
Breaking
the memory
barrier
A production
blueprint for stateful
multi-agent systems
on Google Cloud
and MongoDB

Breaking the memory barrier 2

Introduction03
The blueprint in action:
Building a smart support
agent team

07

Architecting the multi-tier
memory with MongoDB Atlas10

Implementation guide:
Running the agent team15
Advanced patterns
for production18
Scaling the system
on Google Cloud and
MongoDB Atlas

21

Conclusion23

Table of contents Authors

Pavel Duchovny
Lead Developer Advocate
AI Mindshare Team at
MongoDB

Christian Williams
Principal Architect AI/
ML, Google Cloud Partner
Engineering

Breaking the memory barrier 3

The current wave of artificial
intelligence is rapidly evolving beyond
single-purpose, stateless “demo
agents” into orchestrated, stateful
“agentic workflows” that deliver
tangible business value. You have likely
built or interacted with an AI agent
that performs a task impressively,
only to forget the entire context of
your conversation the next day. Or
perhaps you have deployed a team
of specialized agents that operate in
silos, unable to share critical knowledge
about a user or a task. This experience
is common, and it highlights the
primary obstacle preventing AI
from reaching its full potential in the
enterprise: the memory barrier.

The gap between a promising
prototype and a robust production
system often comes down to memory.
This is not merely about logging
conversation history. It is about
creating a persistent, searchable,
and shareable context that persists
across sessions, scales across multiple
agents, and enables the system to
become more intelligent over time.

Most agent frameworks treat memory
as an afterthought, providing basic
chat history logs that are insufficient
for real-world applications. Production
systems demand agents that
remember user preferences, learn
from past interactions, and share
context seamlessly across a team
of specialized services to perform
complex, multi-step tasks. Failing
to address this challenge leads
to fragmented user experiences,
repeated work, and a fundamental limit
on what agentic systems can achieve.

This article presents a production-
ready blueprint that breaks the
memory barrier. It demonstrates
how to build sophisticated, stateful
multi-agent systems by combining
the power of Google Cloud’s open
and scalable agent ecosystem with
MongoDB Atlas as a unified data and
memory platform. We will architect
and build a multi-agent customer
support system to illustrate these
patterns, providing a practical guide
for developers and architects tasked
with creating the next generation of
intelligent applications. This approach
moves beyond simply “adding
memory” and instead advocates for
adopting a holistic, production-grade
agentic architecture—one that solves
the core challenges of orchestration,
communication, and persistent,
intelligent memory.

Introduction:
Beyond the
amnesiac agent

Breaking the memory barrier 4

The modern
agentic stack:
A layered
architecture

Building robust agentic systems, much like
developing any complex software, requires
a deliberate, layered architecture. This
approach promotes modularity, scalability,
and maintainability by separating distinct
concerns. Our blueprint is founded on a three-
layer stack that combines open standards
for communication, powerful frameworks for
agent development, and a unified platform for
data and memory.

Breaking the memory barrier 5

A2A (Agent-to-Agent) Protocol: Developed by Google
and now managed by the Linux Foundation, A2A is an open
protocol designed for communication between agents, even
across organizational or technological boundaries. It enables
a team of specialized agents to collaborate on complex tasks
without being tightly coupled or needing to expose their
internal workings, such as proprietary logic or tools. A2A
treats every interaction as a trackable task and allows agents
to discover each other’s capabilities dynamically through a
standardized “Agent Card”.

MCP (Model Context Protocol): MCP is a complementary
open standard for agent-to-tool communication, adopted by
industry leaders like Google. While A2A facilitates collaboration
between agents, MCP standardizes how an agent securely
accesses external tools, data sources, and services. This allows
an agent to do things like query a database or access a user’s
local files in a secure, standardized way.

Google’s Agent Development Kit (ADK): ADK is Google’s
open-source, code-first Python framework for building,
testing, and deploying sophisticated agents and multi-agent
systems. Designed to power enterprise-grade applications,
ADK excels at creating modular systems of specialized
agents that can be composed into hierarchies for complex

Layer 1: The communication fabric (A2A & MCP)
At the base of any multi-agent system is the protocol that governs
how its components interact. Relying on open standards is crucial for
interoperability and future-proofing.

Layer 2: The agent development & orchestration engine
(Google ADK & LangGraph)
With communication standards in place, the next layer provides the tools to
build, orchestrate, and manage the agents themselves.

Breaking the memory barrier 6

coordination and delegation. It provides an integrated
developer experience with a CLI and web UI for local testing,
built-in evaluation frameworks, and flexible deployment
options to services like Google Cloud Run, Google
Kubernetes Engine (GKE), or the fully managed Vertex AI
Agent Builder.

LangGraph: While ADK provides the framework for the
overall multi-agent application, LangGraph is used to define
the internal cognitive architecture of each individual agent.
LangGraph, a library from LangChain, allows developers
to build stateful, cyclical graphs that represent an agent’s
thought process. This makes it exceptionally well-suited for
implementing patterns like ReAct (Reasoning and Acting),
where an agent iteratively thinks, uses tools, and observes
outcomes to solve a problem.

MongoDB Atlas: MongoDB Atlas serves as more than just a
database; it is a comprehensive data platform for modern
AI applications. Its core value proposition for agentic
systems is the ability to manage operational data and vector
embeddings within a single, unified platform. This eliminates
the “synchronization tax”—the complexity, cost, and latency
associated with maintaining separate databases for structured
data and vector search. By using Atlas, developers ensure that
an agent’s memory is always consistent with the underlying
business data, enabling real-time, context-aware responses.
With native capabilities like Atlas Vector Search, it provides the
full spectrum of memory services required by intelligent agents.

This layered stack provides a clear separation of concerns: A2A and MCP
handle communication, ADK and LangGraph handle agent logic and
orchestration, and MongoDB Atlas handles all facets of memory and data.

Layer 3: The unified memory & data platform
(MongoDB Atlas)
The top layer is the foundation for statefulness, providing the system
with its memory.

Breaking the memory barrier 7

To demonstrate this architecture, we will build a
customer support system for a fictional smart
device company, “Aura Devices.” This system will
consist of a team of specialized agents working
together to resolve user issues efficiently.

The agent team

Our system is composed of several autonomous
agents, each with a specific role:

•	 Host agent: Built with Google’s ADK, this
agent serves as the front door to the system.

The blueprint
in action:
Building a
smart support
agent team

Breaking the memory barrier 8

It runs the user interface, receives initial user queries, and acts as an
orchestrator, routing requests to the appropriate specialized agent based
on the nature of the inquiry.

•	 Support agent: This is the product expert. It has deep knowledge about
all Aura Devices products, from their specifications to troubleshooting
procedures. It handles all product-related questions.

•	 Scheduling agent: This agent is a calendar wizard. Its sole function is to
book support appointments, manage available time slots, and interact
with the scheduling system.

•	 MCP service: This is not an agent but a backend service that exposes
scheduling tools (e.g., get_free_slots, schedule_meeting) via the
Model Context Protocol (MCP). This demonstrates how A2A agents can
securely integrate with and consume external tools and APIs.

Resolving the “opaque agent” paradox

A core principle of the A2A protocol is “opaque execution,” meaning agents
can collaborate without exposing their internal state, proprietary logic,
or specific tool implementations. This enhances security and protects
intellectual property. A potential question arises: how can agents share
context if they are opaque?

Our architecture resolves this elegantly. The agents do not share their
internal memory or thought processes directly. Instead, they interact with
a shared, external, and arbitrated memory layer hosted on MongoDB Atlas.
This is analogous to a human support team using a centralized Customer
Relationship Management (CRM) system. Team members do not read each
other’s minds; they read from and write to the shared CRM, which serves
as the single source of truth for customer interactions. This pattern allows
for governed, auditable, and secure collaboration while respecting the
autonomy and opacity of each agent.

Code deep dive: Agent discovery with A2A

The host agent dynamically discovers and connects to the other agents
using their A2A AgentCard. The AgentCard acts as an AI’s business card,
advertising its name, capabilities, and endpoint URL. This enables a plug-and-
play architecture where new agents can be added to the system with minimal
configuration changes.

Breaking the memory barrier 9

The following Python code shows how the host agent initializes its connections to
remote agents by fetching their cards:

Each specialized agent, like the support agent, defines and exposes its own card:

This mechanism for self-description and discovery is fundamental to building flexible and
scalable multi-agent systems.

Breaking the memory barrier 10

Architecting
the multi-tier
memory with
MongoDB Atlas

Production-grade agent memory is not a single,
monolithic block. Different types of information
require different storage and retrieval strategies.
Our blueprint implements a sophisticated,
three-tier memory architecture using specific
LangChain-MongoDB integrations, all running on
the unified MongoDB Atlas platform. This multi-
tiered approach ensures that the right type of
memory is used for the right purpose, optimizing
for performance, scalability, and intelligence.

The following table outlines the three tiers of
memory, their purpose, and the components
used to implement them.

Breaking the memory barrier 1111

Memory tier LangChain/
MongoDB
component

Purpose &
function

Use case
example

Tier 1:
State persistence

MongoDBSaver
(Checkpointer)

Saves the
complete,
serializable state
of a LangGraph
conversation
thread. Enables
fault tolerance
and long-running,
stateful session
resumption.

A user returns
after a week; the
conversation
resumes exactly
where it left off,
with all context
intact.

Tier 2:
Semantic memory

MongoDBStore
with Atlas Vector
Search

Stores information
as vector
embeddings for
semantic search.
Allows agents to
find contextually
relevant
memories, not just
keyword matches.

A user mentions
they “dislike
straps that
pinch.” The agent
later recalls this
preference when
recommending
new watch bands.

Tier 3:
Structured data

Standard
MongoDB
collections

Stores operational
business data
(e.g., user profiles,
product catalogs,
appointment
slots) for reliable,
transactional
access via
standard queries.

The Scheduling
Agent queries
a collection to
find and book an
available support
slot, ensuring no
double-bookings.

Breaking the memory barrier 12

Tier 1 deep dive: Conversation checkpoints (MongoDBSaver)

The foundation of a stateful agent is the ability to persist its execution state. For agents
built with LangGraph, the MongoDBSaver provides this capability out of the box. It is a
checkpointer that serializes and saves the entire state of an agent’s graph—including the
message history, intermediate steps, and current node—to a MongoDB collection at the
end of each step. This is critical for two reasons:

1.	 Fault tolerance: If an agent process crashes, it can be restarted and resume from the
last saved checkpoint, preventing loss of work.

2.	 Long-running sessions: It allows conversations to be paused and resumed days or
weeks later, as the complete context is durably stored.

Initializing the checkpointer is straightforward:

Tier 2 deep dive: Semantic memory (Atlas Vector Search)

This tier is where the “intelligence” of the memory system resides. While checkpoints
save the raw state, semantic memory stores distilled knowledge in a way that agents can
reason about. This is achieved by converting important pieces of information into vector
embeddings—numerical representations that capture semantic meaning—and storing
them in MongoDB.

With Atlas Vector Search, agents can then perform similarity searches to retrieve
memories based on contextual relevance, not just keyword matches. For example, a
query about “sore wrists” can retrieve a past user comment about “straps that pinch,”
because their vector representations are close in high-dimensional space.

Breaking the memory barrier 13

The VertexAIEmbeddings class from LangChain’s Google integrations provides
a simple interface for this, backed by a MongoDB collection with a configured
Vector Search index.

Breaking the memory barrier 14

Tier 3 deep dive:
Structured business data

Not all data belongs in a vector index. Critical business data—such as user
profiles, product catalogs, inventory levels, and appointment schedules—
requires the reliability and transactional guarantees of a standard database.
MongoDB’s flexible document model is ideal for storing this structured and
semi-structured data.

In our demo, the MCP Service for scheduling interacts directly with a standard
MongoDB collection to manage appointment slots. This ensures that when the
Scheduling Agent books a meeting, it does so via a reliable, atomic operation
that prevents conflicts like double-booking.

By leveraging these three tiers on a single platform, the architecture
provides a comprehensive memory solution that is robust, intelligent,
and scalable.

Breaking the memory barrier 15

Implementation
guide: Running the
agent team

This section provides a step-
by-step guide to running the
multi-agent system on a local
machine. The architecture
is designed for the cloud,
but this allows for rapid
development and testing.

Breaking the memory barrier 16

Prerequisites

•	 Python 3.10+
•	 A MongoDB Atlas account (the free M0 tier is sufficient for this demo).
•	 A Google Cloud account with the Vertex AI API enabled.
•	 The uv package manager (recommended) or pip.
•	 Google Cloud CLI: You must authenticate your local environment. Run the following

command in your terminal and follow the prompts:

Step 1: Clone and install dependencies

First, clone the project repository and install the required Python packages.

Step 2: Configure environment variables

Create .env files in each of the agent directories (host_agent/, support_agent/,
scheduling_agent/) and populate them with your credentials.

Breaking the memory barrier 17

Step 3: Start the MCP server

The MCP server exposes the scheduling tools. Navigate to its directory and start the server.

Step 5: Launch the host agent and UI

Finally, start the host agent, which also serves the web-based user interface.

This will start a server on port 8000, exposing tools like schedule_meeting.

Step 4: Launch the specialized agents

Each agent runs as an independent process. Open separate terminal windows for each one.

Navigate to http://localhost:8080 in your browser. You can now interact with the
agent team. Try asking questions that require collaboration, such as:

•	 “Tell me about the Aura Pro watch.” (Handled by the support agent)
•	 “That sounds great. Can you schedule a demo for me tomorrow at 3 pm?”

(Handled by Scheduling Agent)
•	 “\ (The system will store this fact and recall it later)

As you interact, you can observe the agent logs in each terminal to see the A2A
communication and memory operations in action.

Breaking the memory barrier 18

Advanced
patterns for
production

Moving the system from a local demo to a
scalable, enterprise-grade deployment requires
adopting specific design patterns for managing
memory and ensuring robust operation. These
patterns address key concerns of multi-tenancy,
governance, and long-term data lifecycle.

Breaking the memory barrier 19

Pattern 1: Intelligent memory management with LangMem

In a simple implementation, a developer might write explicit logic to save information to
memory. However, a more autonomous and scalable approach is to empower the agent
to manage its own memory. The LangMem library, designed to work with LangChain
and LangGraph, provides tools for this purpose. By equipping an agent with langmem’s
create_manage_memory_tool, the agent can use its reasoning capabilities to decide what
information is important enough to commit to long-term semantic memory and when to do
so. This aligns with the broader trend of increasing agent autonomy and reduces the burden
on developers to anticipate every piece of information that might be valuable later.

Pattern 2: Memory namespacing and isolation

In a multi-tenant application serving many users, it is critical to keep memories isolated.
langmem and MongoDBStore support the concept of namespaces, which act as partitions
for memory. By using a hierarchical namespace strategy, memories can be cleanly
organized and secured. For example, a namespace could be structured as (“user_data”,
user_id, “preferences”). This ensures that one user’s agent cannot access another user’s
memories, a fundamental requirement for privacy and security.

Pattern 3: Selective memory sharing and governance

While isolation is important, collaboration often requires sharing. This pattern involves
creating different namespaces for different scopes of memory:

Agent-Private Memory: Each agent might have a private namespace, such as (“agent_
private”, agent_id, “reasoning_traces”), to store internal thoughts or logs that should not
be shared.

User-Shared Memory: A team of agents serving a single user could share a namespace
like (“user_context”, user_id) to access common information, such as the user’s product
ownership or past support tickets.

This selective sharing enables effective collaboration while maintaining control over data
access, a key aspect of AI governance.

Pattern 4: Memory lifecycle management

Not all memories should be stored forever. Over time, some information becomes stale
or irrelevant. A robust production system must include a strategy for memory lifecycle
management. This can be implemented by adding metadata to each memory entry stored
in MongoDB, such as: created_at, last_accessed_at, access_count, and relevance_score.

Breaking the memory barrier 20

MongoDB’s TTL Index is perfect for auto-deleting documents from persistent memory.
With the data stored correctly, you can apply the index. The command below tells
MongoDB to look for documents where relevance_score is less than 0.5 and delete them
2,592,000 seconds (30 days) after the time stored in their created_at field.

With this metadata, background processes can be run to periodically “clean up”
the memory:

•	 Archiving: Move old, infrequently accessed memories to cheaper storage.
•	 Summarization: Consolidate multiple related episodic memories into a single,

more abstract semantic memory.
•	 Decay: Lower the relevance of memories that have not been accessed in a

long time, making them less likely to be retrieved.

This ensures the memory system remains performant and cost-effective as it scales.

Breaking the memory barrier 21

Scaling the system
on Google Cloud and
MongoDB Atlas

The architecture presented is
designed for scale from day
one, leveraging the strengths
of both Google Cloud and
MongoDB Atlas.

Scaling the agents on Google Cloud

The containerized agents can be deployed to Google Cloud’s
scalable compute platforms:

Google Cloud Run: For a serverless, fully managed environment,
deploying each agent as a separate Cloud Run service provides
automatic scaling based on request volume, from zero to
thousands of instances. This is ideal for applications with variable or
unpredictable traffic.

Google Kubernetes Engine (GKE): For applications requiring more
control over the infrastructure, agents can be deployed to a GKE
cluster. GKE provides powerful orchestration capabilities for
managing complex, containerized workloads at scale.

Vertex AI Agent Builder: As the application matures, the agents can
be deployed to Vertex AI Agent Engine. This is a fully managed, agent-
optimized runtime designed specifically for deploying, managing,
and scaling agentic systems built with frameworks like ADK.

Scaling the memory on MongoDB Atlas

The data and memory layer scales seamlessly on MongoDB Atlas,
which is architected for high-throughput, distributed workloads:

Sharding: As the volume of structured data (Tier 3) and
conversation checkpoints (Tier 1) grows, the MongoDB collections
can be sharded. Sharding distributes the data and workload
across multiple nodes, enabling horizontal scalability to handle
millions of users and conversations.

Search Nodes: Atlas Vector Search workloads can be isolated
onto dedicated Search Nodes. This allows you to scale your vector
search capabilities (Tier 2) independently from your core operational
database workload. You can add more Search Nodes as your
semantic search traffic increases, ensuring consistently low-latency
performance without impacting other parts of the application.

The combination of scalable compute from Google Cloud and
scalable, unified data services from MongoDB Atlas provides a
robust, end-to-end solution for building and operating agentic
systems at any scale.

Conclusion: The future is
stateful and collaborative
The era of amnesiac, standalone AI agents is drawing to a close. The
future of AI applications lies in building collaborative, stateful agentic
systems that can learn, remember, and engage in complex, long-running
tasks. The primary obstacle to realizing this future has been the memory
barrier, but as we have demonstrated, this barrier can be broken.

The blueprint detailed in this article provides a clear, production-ready
path forward. It is built on a foundation of open standards (A2A, MCP),
powerful development frameworks (Google ADK, LangGraph), and a
unified data platform (MongoDB Atlas). The core architectural pattern—a
team of specialized, opaque agents collaborating through a sophisticated,
multi-tiered external memory layer—offers a solution that is modular,
scalable, and intelligent. By separating concerns into distinct layers for
communication, orchestration, and memory, this architecture provides the
flexibility and robustness required for enterprise-grade applications.

This approach overcomes the limitations of simplistic memory models,
enabling agents to build a rich, contextual understanding of users and
tasks over time. It bridges the gap between promising demos and
powerful production systems, allowing developers to build AI that
delivers genuinely helpful, personalized, and persistent experiences. The
age of goldfish-memory agents is over. Welcome to the era of AI with a
memory that learns, adapts, and endures.

