Composer 1
Composer is Cursor’s custom-built agentic AI model optimized specifically for software engineering tasks and designed to power fast, interactive coding assistance directly within the Cursor IDE, a VS Code-derived editor enhanced with intelligent automation. It is a mixture-of-experts model trained with reinforcement learning (RL) on real-world coding problems across large codebases, so it can produce high-speed, context-aware responses, from code edits and planning to answers that understand project structure, tools, and conventions, with generation speeds roughly four times faster than similar models in benchmarks. Composer is specialized for development workflows, leveraging long-context understanding, semantic search, and limited tool access (like file editing and terminal commands) so it can solve complex engineering requests with efficient and practical outputs.
Learn more
Devstral Small 2
Devstral Small 2 is the compact, 24 billion-parameter variant of the new coding-focused model family from Mistral AI, released under the permissive Apache 2.0 license to enable both local deployment and API use. Alongside its larger sibling (Devstral 2), this model brings “agentic coding” capabilities to environments with modest compute: it supports a large 256K-token context window, enabling it to understand and make changes across entire codebases. On the standard code-generation benchmark (SWE-Bench Verified), Devstral Small 2 scores around 68.0%, placing it among open-weight models many times its size. Because of its reduced size and efficient design, Devstral Small 2 can run on a single GPU or even CPU-only setups, making it practical for developers, small teams, or hobbyists without access to data-center hardware. Despite its compact footprint, Devstral Small 2 retains key capabilities of larger models; it can reason across multiple files and track dependencies.
Learn more
Devstral 2
Devstral 2 is a next-generation, open source agentic AI model tailored for software engineering: it doesn’t just suggest code snippets, it understands and acts across entire codebases, enabling multi-file edits, bug fixes, refactoring, dependency resolution, and context-aware code generation. The Devstral 2 family includes a large 123-billion-parameter model as well as a smaller 24-billion-parameter variant (“Devstral Small 2”), giving teams flexibility; the larger model excels in heavy-duty coding tasks requiring deep context, while the smaller one can run on more modest hardware. With a vast context window of up to 256 K tokens, Devstral 2 can reason across extensive repositories, track project history, and maintain a consistent understanding of lengthy files, an advantage for complex, real-world projects. The CLI tracks project metadata, Git statuses, and directory structure to give the model context, making “vibe-coding” more powerful.
Learn more
DeepCoder
DeepCoder is a fully open source code-reasoning and generation model released by Agentica Project in collaboration with Together AI. It is fine-tuned from DeepSeek-R1-Distilled-Qwen-14B using distributed reinforcement learning, achieving a 60.6% accuracy on LiveCodeBench (representing an 8% improvement over the base), a performance level that matches that of proprietary models such as o3-mini (2025-01-031 Low) and o1 while using only 14 billion parameters. It was trained over 2.5 weeks on 32 H100 GPUs with a curated dataset of roughly 24,000 coding problems drawn from verified sources (including TACO-Verified, PrimeIntellect SYNTHETIC-1, and LiveCodeBench submissions), each problem requiring a verifiable solution and at least five unit tests to ensure reliability for RL training. To handle long-range context, DeepCoder employs techniques such as iterative context lengthening and overlong filtering.
Learn more