://github.com/usnistgov/frvt.

5.2, Namespace

All supporting data structures will be declared in the FRVT namespace. All APl interfaces/function calls for this track
will be declared in the FRVT MORPH namespace.

5.3. API

5.3.1. Implementation Requirements

Developers are not required to implement all functions specified in this API. Developers may choose to implement
one or more functions of Table 4, but at a minimum, developers must submit a library that implements
1. Interface of Section 5.3.2,

2. initialize () of Section 5.3.3, and

3. AT LEAST one of the functions from Table 4. For any other function that is not implemented, the function
shall return ReturnCode: :NotImplemented.

Table 4 — API Functions

Function Section

detectMorph() — single image morph detection of 5.3.4
e Non-scanned photo
e Printed-and-scanned photo
e Image of unknown format

detectMorphDifferentially() — two image differential 5.3.5
morph detection of
e Non-scanned photo
e Printed-and-scanned photo
e Image of unknown format

comparelmages() — 1:1 comparison 5.3.6

5.3.2. Interface

The software under test must implement the interface Interface by subclassing this class and implementing AT
LEAST ONE of the methods specified therein.

NIST Concept, Evaluation Plan and API Page 7 of 14

https://github.com/usnistgov/frvt
https://github.com/usnistgov/frvt

173
174
175

176

177
178

179

180

FATE MORPH

C++ code fragment Remarks
1. |Class MorphInterface
2.

public:

3. static std::shared ptr<Interface> getImplementation(); Factory method to return a managed pointer
to the Interface object. This function is
implemented by the submitted library and
must return a managed pointer to the
Interface object.

4. // Other functions to implement

S. |}

There is one class (static) method declared in Interface. getImplementation () which must also be
implemented. This method returns a shared pointer to the object of the interface type, an instantiation of the
implementation class. A typical implementation of this method is also shown below as an example.

C++ code fragment

Remarks

NullImpl::

{
}

#include “frvt morph.h”

using namespace FRVT MORPH;
NullImpl () { }
NullImpl::~ NullImpl () { }

std::shared ptr<Interface>
Interface::getImplementation ()

return std::make shared<NullImpl>() ;

// Other implemented functions

5.3.3. Initialization

Before any morph detection or matching calls are made, the NIST test harness will call the initialization function of
Table 5. This function will be called BEFORE any calls to fork() are made. This function must be implemented.

Table 5 - Initialization

Prototype ReturnStatus initialize(
const std::string &configDir, Input
const std::string& configValue); Input
Description This function initializes the implementation under test and sets all needed parameters in preparation for template

creation. This function will be called N=1 times by the NIST application, prior to parallelizing M >= 1 calls to any
morph detection or matching functions via fork () .

This function will be called from a single process/thread.

Input Parameters | configDir A read-only directory containing any developer-supplied configuration parameters or

run-time data files.
configValue An optional string value encoding algorithm-specific configuration parameters.

Developers may provide documentation for such configuration parameter(s) in their
submission to NIST. Otherwise, the default value for this parameter will be an
emptry string.

Output None

Parameters

Return Value

See General Evaluation Specifications document for all valid return code values. This function must be

implemented.

NIST

Concept, Evaluation Plan and API Page 8 of 14

181

182
183
184
185
186

187

188
189

190

191
192
193

194

195
196

197
198
199

200

FATE MORPH

5.3.4. Single-image Morph Detection

The function of Table 6 evaluates morph detection on non-scanned photos, scanned photos, and photos of unknown
formats. A single image along with an associated image label describing the image format/origin is provided to the
function for detection of morphing. Both morphed images and non-morphed images will be used, which will support
measurement of a morphing attack classification error rate (MACER) with a bona fide presentation classification error
rate (BPCER).

Non-scanned photos

Non-scanned photos are digital images known to not have been printed and scanned back in. There are a number of
operational use-cases for morph detection on such digital images.

Scanned photos

While there are existing techniques to detect manipulation of a digital image, once the image has been printed and
scanned back in, it leaves virtually no traces of the original image ever being manipulated. So the ability to detect
whether a printed-and-scanned image contains a morph warrants investigation.

Photos of unknown format

In some cases, the format and/or origin of the image in question is not known, so images with “unknown” labels will
also be tested.

Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on
different computers.

Table 6 - Single-image Morph Detection

Prototypes ReturnStatus detectMorph(
const Image &suspectedMorph, Input
const Imagelabel &label, Input
bool &isMorph, Output
double &score); Output
Description This function takes an input image and associated image label describing the image format/origin, and outputs a

binary decision on whether the image is a morph and a "morphiness" score on [0, 1] indicating how confident the
algorithm thinks the image is a morph, with 0 meaning confidence that the image is not a morph and 1
representing absolute confidence that it is a morph.

Input suspectedMorph | Input Image

Parameters label ImageLabel (Section 4.1.1) describing the format of the input image
e NonScanned = non-scanned digital photo

e Scanned = a photo that is printed, then scanned

e Unknown = unknown photo format/origin

Output isMorph True if image contains a morph; False otherwise

Parameters score A score on [0, 1] representing how confident the algorithm is that the image contains a
morph. 0 means certainty that image does not contain a morph and 1 represents certainty
that image contains a morph.

Return Value | See General Evaluation Specifications document for all valid return code values.
If this function is not implemented, the return code should be set to ReturnCode: :NotImplemented.
If this function is not implemented for a certain type of image, for example, the function supports non-scanned

photos but not scanned photos, then the function should return ReturnCode: : Not Implemented when the
function is called with the particular unsupported image type.

NIST Concept, Evaluation Plan and API Page 9 of 14

FATE MORPH

201 5.3.5. Two-image Differential Morph Detection

202 Two face samples are provided to the function of Table 7 as input, the first being a suspected morphed facial image
203 and the second image representing a known, non-morphed face image of one of the subjects contributing to the
204 morph (e.g., live capture image from an eGate). This procedure supports measurement of whether algorithms can
205 detect morphed images when additional information (provided as the second supporting known subject image) is
206 provided.

207 Similar to single-image morph detection, the function of Table 7 will support non-scanned, scanned, and photos of
208 unknown format/origin. The input image type will be specified by the associated ImagelLabel input parameter.

209 Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on
210 different computers.

211 Table 7 - Two-image Differential Morph Detection

Prototypes ReturnStatus detectMorphDifferentially(
const Image &suspectedMorph, Input
const ImageLabel &label, Input
const Image &probeFace, Input
bool &isMorph, Output
double &score); Output

Description This function takes two input images - a known unaltered/not morphed image of the subject (probeFace) and

an image of the same subject that's in question (may or may not be a morph) (suspectedMorph) with an
associated image label describing the image format/origin. This function outputs a binary decision on whether
suspectedMorph isa morph (given probeFace as a prior) and a "morphiness" score on [0, 1] indicating
how confident the algorithm thinks the suspectedMorph is a morph, with 0 meaning confidence that the
suspectedMorph is not a morph and 1 representing absolute confidence that it is a morph.

Input suspectedMorph | Input Image
Parameters

label Imagelabel (Section 4.1.1) describing the format of the suspected morph image
e NonScanned = non-scanned digital photo

e Scanned = a photo that is printed, then scanned

e Unknown = unknown photo format/origin

probeFace An image of the subject known not to be a morph (e.g., live capture image)
Output isMorph True if image contains a morph; False otherwise
Parameters score A score on [0, 1] representing how confident the algorithm is that the image contains a

morph. 0 means certainty that image does not contain a morph and 1 represents certainty
that image contains a morph.

Return Value |See General Evaluation Specifications document for all valid return code values.
If this function is not implemented, the return code should be set to ReturnCode: :NotImplemented.
If this function is not implemented for a certain type of image, for example, the function supports non-scanned

photos but not scanned photos, then the function should return ReturnCode: : Not Implemented when the
function is called with the particular unsupported image type.

212 5.3.6. Two-image Differential Morph Detection with Subject Metadata

213 Two face samples are provided to the function of Table 8 as input, the first being a suspected morphed facial image
214 and the second image representing a known, non-morphed face image of one of the subjects contributing to the

215 morph (e.g., live capture image from an eGate). In addition, subject metadata is provided as input to the algorithm,
216 which includes sex, age of the subject (in months) at the time the probe image is taken, and the age/time difference
217 (in months) between the suspected morph and the live probe image. Operationally, this information might be derived
218 from data read from the machine readable zone of a passport for example. This procedure supports measurement of
219 whether algorithms can detect morphed images when additional subject metadata is provided.

NIST Concept, Evaluation Plan and API Page 10 of 14

220

221
222

223

224

225

226
227
228
229
230
231
232

233

FATE MORPH

Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on
different computers.

Table 8 — Two-image Differential Morph Detection with Subject Metadata

Prototypes ReturnStatus detectMorphDifferentially(
const Image &suspectedMorph, Input
const Imagelabel &label, Input
const Image &probeFace, Input
const SubjectMetadata &subjectMetadata, Input
bool &isMorph, Output
double &score); Output
Description This function takes two input images - a known unaltered/not morphed image of the subject (probeFace) and
an image of the same subject that's in question (may or may not be a morph) (suspectedMorph) with an
associated image label describing the image format/origin. Additionally, subject metadata is provided as input to
the algorithm, which include sex, age of the subject (in months) at the time the probe image is taken, and the
age/time difference (in months) between the suspected morph and the live probe image. This function outputs a
binary decision on whether suspectedMorph is a morph (given probeFace as a prior) and a "morphiness"
score on [0, 1] indicating how confident the algorithm thinks the suspectedMorph is a morph, with 0 meaning
confidence that the suspectedMorph is not a morph and 1 representing absolute confidence that it is a
morph.
Input suspectedMorph | Input Image
Parameters
label Imagelabel (Section 4.1.1) describing the format of the suspected morph image
e NonScanned = non-scanned digital photo
e Scanned = a photo that is printed, then scanned
e Unknown = unknown photo format/origin
probeFace An image of the subject known not to be a morph (e.g., live capture image)
subjectMetadata | SubjectMetadata (Section 3.1) with information about the subject
Output isMorph True if image contains a morph; False otherwise
Parameters score A score on [0, 1] representing how confident the algorithm is that the image contains a
morph. 0 means certainty that image does not contain a morph and 1 represents certainty
that image contains a morph.
Return Value |See General Evaluation Specifications document for all valid return code values.
If this function is not implemented, the return code should be set to ReturnCode: :NotImplemented.
If this function is not implemented for a certain type of image, for example, the function supports non-scanned
photos but not scanned photos, then the function should return ReturnCode: : Not Implemented when the
function is called with the particular unsupported image type.

5.3.7.

1:1 Comparison

Two face samples are provided to the function of Table 9 for one-to-one comparison of whether the two images are of
the same subject. The expected behavior from the algorithm is to be able to correctly reject comparisons of morphed
images against constituents that contributed to the morph. The goal is to show algorithm robustness against
morphing alterations when morphed images are compared against other images of the subjects used for morphing.
Comparisons of morphed images against constituents should return a low similarity score, indicating rejection of
match. Comparisons of unaltered/non-morphed images of the same subject should return a high similarity score,
indicating acceptance of match.

NIST

Concept, Evaluation Plan and API Page 11 of 14

FATE MORPH

234 Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on
235 different computers.
236 Table 9 - 1:1 Comparison
Prototypes ReturnStatus comparelmages(
const Image &enrollimage, Input
const Image &verifimage, Input
double &similarity); Output
Description This function compares two images and outputs a similarity score. In the event the algorithm cannot perform the
comparison operation, the similarity score shall be set to -1.0 and the function return code value shall be set
appropriately.
Input enrollimage The enrollment image
Parameters
verifimage The verification image
Output similarity A similarity score resulting from comparison of the two images, on the range [0,DBL_MAX].
Parameters
Return Value |See General Evaluation Specifications document for all valid return code values.
If this function is not implemented, the return code should be set to ReturnCode: :NotImplemented.
237 5.3.8. Single-image Demorphing
238 The function of Table 10 evaluates single-image “demorphing” — algorithmic ability to recover images of both
239 identities simultaneously from a single morphed face. The goal is to show algorithm ability to accurately restore the
240 identities of the contributing subjects if the image is a morph. All morphs will be generated with two contributing

241 subjects, and both morphed and non-morphed images will be evaluated. If the input image is a morph, the algorithm
242 should deduce/restore the two individual face images/identities that contributed to the morph. If the inputis a bona
243 fide image, the algorithm should produce two images/identities that are essentially the same as the input photo. NIST
244 will report performance by analyzing face recognition outcomes between the original and restored imagery.

245

246 Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on
247 different computers.

248 Table 10 — Single-image Demorphing
Prototypes ReturnStatus demorph(
const Image &suspectedMorph, Input
Image &outputSubjectl, Output
Image &outputSubject2, Output

bool &isMorph, Output (OPTIONAL)

double &score); Output (OPTIONAL)

Description This function takes an input image and outputs two images. If the input image is a morph, the algorithm should
deduce/restore the two individual face images/identities that contributed to the morph. If the input is a bona
fide image, the algorithm should produce two images that are essentially the same as the input photo.

Optionally, the algorithm can also return a binary decision on whether the image is a morph and a "morphiness"
score on [0, 1] indicating how confident the algorithm thinks the image is a morph, with 0 meaning confidence
that the image is not a morph and 1 representing absolute confidence that it is a morph. A score of -1.0 indicates
that the algorithm did not implement morph detection and both “isMorph” and “score” will be ignored.

Input suspectedMorph Input Image

Parameters

Output outputSubjectl If the input image is a morph, the algorithm should deduce/restore the two individual
Parameters outputSubject2 face images/identities that contributed to the morph. If the input is a bona fide image,

NIST Concept, Evaluation Plan and API Page 12 of 14

249

250
251
252
253
254
255
256
257

258

259
260

261

FATE MORPH

the algorithm should produce two images that are essentially the same as the input

photo.
isMorph (optional) True if image contains a morph; False otherwise
score (optional) A score on [0, 1] representing how confident the algorithm is that the image contains a

morph. 0 means certainty that image does not contain a morph and 1 represents
certainty that image contains a morph. A score of -1.0 indicates that the algorithm did
not implement morph detection and both “isMorph” and “score” will be ignored.

Return Value | See General Evaluation Specifications document for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode: :NotImplemented.

5.3.9. Two-image Differential Demorphing

The function of Table 11 evaluates two-image differential “demorphing” — algorithmic ability to recover the image of
the “other unknown identity” in a morphed image, given the availability of a reference image belonging to one of the
contributing subjects. The goal is to show algorithm ability to accurately restore the identity of the second subject if
the image is a morph. All morphs will be generated with two contributing subjects, and both morphed and non-
morphed images will be evaluated. If the input image is a morph, the algorithm should deduce/restore the
second/unknown individual face image/identity that contributed to the morph. If the input is a bona fide image, the
algorithm should produce an image/identity that is essentially the same as the input photo. NIST will report
performance by analyzing face recognition outcomes between the original and restored imagery.

Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on
different computers.

Table 11 — Two-image Differential Demorphing

Prototypes ReturnStatus demorphDifferentially(
const Image &suspectedMorph, Input
const Image &probeFace, Input
Image &outputSubject, Output
bool &isMorph, Output (OPTIONAL)
double &score); Output (OPTIONAL)
Description This function takes two input images - a known unaltered/not morphed image of the subject (probeFace) and

an image of the same subject that's in question (may or may not be a morph) (suspectedMorph). If the input
image is a morph, the algorithm should deduce/restore the other/unknown individual face image/identity that
contributed to the morph. If the input is a bona fide image, the algorithm should produce an image that is
essentially the same as the input photo.

Optionally, the algorithm can also return a binary decision on whether the image is a morph and a "morphiness”
score on [0, 1] indicating how confident the algorithm thinks the image is a morph, with 0 meaning confidence
that the image is not a morph and 1 representing absolute confidence that it is a morph. A score of -1.0 indicates
that the algorithm did not implement morph detection and both “isMorph” and “score” will be ignored.

Input suspectedMorph Input Image
Parameters probeFace An image of the subject known not to be a morph (e.g., live capture image)
Output outputSubject If the input image is a morph, the algorithm should deduce/restore the other/unknown
Parameters individual face image/identity that contributed to the morph. If the input is a bona fide
image, the algorithm should produce an image that is essentially the same as the input
photo.
isMorph (optional) True if image contains a morph; False otherwise
score (optional) A score on [0, 1] representing how confident the algorithm is that the image contains a
morph. 0 means certainty that image does not contain a morph and 1 represents
certainty that image contains a morph. A score of -1.0 indicates that the algorithm did
not implement morph detection and both “isMorph” and “score” will be ignored.

NIST Concept, Evaluation Plan and API Page 13 of 14

262

FATE MORPH

Return Value

See General Evaluation Specifications document for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode: :Not Implemented.

NIST

Concept, Evaluation Plan and API

Page 14 of 14

	1. MORPH
	1.1. Scope
	1.2. General Evaluation Specifications
	1.3. Reporting
	1.4. Accuracy metrics

	2. Rules for participation
	2.1. Implementation Requirements
	2.2. Participation agreement
	2.3. Number and Schedule of Submissions
	2.4. Validation

	3. Data structures supporting the API
	3.1. Subject Metadata
	3.2. Requirement

	4. Implementation Library Filename
	4.1. File formats and data structures
	4.1.1. ImageLabel describing the format of an image

	5. API specification
	5.1. Header File
	5.2. Namespace
	5.3. API
	5.3.1. Implementation Requirements
	5.3.2. Interface
	5.3.3. Initialization
	5.3.4. Single-image Morph Detection
	Non-scanned photos
	Scanned photos
	Photos of unknown format

	5.3.5. Two-image Differential Morph Detection
	5.3.6. Two-image Differential Morph Detection with Subject Metadata
	5.3.7. 1:1 Comparison
	5.3.8. Single-image Demorphing
	5.3.9. Two-image Differential Demorphing

