Package ‘StabMap’

February 4, 2026
Type Package

Title Stabilised mosaic single cell data integration using unshared
features

Version 1.4.0

Description StabMap performs single cell mosaic data integration by first
building a mosaic data topology, and for each reference dataset, traverses
the topology to project and predict data onto a common embedding. Mosaic
data should be provided in a list format, with all relevant features
included in the data matrices within each list object. The output of
stabMap is a joint low-dimensional embedding taking into account all
available relevant features. Expression imputation can also be performed
using the StabMap embedding and any of the original data matrices for
given reference and query cell lists.

License GPL-2
Encoding UTF-8

URL https://sydneybiox.github.io/StabMap,
https://sydneybiox.github.io/StabMap/

BugReports https://github.com/sydneybiox/StabMap/issues
biocViews SingleCell, DimensionReduction, Software
Depends R (>=4.4.0),

Imports igraph, slam, BiocNeighbors, Matrix, MASS, abind,
SummarizedExperiment, methods, MatrixGenerics, BiocGenerics,
BiocSingular, BiocParallel

Suggests scran, scater, knitr, UpSetR, gridExtra,
SingleCellMultiModal, BiocStyle, magrittr, testthat (>= 3.0.0),
purtr, sparseMatrixStats

LazyData false

RoxygenNote 7.3.2

VignetteBuilder knitr

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/StabMap
git_branch RELEASE_3_22

git_last commit 3c9726a

https://sydneybiox.github.io/StabMap
https://sydneybiox.github.io/StabMap/
https://github.com/sydneybiox/StabMap/issues

2 Contents

git_last_commit_date 2025-12-03

Repository Bioconductor 3.22

Date/Publication 2026-02-03

Author Shila Ghazanfar [aut, cre, ctb],

Aiden Jin [ctb],
Nicholas Robertson [ctb]

Maintainer Shila Ghazanfar <shazanfar@gmail.com>

Contents
TUNOPS . . . e e 3
adaptiveKNN 0 0o e 3
allEqual e e 4
buildLabelsDataFrame 5
classifyEmbedding 5
combineBinaryErrors L. 7
getAdaptiveK 8
GEtATEMIN e e e e 9
getBestColumn 9
getBinaryErroro 10
getBinaryErrorFromPredictions L oL oo 10
getModeFirst e 11
getQueryK L e e 11
SM_MEAN .« . o v v v e e e e e e e e e e e e e e e e 12
imputeEmbedding 12
isUnequal e 13
mockMosaicData 14
mosaicDataTopology e e 14
mosaicDataUpSet 15
queryNamedKNN 16
reWeightEmbedding 16
selectFeatures L e 17
smoothLocal e 18
stabMap 18
vectorSubset L. L e e e e e e e e e 20
Jopred%o oL e e 21
Goprojpred o e e e e e e e e e e e e e 21
Do*1% . . . e e 22
Do** To . . e e 22

Index 23

.runOps 3

.runOps Run a sequence of binary operations

Description

Run a sequence of binary operations

Usage

.runOps(obj, ops, leftToRight = TRUE)

Arguments
obj list of objects.
ops list of operations (length should be 1 less than ‘obj®).

leftToRight logical whether operations should be performed in order from left to right (de-
fault), or right to left.

Value

matrix or array output of the sequence of binary operations

adaptiveKNN Adaptive k-Nearest Neighbour Classification

Description
Adaptive k-Nearest Neighbour Classification for a k-nearest neighbour matrix, given class labels
and local k values for the training data

Usage

adaptiveKNN(knn, class, k_local)

Arguments
knn Is a k-nearest neighbour matrix, giving the indices of the training set that the
query is closest to. Rows are the query cells, columns are the NNs. Typically
output using BiocNeighbors::queryKNN(,.k = max(k_local)).
class Is the labels associated with the training set.
k_local Is an integer vector length of the training set, giving the local k to use if k_local
is given as a single integer, then that value is used as k for all observations.
Value

A character vector of of classifications for the test set.

4 allEqual

Examples

Generate example data
data <- matrix(rpois(10 * 20, 10), 10, 20) # 10 genes, 20 cells
data_2 <- matrix(rpois(1@ x 30, 10), 10, 30) # 10 genes, 30 cells

Generate error matrix for k_local
E <- matrix(runif(100), 20, 5)
colnames(E) <- paste@("K_", 1:5)

Define training class labels and adaptive k-values
class <- factor(rep(letters[1:2], each = 10))
k_local <- getAdaptiveK(E, labels = class)

knn <- BiocNeighbors: :queryKNN(

t(data), t(data_2),

k = max(as.numeric(gsub("K_", "", k_local)))
)$index

Adaptive KNN classification
test <- adaptiveKNN(

knn, class, as.numeric(gsub("K_", "", k_local))
)
allEqual allEqual
Description

Checks if a vector is equal to its first element

Usage

allEqual (x)

Arguments

X A vector.

Value

logical whether a a vector is equal to its first element.

buildLabelsDataFrame 5

buildLabelsDataFrame buildLabelsDataFrame

Description

Build dataframe for output from ‘classifyEmbedding*

Usage

buildLabelsDataFrame(labels, resubstituted_labels, k_adaptive)

Arguments

labels Is a named character vector with true labels.
resubstituted_labels
Is a named character vector with predicted labels.

k_adaptive Is a named vector of the k-values, this could be a single integer when fixed.

Value

A dataframe with rows the same as resubstituted_labels and columns for input_labels, predicted_labels,
and resubstituted_labels.

classifyEmbedding Adaptive k-Nearest Neighbour Classification using the StabMap joint
embedding

Description

Performs adaptive k-nearest neighbour classification of discrete labels for a training set from a query
set, leveraging the StabMap joint embedding. The training labels are defined in ‘labels®, with all
other rows of the embedding treated as the testing set.

Usage

classifyEmbedding(
coords,
labels,
type = c("uniform_fixed"”, "adaptive_labels"”, "adaptive_local”, "uniform_optimised"),
k_values = 5,
error_measure = c("simple_error”, "balanced_error"),
adaptive_nFold = 2,
adaptive_nRep = 5,
adaptive_local_nhood = 100,
adaptive_local_smooth = 10,
verbose = TRUE

Arguments

coords

labels
type

k_values

error_measure

adaptive_nFold

adaptive_nRep

classifyEmbedding

A cells (rows) x dimensions data matrix, on which euclidean distances are to be
calculated for KNN classification. Must have rownames. Typically, output from
‘stabMap()‘.

A named character vector of labels for the training set.

A character of the type of adaptive KNN classification to be used. Must be one of

"adaptive_local", "adaptive_labels", "uniform_optimised", or "uniform_fixed".
Default is "uniform_fixed".

A numeric vector of potential k values. If type is "uniform_fixed", then the first
value of k_values is used. Default is 5.

Is the error type to use for selection of the best k. Must be one of "simple_error"
or "balanced_error". "simple_error" weights all cells equally. "balanced_error"
weights error by ‘labels factors. Only affects error type for type == "uni-
form_optimised".

Is the number of folds for adaptive selection cross-validation.

Is the number of repetitions of adaptive selection cross-validation.

adaptive_local_nhood

Is the neighbourhood size for optimising locally.

adaptive_local_smooth

verbose

Value

Is the number of neighbours to use for smoothing locally.

Logical whether to print repetition and fold number for adaptive selection cross-
validation.

Is a dataframe with rows the same as coords, and same rownames. Columns are: input_labels is
the training labels that were provided in ‘labels‘ (NA is used as labels for the testing set), resub-
stituted_labels is predicted labels for all rows (including for the training data), predicted_labels is
predicted labels for the testing set but true labels as provided in ‘labels* for the training set, k is the
adaptive k value used for that each row of the training set.

Examples

set.seed(100)

Simulate coordinates
coords <- matrix(rnorm(1000), 100, 10)
rownames(coords) <- paste@("cell_", seg_len(nrow(coords)))

Define labels of the first 50 cells
labels <- rep(paste@("type_", letters[1:5]), 10)

names(labels) <-

rownames (coords)[seq_along(labels)]

Uniform fixed KNN classification
knn_out <- classifyEmbedding(

coords, labels,

type = "uniform_fixed”, k_values = 5

)

table(knn_out$predicted_labels)

Adaptive KNN classification using local error
knn_out <- classifyEmbedding(

combineBinaryErrors 7

coords, labels,

type = "adaptive_local”,
k_values = 2:3,
adaptive_nFold = 5
adaptive_nRep = 10
)
table(knn_out$predicted_labels)

’

knn_out <- classifyEmbedding(
coords, labels,
type = "adaptive_labels”,
k_values = 2:3,
adaptive_nFold = 5,
adaptive_nRep = 10

)

table(knn_out$predicted_labels)

Adaptive KNN classification using uniform optimised with balanced error
knn_out <- classifyEmbedding(
coords, labels,
type = "uniform_optimised”,
k_values = 2:3,
adaptive_nFold = 3,
adaptive_nRep = 10,
error_measure = "balanced_error”
)
table(knn_out$predicted_labels)

combineBinaryErrors combineBinaryErrors

Description

Combines binary error matrices by averaging error values across all matrices, for each entry (row
and column combination)

Usage

combineBinaryErrors(E_list)

Arguments
E_list A list containing matrices. Each matrix must have the same number of columns
(k-values) and contain rownames (cells).
Value

A sparse error matrix.

8 getAdaptiveK

getAdaptiveK Adaptive k selection for KNN classification

Description

Given an error matrix, identify the k that maximises the accuracy for cells belonging to a provided
labelling/grouping. If no labelling given, expect a cell-cell similarity network to identify the k that
maximises the accuracy for cells within that neighbourhood. If neither are given, simply treat all
cells as if they have the same labelling/grouping

Usage
getAdaptiveK(E, labels = NULL, local = NULL, outputPerCell = TRUE, ...)
Arguments
E An error matrix with rows corresponding to cells and columns corresponding to
candidate k values, with values themselves corresponding to error values (either
binary for single classification, or continuous after multiple classification).
labels Group labels for cells.
local A neighbourhood index representation, as typically output using BiocNeigh-

bors::findKNN().

outputPerCell Logical whether to return adaptive k for each cell, not just for each label type
(used for when labels is given).

Includes return_colnames, whether to give the colnames of the best selected, or
just the index, which is default TRUE.

Value

Vector of adaptive k values.

Examples

E <- matrix(runif(100), 20, 5)

colnames(E) <- paste@("K_", 1:5)

generate cell labels

labels <- factor(rep(letters[1:2], each = 10))

generate nearest neighbourhood index representation
data <- matrix(rpois(1@ * 20, 10), 10, 20) # 10 genes, 20 cells
local <- BiocNeighbors::findKNN(t(data), k = 5, get.distance = FALSE)$index

best_k_labels <- getAdaptiveK(E,
labels = labels

)

best_k_local <- getAdaptiveK(E,
local = local

)

getArgMin 9

getArgMin getArgMin

Description

For each row in a matrix calculate the first index which gives the minimum value

Usage

getArgMin(M, return_colnames = TRUE, identicalNA = TRUE)

Arguments

M A matrix.

return_colnames
Logical whether to return column names of matrix (default TRUE). Otherwise
return index.

identicalNA Logical whether to return NA if all values in a row are identical (default TRUE).

Value

A vector containing the first index or column name of the minimum values for each row of the
matrix.

getBestColumn getBestColumn

Description
Identifies the index of the column of a matrix with the minimum mean. If balanced_labels is given
then calculate the balanced mean

Usage

getBestColumn(E, balanced_labels = NULL)

Arguments

E An error matrix.
balanced_labels
Class labels for each row (cell) of E.

Value

The index of the best performing column of E

10 getBinaryErrorFromPredictions

getBinaryError getBinaryError

Description

For potential k values, generate a binary error matrix from KNN label classification

Usage

getBinaryError(knn, k_values, class_train, class_true)

Arguments
knn Is a k-nearest neighbour matrix, giving the indices of the training set that the
query is closest to. Rows are the query cells, columns are the NNs, should be a
large value. Typically output using BiocNeighbors::queryKNN(,.k = max(k_values)).
k_values Is an integer vector of the values of k to consider for extracting accuracy. If
k_values has names then pass these to colnames of E.
class_train Is a factor or character vector of classes that corresponds to the indices given
within knn.
class_true Is a factor or character vector that corresponds to the rows of knn. If class_true
has names then pass these to rownames of E.
Value

A sparse binary error matrix.

getBinaryErrorFromPredictions
getBinaryErrorFromPredictions

Description

Compute binary error between predicted labels and true labels

Usage

getBinaryErrorFromPredictions(pred, labels)

Arguments
pred Is a matrix of class label predictions.
labels Is a named vector of true labels.
Value

A sparse binary error matrix.

getModeFirst

11

getModeFirst getModeFirst

Description

Identify the mode of x up to the first index

Usage

getModeFirst(x, first)

Arguments
X A character or a factor.
first An integer.

Value

A character of the mode of x.

getQueryK getQueryK

Description

For each cell in the query data, use the 1NN’s adaptive k value (of the reference data) to identify

the local best k value

Usage

getQueryK(knn, k_local)

Arguments
knn Is a k-nearest neighbour matrix, giving the indices of the training set that the
query is closest to. Rows are the query cells, columns are the NN, should be a
large value. Typically output using BiocNeighbors::queryKNN(,.k = max(k_local)).
k_local Is an integer vector length of the reference set, giving the local k to use. If
k_local is given as a single integer, then that value is used as k for all observa-
tions.
Value

An integer vector with local k to use for each query cell.

12

imputeEmbedding

gm_mean gm_mean

Description

Calculate the geometric mean

Usage

gm_mean(x, na.rm = TRUE)

Arguments

X A vector.

na.rm A logical value indicating whether NA values should be stripped before calcu-

lating the geometric mean.

Value

A numeric.

imputeEmbedding Impute values using StabMap joint embedding

Description

Performs naive imputation of values from the list of mosaic data and joint embedding from StabMap.

Usage

imputeEmbedding(
assay_list,
embedding,

reference = Reduce(union, lapply(assay_list, colnames)),
query = Reduce(union, lapply(assay_list, colnames)),

neighbours = 5,

fun = mean
)
Arguments
assay_list List of mosaic data from which to perform imputation.
embedding Joint embedding from which to extract nearest neighbour relationships.
reference Character vector of cell names to treat as reference cells.
query Character vector of cell names to treat as query cells.
neighbours Number of nearest neighbours to consider (default 5).

fun function (default ‘mean‘) to aggregate nearest neighbours’ imputed values.

isUnequal

Value

List containing imputed values from each assay_list data matrix which contains reference cells.

Examples

set.seed(2021)
assay_list <- mockMosaicData()
lapply(assay_list, dim)

stabMap

out <- stabMap(assay_list,
ncomponentsReference = 20,
ncomponentsSubset = 20

)

impute values
imp <- imputeEmbedding(assay_list, out)

inspect the imputed values
lapply(imp, dim)
imp[[1]1[1:5, 1:5]

13

isUnequal isUnequal

Description

Checks if elements of 2 vectors are unequal

Usage

isUnequal(x, y)

Arguments
X A vector.
y A vector.
Value

An integer vector. 1 for unequal. O for equal

14 mosaicDataTopology

mockMosaicData mockMosaicData

Description

Mock up a mosaic data list using simulated data, for use in documentation examples.

Usage

mockMosaicData(
names = c("D1", "D2", "D3"),
ncells = c(50, 50, 50),
ngenes = list(1:150, 76:225, 151:300),

fun = "rnorm”,
)
Arguments
names character vector of mock datasets.
ncells integer vector of cells in each mock dataset.
ngenes list containing integer vectors of features measured in each mock dataset.
fun name of function to simulate data, default "rnorm".
further arguments passed to ‘fun‘.
Value

assay_list a list of data matrices with rownames (features) specified.

Examples

set.seed(2021)
assay_list <- mockMosaicData()
lapply(assay_list, dim)

simulate data from another distribution
assay_list <- mockMosaicData(fun = "rnbinom", size = 5, prob = 0.5)
lapply(assay_list, dim)

mosaicDataTopology mosaicDataTopology

Description

Generate mosaic data topology network as an igraph object.

Usage

mosaicDataTopology(assay_list)

mosaicDataUpSet 15

Arguments

assay_list a list of data matrices with rownames (features) specified.

Value

igraph weighted network with nodes corresponding to assay_list elements, and edges present
if the matrices share at least one rowname. Edge weights correspond to the number of shared
rownames among data matrices.

Examples

set.seed(2021)

assay_list <- mockMosaicData()

mdt <- mosaicDataTopology(assay_list)
mdt

plot(mdt)

mosaicDataUpSet mosaicDataUpSet

Description

Plots feature overlaps of mosaic data as an UpSet plot.

Usage
mosaicDataUpSet(assay_list, plot = FALSE, ...)
Arguments
assay_list a list of data matrices with rownames (features) specified.
plot logical (default FALSE) whether the UpSet plot should be printed.
further arguments passed to ‘upset‘ from the ‘UpSetR‘ package.
Value

UpSet object displaying degree of overlap of rownames (features) among each of the data matrices
in assay_list. Set bars correspond to the number of cells/samples present in each data matrix.

Examples

set.seed(2021)

assay_list <- mockMosaicData()
lapply(assay_list, dim)
mosaicDataUpSet(assay_list)

additional arguments from UpSetR: :upset()
mosaicDataUpSet(assay_list, empty.intersections = TRUE)

16 reWeightEmbedding

queryNamedKNN queryNamedKNN

Description

queryNamedKNN

Usage

gueryNamedKNN(coords_reference, coords_query, k)

Arguments

coords_reference
coords_reference

coords_query coords_query

k k

Value

matrix

reWeightEmbedding Re-weight StabMap embedding

Description

Re-weights embedding according to given weights for each reference dataset. This gives more or
less weighting to each contributing dataset and method (PCA or LDA),

Usage

reWeightEmbedding(embedding, weights = NULL, factor = 1e+@6)

Arguments
embedding Joint embedding as output from stabMap.
weights (optional) named numeric vector giving relative weights for each reference dataset.
factor numeric multiplicative value to offset near-zero values.

Value

matrix of same dimensions as ‘embedding‘.

selectFeatures 17

Examples

set.seed(2021)
assay_list <- mockMosaicData()
lapply(assay_list, dim)

specify which datasets to use as reference coordinates
reference_list <- c("D1", "D3")

specify some sample labels to distinguish using linear discriminant
analysis (LDA)
labels_list <- list(
D1 = rep(letters[1:5], length.out = ncol(assay_list[["D1"1]))
)

stabMap

out <- stabMap(assay_list,
reference_list = reference_list,
labels_list = labels_list,
ncomponentsReference = 20,
ncomponentsSubset = 20

)

look at the scale of each component and discriminant
boxplot(out, las = 2, outline = FALSE)

re-weight embedding for less contribution from LDs and equal contribution
from PCs of both references
out_reweighted <- reWeightEmbedding(
out,
weights = ¢("D1_LD" = 0.5, "D1_PC" =1, "D3_PC" = 1)
)

look at the new scale of each component and discriminant
boxplot(out_reweighted, las = 2, outline = FALSE)

selectFeatures selectFeatures

Description

For a given assay and set of features, perform variance ranking and select a subset of features

Usage

selectFeatures(assay, features, maxFeatures)

Arguments
assay An assay matrix rows are features, columns are cells
features Character vector of the current features that are selected

maxFeatures Integer of the number of maxFeatures to select

18 stabMap

Value

A character vector of the selected features according to variance ranking.

smoothLocal smoothLocal

Description

Smooth out the adaptive k values. Can be smoothed by computing the arithmetic or geometric mean
of the adaptive k-values for each cells neighbourhood

Usage

smoothLocal (best_k, local, smooth = 10, mean_type = "geometric")
Arguments

best_k Is a named vector of local best k values

local Is a KNN matrix, with rows same as best_k and values indices of best_k.

smooth An integer of k-nearest neighbours to smooth over.

mean_type Character indicating to calculate the ’geometric’ or ’arithmetic’ mean.
Value

A numeric vector of smoothed adaptive k-values.

stabMap Stabilised mosaic single cell data integration using unshared features

Description

stabMap performs mosaic data integration by first building a mosaic data topology, and for each
reference dataset, traverses the topology to project and predict data onto a common principal com-
ponent (PC) or linear discriminant (LD) embedding.

Usage

stabMap(
assay_list,
labels_list = NULL,
reference_list = NULL,
reference_features_list = lapply(assay_list, rownames),
reference_scores_list = NULL,
ncomponentsReference = 50,
ncomponentsSubset = 50,
suppressMessages = TRUE,
projectAll = FALSE,
restrictFeatures = FALSE,

stabMap 19

maxFeatures = 1000,

plot = TRUE,

scale.center = TRUE,
scale.scale = TRUE,
SE_assay_names = "logcounts”,
BPPARAM = SerialParam(),
verbose = TRUE

)

Arguments
assay_list A list of data matrices with rownames (features) specified.
labels_list (optional) named list containing cell labels

reference_list Named list containing logical values whether the data matrix should be consid-
ered as a reference dataset, alternatively a character vector containing the names
of the reference data matrices. If NULL, defaults to: sapply(names(assay_list),
function(x) TRUE, simplify = FALSE)

reference_features_list
List of features to consider as reference data (default is all available features).

reference_scores_list
Named list of reference scores (default NULL). If provided, matrix of cells (rows
with rownames given) and dimensions (columns with colnames given) are used
as the reference low-dimensional embedding to target, as opposed to performing
PCA or LDA on the input reference data.

ncomponentsReference
Number of principal components for embedding reference data, given either as
an integer or a named list for each reference dataset.

ncomponentsSubset
Number of principal components for embedding query data prior to projecting
to the reference, given either as an integer or a named list for each reference
dataset.

suppressMessages

Logical whether to suppress messages (default TRUE).

projectAll Logical whether to re-project reference data along with query (default FALSE).
restrictFeatures

logical whether to restrict to features used in dimensionality reduction of refer-
ence data (default FALSE). Overall it’s recommended that this be FALSE for
single-hop integrations and TRUE for multi-hop integrations.

maxFeatures Maximum number of features to consider for predicting principal component
scores (default 1000).
plot Logical whether to plot mosaic data UpSet plot and mosaic data topology net-

works (default TRUE).
scale.center Logical whether to re-center data to a mean of 0 (default FALSE).
scale.scale Logical whether to re-scale data to standard deviation of 1 (default FALSE).

SE_assay_names Either a string indicating the name of the assays for the SummarizedExperiment
objects in assay_list or a named list of assay names, where the names corrispond
to the names SE objects in assay_list (default "logcounts")

BPPARAM a BiocParallelParam object specifying how parallelisation should be performed
verbose Logical whether console output is provided (default TRUE)

20 vectorSubset

Value

matrix containing common embedding with rows corresponding to cells, and columns correspond-
ing to PCs or LDs for reference dataset(s).

Examples

set.seed(2021)
assay_list <- mockMosaicData()
lapply(assay_list, dim)

specify which datasets to use as reference coordinates
reference_list <- c("D1", "D3")

specify some sample labels to distinguish using linear discriminant
analysis (LDA)
labels_list <- list(
D1 = rep(letters[1:5], length.out = ncol(assay_list[["D1"1]))
)

examine the topology of this mosaic data integration
mosaicDataUpSet(assay_list)
plot(mosaicDataTopology(assay_list))

stabMap

out <- stabMap(assay_list,
reference_list = reference_list,
labels_list = labels_list,
ncomponentsReference = 20,
ncomponentsSubset = 20

)

head(out)

vectorSubset vectorSubset

Description

vectorSubset

Usage

vectorSubset(vec, mat)

Arguments
vec vec
mat mat
Value

matrix

%pred% 21

%pred Binary operator for model predictions on data

Description

This function performs model predictions via the predict function for each column of data.

Usage

data %pred% models

Arguments
data is a matrix with rows corresponding to features, and columns corresponding to
cells/observations
models is a list of univariate outcome models with the features as explanatory variables
Value

a matrix with rows equal to length(models) and columns corresponding to cells/observations

%projpreds% Project and/or predict data using feature weights or a LDA model ob-
ject

Description

This function takes a data matrix a and, depending on the class of b, projects the data using feature
weights, or predicts new values using linear discriminant analysis (LDA) model object, or both.

Usage

a %projpred% b

Arguments
a a matrix with colnames specified
b a matrix with rownames specified, or a 1da model object, or a list containing a
matrix and/or a 1da model object.
Value

matrix

22 %**%

%%1% Sorted matrix multiplication with intercept column

Description
This function first binds a column filled with 1s named intercept to a, then performs rownames
and colnames-aware (%**%) matrix multiplication with b.

Usage
a %*1% b

Arguments

a a matrix with rownames specified

b a matrix with colnames specified

Value

matrix

%x%% Sorted matrix multiplication

Description
This function multiplies two matrices but first reorders the rows of the second matrix to match the
columns of the first matrix

Usage
X %x*% Y

Arguments

X a matrix with colnames specified.

Y a matrix with rownames specified. Alternatively, a list assumed to contain two
objects, a matrix with rownames specified, and a vector of scaling values for
subtraction.

Value

matrix

Index

+ internal
.runOps, 3
%% %%, 22
%%1%, 22
%preddk, 21
%projpreds, 21
allEqual, 4
buildLabelsDataFrame, 5
combineBinaryErrors, 7
getArgMin, 9
getBestColumn, 9
getBinaryError, 10
getBinaryErrorFromPredictions, 10
getModeFirst, 11
getQueryK, 11
gm_mean, 12
isUnequal, 13
gueryNamedKNN, 16
selectFeatures, 17
smoothLocal, 18
vectorSubset, 20

.runOps, 3

%x*%, 22

%%1%, 22

%preddk, 21

%projpreds, 21

adaptiveKkNN, 3
allEqual, 4

buildLabelsDataFrame, 5

classifyEmbedding, 5
combineBinaryErrors, 7

getAdaptivek, 8

getArgMin, 9

getBestColumn, 9
getBinaryError, 10
getBinaryErrorFromPredictions, 10
getModeFirst, 11

getQueryK, 11

gm_mean, 12

imputeEmbedding, 12

23

isUnequal, 13

mockMosaicData, 14
mosaicDataTopology, 14
mosaicDataUpSet, 15

queryNamedKNN, 16
reWeightEmbedding, 16

selectFeatures, 17
smoothlLocal, 18
stabMap, 18

vectorSubset, 20

	.runOps
	adaptiveKNN
	allEqual
	buildLabelsDataFrame
	classifyEmbedding
	combineBinaryErrors
	getAdaptiveK
	getArgMin
	getBestColumn
	getBinaryError
	getBinaryErrorFromPredictions
	getModeFirst
	getQueryK
	gm_mean
	imputeEmbedding
	isUnequal
	mockMosaicData
	mosaicDataTopology
	mosaicDataUpSet
	queryNamedKNN
	reWeightEmbedding
	selectFeatures
	smoothLocal
	stabMap
	vectorSubset
	pred
	projpred
	*1
	**
	Index

