Open Source Python Data Management Systems for Mac

Browse free open source Python Data Management Systems for Mac and projects below. Use the toggles on the left to filter open source Python Data Management Systems for Mac by OS, license, language, programming language, and project status.

  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    matplotlib
    Matplotlib is a python library for making publication quality plots using a syntax familiar to MATLAB users. Matplotlib uses numpy for numerics. Output formats include PDF, Postscript, SVG, and PNG, as well as screen display. As of matplotlib version 1.5, we are no longer making file releases available on SourceForge. Please visit http://matplotlib.org/users/installing.html for help obtaining matplotlib.
    Leader badge
    Downloads: 97 This Week
    Last Update:
    See Project
  • 2
    Dash

    Dash

    Build beautiful web-based analytic apps, no JavaScript required

    Dash is a Python framework for building beautiful analytical web applications without any JavaScript. Built on top of Plotly.js, React and Flask, Dash easily achieves what an entire team of designers and engineers normally would. It ties modern UI controls and displays such as dropdown menus, sliders and graphs directly to your analytical Python code, and creates exceptional, interactive analytics apps. Dash apps are very lightweight, requiring only a limited number of lines of Python or R code; and every aesthetic element can be customized and rendered in the web. It’s also not just for dashboards. You have full control over the look and feel of your apps, so you can style them to look any way you want.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 3
    A Python interface to the gnuplot plotting program.
    Downloads: 33 This Week
    Last Update:
    See Project
  • 4
    Positron

    Positron

    Positron, a next-generation data science IDE

    Positron is a next-generation integrated development environment (IDE) created by Posit PBC (formerly RStudio Inc) specifically tailored for data science workflows in Python, R, and multi-language ecosystems. It aims to unify exploratory data analysis, production code, and data-app authoring in a single environment so that data scientists move from “question → insight → application” without switching tools. Built on the open-source Code-OSS foundation, Positron provides a familiar coding experience along with specialized panes and tooling for variable inspection, data-frame viewing, plotting previews, and interactive consoles designed for analytical work. The IDE supports notebook and script workflows, integration of data-app frameworks (such as Shiny, Streamlit, Dash), database and cloud connections, and built-in AI-assisted capabilities to help write code, explore data, and build models.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 5
    Matplotlib

    Matplotlib

    matplotlib: plotting with Python

    Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Matplotlib makes easy things easy and hard things possible. Matplotlib ships with several add-on toolkits, including 3D plotting with mplot3d, axes helpers in axes_grid1 and axis helpers in axisartist. A large number of third party packages extend and build on Matplotlib functionality, including several higher-level plotting interfaces (seaborn, HoloViews, ggplot, ...), and a projection and mapping toolkit (Cartopy). Matplotlib is the brainchild of John Hunter (1968-2012), who, along with its many contributors, have put an immeasurable amount of time and effort into producing a piece of software utilized by thousands of scientists worldwide. Matplotlib is a Sponsored Project of NumFOCUS, a 501(c)(3) nonprofit charity in the United States. Matplotlib has support for visualizing information with a wide array of colors and colormaps.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    TransPose

    TransPose

    PyTorch Implementation for "TransPose, Keypoint localization

    TransPose is a human pose estimation model based on a CNN feature extractor, a Transformer Encoder, and a prediction head. Given an image, the attention layers built in Transformer can efficiently capture long-range spatial relationships between keypoints and explain what dependencies the predicted keypoints locations highly rely on.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    Wally

    Wally

    Distributed Stream Processing

    Wally is a fast-stream-processing framework. Wally makes it easy to react to data in real-time. By eliminating infrastructure complexity, going from prototype to production has never been simpler. When we set out to build Wally, we had several high-level goals in mind. Create a dependable and resilient distributed computing framework. Take care of the complexities of distributed computing "plumbing," allowing developers to focus on their business logic. Provide high-performance & low-latency data processing. Be portable and deploy easily (i.e., run on-prem or any cloud). Manage in-memory state for the application. Allow applications to scale as needed, even when they are live and up-and-running. The primary API for Wally is written in Pony. Wally applications are written using this Pony API.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    Luigi

    Luigi

    Python module that helps you build complex pipelines of batch jobs

    Luigi is a Python (3.6, 3.7, 3.8, 3.9 tested) package that helps you build complex pipelines of batch jobs. It handles dependency resolution, workflow management, visualization, handling failures, command line integration, and much more. The purpose of Luigi is to address all the plumbing typically associated with long-running batch processes. You want to chain many tasks, automate them, and failures will happen. These tasks can be anything, but are typically long running things like Hadoop jobs, dumping data to/from databases, running machine learning algorithms, or anything else. You can build pretty much any task you want, but Luigi also comes with a toolbox of several common task templates that you use. It includes support for running Python mapreduce jobs in Hadoop, as well as Hive, and Pig, jobs. It also comes with file system abstractions for HDFS, and local files that ensures all file system operations are atomic.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Union Pandera

    Union Pandera

    Light-weight, flexible, expressive statistical data testing library

    The open-source framework for precision data testing for data scientists and ML engineers. Pandera provides a simple, flexible, and extensible data-testing framework for validating not only your data but also the functions that produce them. A simple, zero-configuration data testing framework for data scientists and ML engineers seeking correctness. Access a comprehensive suite of built-in tests, or easily create your own validation rules for your specific use cases. Validate the functions that produce your data by automatically generating test cases for them. Integrate seamlessly with the Python ecosystem. Overcome the initial hurdle of defining a schema by inferring one from clean data, then refine it over time. Identify the critical points in your data pipeline, and validate data going in and out of them. Build confidence in the quality of your data by defining schemas for complex data objects.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 10
    Dagster

    Dagster

    An orchestration platform for the development, production

    Dagster is an orchestration platform for the development, production, and observation of data assets. Dagster as a productivity platform: With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early. Dagster as a robust orchestration engine: Put your pipelines into production with a robust multi-tenant, multi-tool engine that scales technically and organizationally. Dagster as a unified control plane: The ‘single plane of glass’ data teams love to use. Rein in the chaos and maintain control over your data as the complexity scales. Centralize your metadata in one tool with built-in observability, diagnostics, cataloging, and lineage. Spot any issues and identify performance improvement opportunities.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from the SDV project, or input your own data. Choose from any of the SDV synthesizers and baselines. Or write your own custom machine learning model. In addition to performance and memory usage, you can also measure synthetic data quality and privacy through a variety of metrics. Install SDGym using pip or conda. We recommend using a virtual environment to avoid conflicts with other software on your device.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    GDL - GNU Data Language, a free IDL (Interactive Data Language, see http://ittvis.com/idl/) compatible incremental compiler.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    AquaTerm is a Mac OS X grahics renderer. It allows command line applications written in ObjC, C, FORTRAN, Lisp, Perl or Python to display vector graphics, text and images using a simple API. Adapters for gnuplot, PGPLOT, and PLplot exists as well.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 14
    The TRANSIMS Studio application is an integrated development environment for the TRansportation ANalysis and SIMulation System (TRANSIMS). Components include a run time environment to execute TRANSIMS in parallel, as well as a full featured GUI.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    QuickDicom is an easy to use dicom medical imaging package for Mac OSX, providing QuickLook, Spotlight, Quartz Composer, Window/Level and a dicom file analyzer. Also included is the iiDicom Framework for image/dictionary usage in Objective C and Python.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    idyuts is \"I Dare You to Use This Shell\"; a pre-hibernate approach to replacing an ORM written with jython functors into a pure-Java language command pattern. The \"pipeline codegen artifacts\" are simple IoC templates, and trivial to adapt
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    The VR Juggler Toolbox is a collection of libraries and tools for use with VR Juggler applications.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related example notebooks. These notebooks provide code and descriptions for creating and running workflows in AWS Step Functions Using the AWS Step Functions Data Science SDK. In Amazon SageMaker, example Jupyter notebooks are available in the example notebooks portion of a notebook instance. To run the AWS Step Functions Data Science SDK example notebooks locally, download the sample notebooks and open them in a working Jupyter instance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Awesome Fraud Detection Research Papers

    Awesome Fraud Detection Research Papers

    A curated list of data mining papers about fraud detection

    A curated list of data mining papers about fraud detection from several conferences.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    An Open Source IEC 61131-3 Integrated Development Environment, providing PLCOpen SoftPLC programming, CanOpen IO's, and SVG based HMI.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Ethereum ETL

    Ethereum ETL

    Python scripts for ETL (extract, transform and load) jobs for Ethereum

    Python scripts for ETL (extract, transform and load) jobs for Ethereum blocks, transactions, ERC20 / ERC721 tokens, transfers, receipts, logs, contracts, internal transactions. Data is available in Google BigQuery. Ethereum ETL lets you convert blockchain data into convenient formats like CSVs and relational databases.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    GUESS, or the Graph Exploration System, is a system and language for visualizing and manipulating graph structures and creating new visualization applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Gaphor is a UML modeling environment written in Python. Gaphor is small and very extensible. The repository is located at http://github.com/gaphor/gaphor.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Gretel Synthetics

    Gretel Synthetics

    Synthetic data generators for structured and unstructured text

    Unlock unlimited possibilities with synthetic data. Share, create, and augment data with cutting-edge generative AI. Generate unlimited data in minutes with synthetic data delivered as-a-service. Synthesize data that are as good or better than your original dataset, and maintain relationships and statistical insights. Customize privacy settings so that data is always safe while remaining useful for downstream workflows. Ensure data accuracy and privacy confidently with expert-grade reports. Need to synthesize one or multiple data types? We have you covered. Even take advantage or multimodal data generation. Synthesize and transform multiple tables or entire relational databases. Mitigate GDPR and CCPA risks, and promote safe data access. Accelerate CI/CD workflows, performance testing, and staging. Augment AI training data, including minority classes and unique edge cases. Amaze prospects with personalized product experiences.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    ILNumerics.Net
    math lib for .NET. n-dim arrays, complex numbers, linear algebra, FFT, sorting, cells- and logical arrays as well as 3D plotting classes help developing algorithms on every platform supporting .NET. Sources from SVN, binaries: http://ilnumerics.net
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next