SMAC (StarCraft II Multi-Agent Challenge) is a benchmark environment for cooperative multi-agent reinforcement learning (MARL), based on real-time strategy (RTS) game scenarios in StarCraft II. It allows researchers to test algorithms where multiple units (agents) must collaborate to win battles against built-in game AI opponents. SMAC provides a controlled testbed for studying decentralized execution and centralized training paradigms in MARL.

Features

  • Focuses on decentralized multi-agent cooperation challenges
  • Provides a variety of tactical combat scenarios in StarCraft II
  • Supports partial observability and limited communication among agents
  • Integrates with PyMARL and other MARL libraries for training
  • Includes a standard benchmark for evaluating MARL algorithms
  • Offers tools for measuring performance and analyzing agent coordination

Project Samples

Project Activity

See All Activity >

License

MIT License

Follow SMAC

SMAC Web Site

Other Useful Business Software
Find Hidden Risks in Windows Task Scheduler Icon
Find Hidden Risks in Windows Task Scheduler

Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
Download Free Tool
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of SMAC!

Additional Project Details

Programming Language

Python

Related Categories

Python Reinforcement Learning Frameworks

Registered

2025-03-13