

Face Analysis Technology Evaluation (FATE)
MORPH

Performance of Automated Facial Morph Detection and
Morph Resistant Face Recognition Algorithms

Concept, Evaluation Plan and API
VERSION 5.0.2

Mei Ngan

Patrick Grother
Kayee Hanaoka

Information Access Division
Information Technology Laboratory

August 16, 2024

FATE MORPH

NIST Concept, Evaluation Plan and API Page 2 of 14

Revision History

 1

Date Version Description

July 12, 2019 2.0 Initial document

September 9, 2020 2.0.1 Update link to General Evaluation Specifications document

July 7, 2021 2.1 Add optional ageDeltaInDays input argument to function
detectMorphDifferentially (see Section 5.3.5)

May 19, 2022 3.0 - Remove optional ageDeltaInDays input argument to differential
morph detection function in Section 5.3.5

- Add new function to support differential morph detection with
additional subject metadata in Section 5.3.6

August 18, 2023 3.0.1 Updating project name from FRVT to FATE

February 1, 2024 5.0 Add new functions to perform demorphing (with and without a
reference probe photo) in Sections 5.3.8 and 5.3.9. Incrementing version
number to 5.0 to align with version of API header file.

April 5, 2024 5.0.1 Updating frequency of submissions to one algorithm submission every
four calendar months (see Section 2.3).

August 14, 2024 5.0.2 In alignment with the draft ISO/IEC DIS 20059 standard deprecate APCER
and replace with MACER.

 2

FATE MORPH

NIST Concept, Evaluation Plan and API Page 3 of 14

Table of Contents 3

1. MORPH .. 4 4

1.1. SCOPE ... 4 5

1.2. GENERAL EVALUATION SPECIFICATIONS .. 4 6

1.3. REPORTING .. 4 7

1.4. ACCURACY METRICS .. 4 8

2. RULES FOR PARTICIPATION ... 5 9

2.1. IMPLEMENTATION REQUIREMENTS .. 5 10

2.2. PARTICIPATION AGREEMENT ... 5 11

2.3. NUMBER AND SCHEDULE OF SUBMISSIONS ... 5 12

2.4. VALIDATION ... 5 13

3. DATA STRUCTURES SUPPORTING THE API ... 6 14

3.1. SUBJECT METADATA ... 6 15

3.2. REQUIREMENT ... 6 16

4. IMPLEMENTATION LIBRARY FILENAME ... 6 17

4.1. FILE FORMATS AND DATA STRUCTURES ... 6 18

4.1.1. ImageLabel describing the format of an image ... 6 19

5. API SPECIFICATION ... 7 20

5.1. HEADER FILE .. 7 21

5.2. NAMESPACE... 7 22

5.3. API .. 7 23

5.3.1. Implementation Requirements ... 7 24

5.3.2. Interface .. 7 25

5.3.3. Initialization .. 8 26

5.3.4. Single-image Morph Detection ... 9 27

5.3.5. Two-image Differential Morph Detection .. 10 28

5.3.6. Two-image Differential Morph Detection with Subject Metadata .. 10 29

5.3.7. 1:1 Comparison ... 11 30

5.3.8. Single-image Demorphing .. 12 31

5.3.9. Two-image Differential Demorphing .. 13 32

 33

 34

List of Tables 35

Table 1 – Structure for a single image ... 6 36
Table 2 - Labels for subject sex .. 6 37
Table 3 – Enumeration of image label ... 6 38
Table 4 – API Functions .. 7 39
Table 5 – Initialization .. 8 40
Table 6 – Single-image Morph Detection .. 9 41
Table 7 – Two-image Differential Morph Detection .. 10 42
Table 8 – Two-image Differential Morph Detection with Subject Metadata .. 11 43
Table 9 – 1:1 Comparison .. 12 44
Table 10 – Single-image Demorphing .. 12 45
Table 11 – Two-image Differential Demorphing.. 13 46
 47

48

FATE MORPH

NIST Concept, Evaluation Plan and API Page 4 of 14

1. MORPH 49

1.1. Scope 50

Facial morphing (and the ability to detect it) is an area of high interest to a number of photo-credential issuance 51
agencies and those employing face recognition for identity verification. The FATE MORPH test will provide ongoing 52
independent testing of prototype facial morph detection technologies. The evaluation is designed to obtain an 53
assessment on morph detection capability to inform developers and current and prospective end-users. This 54
document establishes a concept of operations and an application programming interface (API) for evaluation of 55
different tasks: 56

1. Algorithmic capability to detect facial morphing (morphed/blended faces) in still photographs 57

a. Single-image morph detection of non-scanned photos, printed-and-scanned photos, and images of 58
unknown photo format/origin 59

b. Two-image differential morph detection of non-scanned photos, printed-and-scanned photos, and 60
images of unknown photo format/origin 61

2. Face recognition algorithm resistance against morphing 62

3. Demorphing 63

a. Single-image demorphing - algorithmic ability to recover images of the original identities from a 64
single morphed face 65

b. Two-image differential demorphing – algorithmic ability to recover the image of the “other 66
unknown identity” in a morphed image, given the availability of a reference image belonging to one 67
of the contributing subjects 68

1.2. General Evaluation Specifications 69

General and common information shared between all Ongoing FRTE/FATE tracks are documented in the General 70
Evaluation Specifications document - https://pages.nist.gov/frvt/api/FRVT_common.pdf. This includes rules for 71
participation, hardware and operating system environment, software requirements, reporting, and common data 72
structures that support the APIs. 73

1.3. Reporting 74

For all algorithms that complete the evaluation, NIST will provide performance results back to the participating 75
organizations. NIST may additionally report and share results with partner government agencies and interested 76
parties, and in workshops, conferences, conference papers, presentations and technical reports. 77
 78
Important: This is a test in which NIST will identify the algorithm and the developing organization. Algorithm results 79
will be attributed to the developer. Results will be machine generated (i.e. scripted) and will include timing, accuracy 80
and other performance results. These will be provided alongside results from other implementations. Results will be 81
expanded and modified as additional implementations are tested, and as analyses are implemented. Results may be 82
regenerated on-the-fly, usually whenever additional implementations complete testing, or when new analyses are 83
added. 84

1.4. Accuracy metrics 85

This test will evaluate algorithmic ability to detect whether an image is a morphed/blended image of two or more 86
faces and/or to correctly reject 1:1 comparisons of morphed images against other images of the subjects used to 87
create the morph (but similarly, correctly authenticate legitimate non-morphed, mated pairs and correctly reject non-88

https://pages.nist.gov/frvt/api/FRVT_common.pdf

FATE MORPH

NIST Concept, Evaluation Plan and API Page 5 of 14

morphed, non-mated pairs). Per established metrics1,2 for assessment of morphing attacks, NIST will compute and 89
report: 90

• Morphing Attack Classification Error Rate (MACER) – the proportion of morph attack samples incorrectly 91
classified as bona fide presentation 92

• Bona Fide Presentation Classification Error Rate (BPCER) – the proportion of bona fide samples incorrectly 93
classified as morphed samples 94

• Mated Morph Presentation Match Rate (MMPMR) - the proportion of comparisons where the morphed 95
image successfully authenticates against all constituents 96

• True Acceptance Rate (TAR) – the proportion of non-morphed, mated comparisons that correctly 97
authenticate 98

• False Match Rate (FMR) – the proportion of non-morphed, non-mated comparisons that incorrectly 99
authenticate 100

 101

We will report the above quantities as a function of alpha (the fraction of each subject that contributed to the morph), 102
image compression ratio, image resolution, image size, and others. 103

We will also report error tradeoff plots (BPCER vs. MACER, MMPMR vs. FMR, parametric on threshold). 104

2. Rules for participation 105

2.1. Implementation Requirements 106

Developers are not required to implement all functions specified in this API. Developers may choose to implement 107
one or more functions of this API – please refer to Section 5.3.1 for detailed information regarding implementation 108
requirements. 109

2.2. Participation agreement 110

A participant must properly follow, complete, and submit the FRTE/FATE MORPH Participation Agreement. This must 111
be done once, either prior or in conjunction with the very first algorithm submission. It is not necessary to do this for 112
each submitted implementation thereafter. 113

2.3. Number and Schedule of Submissions 114

Participants may send one submission as often as every four calendar months from the last submission for evaluation. 115
NIST reserves the right to amend this section with submission volume and frequency limits. NIST will evaluate 116
implementations on a first-come-first-served basis and provide results back to the participants as soon as possible. 117

2.4. Validation 118

All participants must run their software through the provided FATE MORPH validation package prior to submission. 119
The validation package will be made available at https://github.com/usnistgov/frvt. The purpose of validation is to 120
ensure consistent algorithm output between the participant’s execution and NIST’s execution. Our validation set is 121
not intended to provide training or test data. 122

1 International Organization for Standardization: Information Technology – Biometric presentation attack detection – Part 3: Testing
and reporting. ISO/IEC FDIS 30107-3:2017, JTC 1/SC 37, Geneva, Switzerland, 2017

2 U. Scherhag, A. Nautsch, C. Rathgeb, M. Gomez-Barrero, R. Veldhuis, L. Spreeuwers, M. Schils, D. Maltoni, P. Grother, S. Marcel, R.
Breithaupt, R. Raghavendra, C. Busch: "Biometric Systems under Morphing Attacks: Assessment of Morphing Techniques and
Vulnerability Reporting", in Proceedings of the IEEE 16th International Conference of the Biometrics Special Interest Group
(BIOSIG), Darmstadt, September 20-22, (2017)

https://www.nist.gov/sites/default/files/documents/2018/01/12/frvt_morph_participation_agreement.pdf
https://github.com/usnistgov/frvt

FATE MORPH

NIST Concept, Evaluation Plan and API Page 6 of 14

3. Data structures supporting the API 123

The data structures supporting this API are documented in this section and in the General Evaluation Specifications 124
document available at – https://pages.nist.gov/frvt/api/FRVT_common.pdf with corresponding header file named 125
frvt_structs.h published at https://github.com/usnistgov/frvt. 126

3.1. Subject Metadata 127

Data structure representing information about a subject. 128

Table 1 – Structure for a single image 129

C++ code fragment Remarks
typedef struct SubjectMetadata
{
 Sex sex; Sex of the subject
 int16_t ageInMonths; Age of subject (in months) in probe image; -1 indicates an

unassigned value
 int16_t ageDeltaInMonths; Age/time difference (in months) between probe and reference

image; -1 indicates an unassigned value
} SubjectMetadata;

 130

Table 2 - Labels for subject sex 131

Label as C++ enumeration Meaning
enum class Sex {
 Unknown=0, Either the label is unknown or unassigned
 Female,
 Male,
};

 132

3.2. Requirement 133

FATE MORPH participants should implement the relevant C++ prototyped interfaces of section 5. C++ was chosen in 134
order to make use of some object-oriented features. Any functions that are not implemented should return 135
ReturnCode::NotImplemented. 136

4. Implementation Library Filename 137

The core library shall be named as libfrvt_morph_<provider>_<sequence>.so, with 138

• provider: single word, non-infringing name of the main provider. Example: acme 139

• sequence: a three digit decimal identifier to start at 000 and incremented by 1 every time a library is sent to 140
NIST. Example: 007 141

 142
Example core library names: libfrvt_morph_acme_000.so, libfrvt_morph_mycompany_006.so. 143
Important: Public results will be attributed with the provider name and the 3-digit sequence number in the submitted 144
library name. 145

4.1. File formats and data structures 146

4.1.1. ImageLabel describing the format of an image 147

Table 3 – Enumeration of image label 148

https://pages.nist.gov/frvt/api/FRVT_common.pdf
https://github.com/usnistgov/frvt

FATE MORPH

NIST Concept, Evaluation Plan and API Page 7 of 14

Return code as C++ enumeration Meaning
enum class ImageLabel {
 Unknown=0, Image origin is unknown or unassigned
 NonScanned=1 Non-scanned photo
 Scanned=2, Printed-and-scanned photo
};

 149

5. API specification 150

Please note that included with the FATE MORPH validation package (available at https://github.com/usnistgov/frvt) is 151
a “null” implementation of this API. The null implementation has no real functionality but demonstrates mechanically 152
how one could go about implementing this API. 153

5.1. Header File 154

The prototypes from this document will be written to a file named frvt_morph.h and will be available to implementers 155
at https://github.com/usnistgov/frvt. 156

5.2. Namespace 157

All supporting data structures will be declared in the FRVT namespace. All API interfaces/function calls for this track 158
will be declared in the FRVT_MORPH namespace. 159

5.3. API 160

5.3.1. Implementation Requirements 161

Developers are not required to implement all functions specified in this API. Developers may choose to implement 162
one or more functions of Table 4, but at a minimum, developers must submit a library that implements 163

1. Interface of Section 5.3.2, 164

2. initialize() of Section 5.3.3, and 165

3. AT LEAST one of the functions from Table 4. For any other function that is not implemented, the function 166
shall return ReturnCode::NotImplemented. 167

Table 4 – API Functions 168

Function Section

detectMorph() – single image morph detection of
• Non-scanned photo

• Printed-and-scanned photo

• Image of unknown format

5.3.4

detectMorphDifferentially() – two image differential
morph detection of

• Non-scanned photo

• Printed-and-scanned photo
• Image of unknown format

5.3.5

compareImages() – 1:1 comparison 5.3.6

 169

5.3.2. Interface 170

The software under test must implement the interface Interface by subclassing this class and implementing AT 171
LEAST ONE of the methods specified therein. 172

https://github.com/usnistgov/frvt
https://github.com/usnistgov/frvt

FATE MORPH

NIST Concept, Evaluation Plan and API Page 8 of 14

 C++ code fragment Remarks
1. Class MorphInterface
2. {

public:

3. static std::shared_ptr<Interface> getImplementation(); Factory method to return a managed pointer
to the Interface object. This function is
implemented by the submitted library and
must return a managed pointer to the
Interface object.

4. // Other functions to implement
5. };

There is one class (static) method declared in Interface. getImplementation() which must also be 173
implemented. This method returns a shared pointer to the object of the interface type, an instantiation of the 174
implementation class. A typical implementation of this method is also shown below as an example. 175

 C++ code fragment Remarks
 #include “frvt_morph.h”

using namespace FRVT_MORPH;

NullImpl:: NullImpl () { }

NullImpl::~ NullImpl () { }

std::shared_ptr<Interface>

Interface::getImplementation()

{

 return std::make_shared<NullImpl>();

}

// Other implemented functions

5.3.3. Initialization 176

Before any morph detection or matching calls are made, the NIST test harness will call the initialization function of 177
Table 5. This function will be called BEFORE any calls to fork() are made. This function must be implemented. 178

Table 5 – Initialization 179

Prototype ReturnStatus initialize(

const std::string &configDir, Input

const std::string& configValue); Input

Description

This function initializes the implementation under test and sets all needed parameters in preparation for template
creation. This function will be called N=1 times by the NIST application, prior to parallelizing M >= 1 calls to any
morph detection or matching functions via fork().

This function will be called from a single process/thread.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

configValue An optional string value encoding algorithm-specific configuration parameters.
Developers may provide documentation for such configuration parameter(s) in their
submission to NIST. Otherwise, the default value for this parameter will be an
emptry string.

Output
Parameters

None

Return Value See General Evaluation Specifications document for all valid return code values. This function must be
implemented.

 180

FATE MORPH

NIST Concept, Evaluation Plan and API Page 9 of 14

5.3.4. Single-image Morph Detection 181

The function of Table 6 evaluates morph detection on non-scanned photos, scanned photos, and photos of unknown 182
formats. A single image along with an associated image label describing the image format/origin is provided to the 183
function for detection of morphing. Both morphed images and non-morphed images will be used, which will support 184
measurement of a morphing attack classification error rate (MACER) with a bona fide presentation classification error 185
rate (BPCER). 186

Non-scanned photos 187

Non-scanned photos are digital images known to not have been printed and scanned back in. There are a number of 188
operational use-cases for morph detection on such digital images. 189

Scanned photos 190

While there are existing techniques to detect manipulation of a digital image, once the image has been printed and 191
scanned back in, it leaves virtually no traces of the original image ever being manipulated. So the ability to detect 192
whether a printed-and-scanned image contains a morph warrants investigation. 193

Photos of unknown format 194

In some cases, the format and/or origin of the image in question is not known, so images with “unknown” labels will 195
also be tested. 196

 197

Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on 198
different computers. 199

Table 6 – Single-image Morph Detection 200

Prototypes ReturnStatus detectMorph(

const Image &suspectedMorph, Input

const ImageLabel &label, Input

bool &isMorph, Output

double &score); Output

Description This function takes an input image and associated image label describing the image format/origin, and outputs a
binary decision on whether the image is a morph and a "morphiness" score on [0, 1] indicating how confident the
algorithm thinks the image is a morph, with 0 meaning confidence that the image is not a morph and 1
representing absolute confidence that it is a morph.

Input
Parameters

suspectedMorph Input Image

label ImageLabel (Section 4.1.1) describing the format of the input image

• NonScanned = non-scanned digital photo

• Scanned = a photo that is printed, then scanned

• Unknown = unknown photo format/origin

Output
Parameters

isMorph True if image contains a morph; False otherwise

score A score on [0, 1] representing how confident the algorithm is that the image contains a
morph. 0 means certainty that image does not contain a morph and 1 represents certainty
that image contains a morph.

Return Value See General Evaluation Specifications document for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode::NotImplemented.

If this function is not implemented for a certain type of image, for example, the function supports non-scanned
photos but not scanned photos, then the function should return ReturnCode::NotImplemented when the
function is called with the particular unsupported image type.

FATE MORPH

NIST Concept, Evaluation Plan and API Page 10 of 14

5.3.5. Two-image Differential Morph Detection 201

Two face samples are provided to the function of Table 7 as input, the first being a suspected morphed facial image 202
and the second image representing a known, non-morphed face image of one of the subjects contributing to the 203
morph (e.g., live capture image from an eGate). This procedure supports measurement of whether algorithms can 204
detect morphed images when additional information (provided as the second supporting known subject image) is 205
provided. 206

Similar to single-image morph detection, the function of Table 7 will support non-scanned, scanned, and photos of 207
unknown format/origin. The input image type will be specified by the associated ImageLabel input parameter. 208

Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on 209
different computers. 210

Table 7 – Two-image Differential Morph Detection 211

Prototypes ReturnStatus detectMorphDifferentially(

const Image &suspectedMorph, Input

const ImageLabel &label, Input

const Image &probeFace, Input

bool &isMorph, Output

double &score); Output

Description This function takes two input images - a known unaltered/not morphed image of the subject (probeFace) and
an image of the same subject that's in question (may or may not be a morph) (suspectedMorph) with an
associated image label describing the image format/origin. This function outputs a binary decision on whether
suspectedMorph is a morph (given probeFace as a prior) and a "morphiness" score on [0, 1] indicating

how confident the algorithm thinks the suspectedMorph is a morph, with 0 meaning confidence that the
suspectedMorph is not a morph and 1 representing absolute confidence that it is a morph.

Input
Parameters

suspectedMorph Input Image

 label ImageLabel (Section 4.1.1) describing the format of the suspected morph image

• NonScanned = non-scanned digital photo

• Scanned = a photo that is printed, then scanned

• Unknown = unknown photo format/origin

probeFace An image of the subject known not to be a morph (e.g., live capture image)

Output
Parameters

isMorph True if image contains a morph; False otherwise

score A score on [0, 1] representing how confident the algorithm is that the image contains a
morph. 0 means certainty that image does not contain a morph and 1 represents certainty
that image contains a morph.

Return Value See General Evaluation Specifications document for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode::NotImplemented.

If this function is not implemented for a certain type of image, for example, the function supports non-scanned
photos but not scanned photos, then the function should return ReturnCode::NotImplemented when the
function is called with the particular unsupported image type.

5.3.6. Two-image Differential Morph Detection with Subject Metadata 212

Two face samples are provided to the function of Table 8 as input, the first being a suspected morphed facial image 213
and the second image representing a known, non-morphed face image of one of the subjects contributing to the 214
morph (e.g., live capture image from an eGate). In addition, subject metadata is provided as input to the algorithm, 215
which includes sex, age of the subject (in months) at the time the probe image is taken, and the age/time difference 216
(in months) between the suspected morph and the live probe image. Operationally, this information might be derived 217
from data read from the machine readable zone of a passport for example. This procedure supports measurement of 218
whether algorithms can detect morphed images when additional subject metadata is provided. 219

FATE MORPH

NIST Concept, Evaluation Plan and API Page 11 of 14

 220

Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on 221
different computers. 222

Table 8 – Two-image Differential Morph Detection with Subject Metadata 223

Prototypes ReturnStatus detectMorphDifferentially(

const Image &suspectedMorph, Input

const ImageLabel &label, Input

const Image &probeFace, Input

const SubjectMetadata &subjectMetadata, Input

bool &isMorph, Output

double &score); Output

Description This function takes two input images - a known unaltered/not morphed image of the subject (probeFace) and
an image of the same subject that's in question (may or may not be a morph) (suspectedMorph) with an
associated image label describing the image format/origin. Additionally, subject metadata is provided as input to
the algorithm, which include sex, age of the subject (in months) at the time the probe image is taken, and the
age/time difference (in months) between the suspected morph and the live probe image. This function outputs a
binary decision on whether suspectedMorph is a morph (given probeFace as a prior) and a "morphiness"
score on [0, 1] indicating how confident the algorithm thinks the suspectedMorph is a morph, with 0 meaning
confidence that the suspectedMorph is not a morph and 1 representing absolute confidence that it is a

morph.

Input
Parameters

suspectedMorph Input Image

 label ImageLabel (Section 4.1.1) describing the format of the suspected morph image

• NonScanned = non-scanned digital photo

• Scanned = a photo that is printed, then scanned
• Unknown = unknown photo format/origin

probeFace An image of the subject known not to be a morph (e.g., live capture image)

 subjectMetadata SubjectMetadata (Section 3.1) with information about the subject

Output
Parameters

isMorph True if image contains a morph; False otherwise

score A score on [0, 1] representing how confident the algorithm is that the image contains a
morph. 0 means certainty that image does not contain a morph and 1 represents certainty
that image contains a morph.

Return Value See General Evaluation Specifications document for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode::NotImplemented.

If this function is not implemented for a certain type of image, for example, the function supports non-scanned
photos but not scanned photos, then the function should return ReturnCode::NotImplemented when the
function is called with the particular unsupported image type.

 224

5.3.7. 1:1 Comparison 225

Two face samples are provided to the function of Table 9 for one-to-one comparison of whether the two images are of 226
the same subject. The expected behavior from the algorithm is to be able to correctly reject comparisons of morphed 227
images against constituents that contributed to the morph. The goal is to show algorithm robustness against 228
morphing alterations when morphed images are compared against other images of the subjects used for morphing. 229
Comparisons of morphed images against constituents should return a low similarity score, indicating rejection of 230
match. Comparisons of unaltered/non-morphed images of the same subject should return a high similarity score, 231
indicating acceptance of match. 232

 233

FATE MORPH

NIST Concept, Evaluation Plan and API Page 12 of 14

Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on 234
different computers. 235

Table 9 – 1:1 Comparison 236

Prototypes ReturnStatus compareImages(

const Image &enrollImage, Input

const Image &verifImage, Input

double &similarity); Output

Description This function compares two images and outputs a similarity score. In the event the algorithm cannot perform the
comparison operation, the similarity score shall be set to -1.0 and the function return code value shall be set
appropriately.

Input
Parameters

enrollImage The enrollment image

 verifImage The verification image

Output
Parameters

similarity A similarity score resulting from comparison of the two images, on the range [0,DBL_MAX].

Return Value See General Evaluation Specifications document for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode::NotImplemented.

5.3.8. Single-image Demorphing 237

The function of Table 10 evaluates single-image “demorphing” – algorithmic ability to recover images of both 238
identities simultaneously from a single morphed face. The goal is to show algorithm ability to accurately restore the 239
identities of the contributing subjects if the image is a morph. All morphs will be generated with two contributing 240
subjects, and both morphed and non-morphed images will be evaluated. If the input image is a morph, the algorithm 241
should deduce/restore the two individual face images/identities that contributed to the morph. If the input is a bona 242
fide image, the algorithm should produce two images/identities that are essentially the same as the input photo. NIST 243
will report performance by analyzing face recognition outcomes between the original and restored imagery. 244

 245

Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on 246
different computers. 247

Table 10 – Single-image Demorphing 248

Prototypes ReturnStatus demorph(

const Image &suspectedMorph, Input

Image &outputSubject1, Output

Image &outputSubject2, Output

bool &isMorph, Output (OPTIONAL)

double &score); Output (OPTIONAL)

Description This function takes an input image and outputs two images. If the input image is a morph, the algorithm should
deduce/restore the two individual face images/identities that contributed to the morph. If the input is a bona
fide image, the algorithm should produce two images that are essentially the same as the input photo.

Optionally, the algorithm can also return a binary decision on whether the image is a morph and a "morphiness"
score on [0, 1] indicating how confident the algorithm thinks the image is a morph, with 0 meaning confidence
that the image is not a morph and 1 representing absolute confidence that it is a morph. A score of -1.0 indicates
that the algorithm did not implement morph detection and both “isMorph” and “score” will be ignored.

Input
Parameters

suspectedMorph Input Image

Output
Parameters

outputSubject1
outputSubject2

If the input image is a morph, the algorithm should deduce/restore the two individual
face images/identities that contributed to the morph. If the input is a bona fide image,

FATE MORPH

NIST Concept, Evaluation Plan and API Page 13 of 14

the algorithm should produce two images that are essentially the same as the input
photo.

isMorph (optional) True if image contains a morph; False otherwise

score (optional) A score on [0, 1] representing how confident the algorithm is that the image contains a
morph. 0 means certainty that image does not contain a morph and 1 represents
certainty that image contains a morph. A score of -1.0 indicates that the algorithm did
not implement morph detection and both “isMorph” and “score” will be ignored.

Return Value See General Evaluation Specifications document for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode::NotImplemented.

5.3.9. Two-image Differential Demorphing 249

The function of Table 11 evaluates two-image differential “demorphing” – algorithmic ability to recover the image of 250
the “other unknown identity” in a morphed image, given the availability of a reference image belonging to one of the 251
contributing subjects. The goal is to show algorithm ability to accurately restore the identity of the second subject if 252
the image is a morph. All morphs will be generated with two contributing subjects, and both morphed and non-253
morphed images will be evaluated. If the input image is a morph, the algorithm should deduce/restore the 254
second/unknown individual face image/identity that contributed to the morph. If the input is a bona fide image, the 255
algorithm should produce an image/identity that is essentially the same as the input photo. NIST will report 256
performance by analyzing face recognition outcomes between the original and restored imagery. 257

 258

Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on 259
different computers. 260

Table 11 – Two-image Differential Demorphing 261

Prototypes ReturnStatus demorphDifferentially(

const Image &suspectedMorph, Input

const Image &probeFace, Input

Image &outputSubject, Output

bool &isMorph, Output (OPTIONAL)

double &score); Output (OPTIONAL)

Description This function takes two input images - a known unaltered/not morphed image of the subject (probeFace) and
an image of the same subject that's in question (may or may not be a morph) (suspectedMorph). If the input
image is a morph, the algorithm should deduce/restore the other/unknown individual face image/identity that
contributed to the morph. If the input is a bona fide image, the algorithm should produce an image that is
essentially the same as the input photo.

Optionally, the algorithm can also return a binary decision on whether the image is a morph and a "morphiness"
score on [0, 1] indicating how confident the algorithm thinks the image is a morph, with 0 meaning confidence
that the image is not a morph and 1 representing absolute confidence that it is a morph. A score of -1.0 indicates
that the algorithm did not implement morph detection and both “isMorph” and “score” will be ignored.

Input
Parameters

suspectedMorph Input Image

probeFace An image of the subject known not to be a morph (e.g., live capture image)

Output
Parameters

outputSubject If the input image is a morph, the algorithm should deduce/restore the other/unknown
individual face image/identity that contributed to the morph. If the input is a bona fide
image, the algorithm should produce an image that is essentially the same as the input
photo.

isMorph (optional) True if image contains a morph; False otherwise

score (optional) A score on [0, 1] representing how confident the algorithm is that the image contains a
morph. 0 means certainty that image does not contain a morph and 1 represents
certainty that image contains a morph. A score of -1.0 indicates that the algorithm did
not implement morph detection and both “isMorph” and “score” will be ignored.

FATE MORPH

NIST Concept, Evaluation Plan and API Page 14 of 14

Return Value See General Evaluation Specifications document for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode::NotImplemented.

 262

	1. MORPH
	1.1. Scope
	1.2. General Evaluation Specifications
	1.3. Reporting
	1.4. Accuracy metrics

	2. Rules for participation
	2.1. Implementation Requirements
	2.2. Participation agreement
	2.3. Number and Schedule of Submissions
	2.4. Validation

	3. Data structures supporting the API
	3.1. Subject Metadata
	3.2. Requirement

	4. Implementation Library Filename
	4.1. File formats and data structures
	4.1.1. ImageLabel describing the format of an image

	5. API specification
	5.1. Header File
	5.2. Namespace
	5.3. API
	5.3.1. Implementation Requirements
	5.3.2. Interface
	5.3.3. Initialization
	5.3.4. Single-image Morph Detection
	Non-scanned photos
	Scanned photos
	Photos of unknown format

	5.3.5. Two-image Differential Morph Detection
	5.3.6. Two-image Differential Morph Detection with Subject Metadata
	5.3.7. 1:1 Comparison
	5.3.8. Single-image Demorphing
	5.3.9. Two-image Differential Demorphing

