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ExampleRawData Example dataset to test the performance of the sigFeature package.
Description

For this significant feature selection procedure, microarray data (GSE2280) from patients with squa-
mous cell carcinoma of the oral cavity (OSCC) has been used( O’Donnell RK et al. (2005)).
Affymetrix Human Genome Array, UI33A was selected for genome-wide transcription analysis
for this data set. In this paper, the gene expression profiles obtained from primary squamous cell
carcinoma of the oral cavity (OSCC) that were metastatic to lymph nodes (N+) compared to those
that were not metastatic (N-). A total of 18 OSCCs were analyzed for gene expression. In their
analysis a predictive rule was built using a support vector machine, and the accuracy of the rule was
evaluated using cross-validation the original data set and prediction of an independent set of four
patients. A signature gene set is produced which is able to predict the four independent patients
correctly as well as associating five lymph node metastases from the original patient set with the
metastatic primary tumour group.

Usage

data("ExampleRawData")

Format

The format is:

num [1:27, 1:2205] 72.5 177.2 75.7 128.9 142 ...

- attr(*, "dimnames")=List of 2

..$ : chr [1:27] "GSM42246" "GSM42248" "GSM42250" "GSM42252" ...

..$ : chr [1:2205] "1494_f_at" "179_at” "200014_s_at" "200059_s_at" ...
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Details

For "sigFeature" package evaluation, the microarray dataset has been classified into two classes
such as lymph node metastatic (N+) and No lymph node metastatic (N-) (according to the TNM
staging), provided in the dataset. After downloading the data set from GEO database firstly, it was
normalized using the "quantile" normalization method using the Bioconductor package "limma".
To reduce the runtime of this sigFeature function, a subset of the total dataset is taken by the ratio
between the difference between two groups with cut off value (p-value 0.07). Now the expression
value of the sub-dataset is considered here as "x". The patients without lymph node metastasis are
represented -1, and the patients with lymph node metastasis are represented as 1. Those -1 and 1

nen

value is incorporated with "y" as sample labels.

Value

ExampleRawData Return the values stored in the variable.

Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2280

References

O’Donnell RK, Kupferman M, Wei SJ, Singhal S et al. Gene expression signature predicts lym-
phatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene 2005 Feb 10;24(7):1244-
51. PMID: 15558013

Examples

data("ExampleRawData")

featsweepSigFe Processed output data after using the function named "sigCVError()".

Description

The variable "featsweepSigFe" contains the output of the function named "sigCVError()". The
features which are produced on the basis of frequency are used here to enumerate mean external
cross validation (k-fold) errors and the standard deviation of the errors. Training and test samples
are same which are initially produced after splitting the main sample set in to k-folds. In each
iteration, k-1 folds are considered as training samples and remaining one fold is considered as
testing samples. In this external cross validation procedure, feature numbers are increased one by
one by using the expression values from training dataset as well as test dataset. After that, traning
samples are trained to test the tesing samples dynamically. The number of un classified samples are
averaged and are called as external cross validation error rate.

Usage

data("featsweepSigFe")



Format

The format is:

List of 400
$ :List of 3

..$ svm.list:List of 10

.3

'data.frame':
: num 0.000244

..$ gamma
..$ cost
..$ error

..$ dispersion:
:'data.frame':
: num 0.000244

..$ gamma
..$ cost
..$ error

..$ gamma
..$ cost
..$ error

..$ gamma
..$ cost
..$ error

..$ gamma
..$ cost
..$ error

..$ gamma
..$ cost
..$ error

..$ gamma
..$ cost
..$ error

..$ gamma
..$ cost
..$ error

..$ gamma
..$ cost
..$ error

..$ gamma

1 obs. of 4

: num 0.001
: num @.333

num NA
1 obs. of 4

: num 0.001
: num @.333
..$ dispersion:
:'data.frame':
: num 0.000244
: num 0.001
: num 0.667
..$ dispersion:
:'data.frame':
: num 0.000244
: num 0.001
: num @.333
..$ dispersion:
:'data.frame':
: num 0.000244
: num 0.001
: num @.333
..$ dispersion:
:'data.frame':

num NA
1 obs. of 4

num NA
1 obs. of 4

num NA
1 obs. of 4

num NA
1 obs. of 4

: num 1

: num 1.78

: num 0.667

..$ dispersion:
:'data.frame':

: num 0.000244

: num 0.001

: num @

..$ dispersion:
:'data.frame':

: num 0.000244

: num 0.001

: num @

..$ dispersion:
:'data.frame':

: num 0.000244

: num 0.001

: num 0.5

..$ dispersion:
:'data.frame':

: num 0.000244

num NA
1 obs. of 4

num NA
1 obs. of 4

num NA
1 obs. of 4

num NA
1 obs. of 4

variables:

variables:

variables:

variables:

variables:

variables:

variables:

variables:

variables:

variables:

featsweepSigFe
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..$ cost : num 0.001

..$ error : num 0.5

..$ dispersion: num NA
..$ error : num @.367

..$ errorSD : num 0.233

Value

featsweepSigFe Return the values stored in the variable.

Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2280

References

O’Donnell RK, Kupferman M, Wei SJ, Singhal S et al. Gene expression signature predicts lym-
phatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene 2005 Feb 10; 24(7):1244-
51. PMID: 15558013

Examples

data(featsweepSigFe)
## maybe str(featsweepSigFe) ; plot(featsweepSigFe) ...

featureRankedList Processed output data after using the function named "svimrfeFeatur-
eRanking()".

Description
The variable "featureRankedList" contains the output of the function named "svmrfeFeatureRank-
ing()".

Usage

data("featureRankedList")

Format

The format is:
int [1:2204] 1073 1404 1152 5 1253 1557 105 1207 792 57 ...

Details

To solve the classification problem with the help of ranking the features an algorithm was proposed
by Guyon named SVM-RFE. In this algorithm the dataset has been trained with SVM linear kernel
model and removed the feature with smallest ranking criterion. This criterion is the w value of the
decision hyperplane given by the SVM.
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Value
featureRankedList
returns the feature list.
Source

http://www.uccor.edu.ar/paginas/seminarios/Software/SVM-RFE.zip

References

Guyon, I, et al. (2002) Gene selection for cancer classification using support vector machines,
Machine learning, 46, 389-422.

Examples

data(featureRankedList)
## maybe str(featureRankedList) ; plot(featureRankedList) ...

PlotErrors Plot the mean CV errors.

Description

A useful function for plotting the errors which is enumerated by using the function sigCVError().

Usage

PlotErrors(featsweepSigFe, ylim.min=0, ylim.max=0)

Arguments
featsweepSigFe a list variable containing the gamma, cost, error, dispersion values.
The format is:

List of 1

$ :List of 3
..$ svm.list:List of 1
..$ :data.frame: 1 obs. of 4 variables:

..$ gamma : num 0.000244
..$ cost : num 0.001
..$ error : num 0.5

.. .. ..% dispersion: num NA

..$ error : num @.367

..%$ errorSD : num 0.233

ylim.min minimum y label value in the graph.
ylim.max maximum Yy label value in the graph.
Details

This plot function will show the errors.
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Value

returns plot.

Author(s)

Pijush Das <topijush@gmail.com>, et al.

References

Chang, Chih-Chung and Lin, Chih-Jen: LIBSVM 2.0: Solving Different Support Vector Formula-
tions. http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm2.ps.gz

Chang, Chih-Chung and Lin, Chih-Jen:Libsvm: Introduction and Benchmarks, http://www.csie.ntu.edu.tw/~cjlin/papers/

See Also

svm, svm.fs

Examples

# Example for PlotErrors()
# Data set taken from GSE2280

data(featsweepSigFe)
dim(featsweepSigFe)

#For plotting the mean external cross validation
#error and the standard deviation of the of the
#miss classifications of top 400 features.
PlotErrors(featsweepSigFe, 0, 0.4)

results Processed output data after using the function named "sigFea-
ture.enfold()".

Description

The variable "results" contains the output of the function named "sigFeature.enfold()". To produce
the output using "sigFeature.enfold(x,y,"kfold",10)" function the dataset is devided into 10 folds.
Each time one fold is kept and the remaining k-1 folds are used to generate the features. Later the
one fold is used as test sample and the remaining k-1 fold samples are used as training samples.
The "results" variable contains feature.ids (address of the features), train.data.ids (training dataset
ids), test.data.ids (test dataset ids), train.data.level (training dataset levels) and test.data.level (test
dataset levels).

Usage

data("results"”)



Format

The format is:
List of 10

$ :List of 5

..$ feature.ids : int [1:2204] 2064 2031 2035 1573 370

..$ train.data.ids : chr [1:24] "GSM42246" "GSM42248" ...

..$ test.data.ids : chr [1:3] "GSM42263" "GSM42251" "GSM42260"
..$ train.data.level: Named num [1:24]1 11111 -1 -1 -1 -1 -1

..— attr(*, "names")= chr [1:24] "GSM42246" "GSM42248" ...

..$ test.data.level : Named num [1:3] -1 1 1

..~ attr(*, "names"”)= chr [1:3] "GSM42263" "GSM42251" "GSM42260"
:List of 5

..$ feature.ids : int [1:2204] 1577 2064 370 2035 2032 605 ...
..$ train.data.ids : chr [1:24] "GSM42246" "GSM42248" ...
..$ test.data.ids : chr [1:3] "GSM42267" "GSM42256" "GSM42261"

..$ train.data.level: Named num [1:24]7 1 1111 -1 -1 -1 -1 -1

..~ attr(*, "names")= chr [1:24] "GSM42246" "GSM42248" ...

..$ test.data.level : Named num [1:3] -1 1 1

..— attr(*, "names”)= chr [1:3] "GSM42267" "GSM42256" "GSM42261"
:List of 5

..$ feature.ids : int [1:2204] 246 2006 1174 2032 1502 ...
..$ train.data.ids : chr [1:24] "GSM42246" "GSM42248" ...

..$ test.data.ids : chr [1:3] "GSM42265" "GSM42272" "GSM42255"
..$ train.data.level: Named num [1:241 11111 -1 -1 -1

..— attr(*, "names"”)= chr [1:24] "GSM42246" "GSM42248" ...

..$ test.data.level : Named num [1:3] -1 -1 1

..~ attr(*, "names"”)= chr [1:3] "GSM42265" "GSM42272" "GSM42255"
:List of 5

..$ feature.ids : int [1:2204] 2064 611 525 2035 2106
..$ train.data.ids : chr [1:24] "GSM42248" "GSM42250" ...
..$ test.data.ids : chr [1:3] "GSM42246" "GSM42262" "GSM42253"

..$ train.data.level: Named num [1:24]1 1 1 11 -1 -1 -1

..— attr(*, "names")= chr [1:24] "GSM42248" "GSM42250" ...

..$ test.data.level : Named num [1:3] 1 -1 1

..— attr(*, "names”)= chr [1:3] "GSM42246" "GSM42262" "GSM42253"
:List of 5

..$ feature.ids : int [1:2204] 370 726 2064 960 1519 2035 751
..$ train.data.ids : chr [1:24] "GSM42246" "GSM42248" ...
..$ test.data.ids : chr [1:3] "GSM42252" "GSM42264" "GSM42257"

..$ train.data.level: Named num [1:241 1 11 1 -1 -1 -1

..— attr(*, "names"”)= chr [1:24] "GSM42246" "GSM42248" ...

..$ test.data.level : Named num [1:3] 1 -1 1

..~ attr(x, "names")= chr [1:3] "GSM42252" "GSM42264"
:List of 5

..$ train.data.level: Named num [1:24]7 1 111 -1 -1 -1 -1 -1 -1

results

..$ feature.ids : int [1:2204] 2064 1519 2032 370 1550 2035 805 ...
..$ train.data.ids : chr [1:24] "GSM42246" "GSM42248" ...
..$ test.data.ids : chr [1:3] "GSM42250" "GSM42269" "GSM42270"

..— attr(*, "names")= chr [1:24] "GSM42246" "GSM42248" "GSM42252" ...

..$ test.data.level : Named num [1:3] 1 1 1

..— attr(*, "names”)= chr [1:3] "GSM42250" "GSM42269" "GSM42270"

$ :List of 5
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..$ feature.ids : int [1:2204] 2064 1016 370 2105 1519 611 997 ...
..$ train.data.ids : chr [1:24] "GSM42246" "GSM4225Q@" "GSM42252" ...
..$ test.data.ids : chr [1:3] "GSM42248" "GSM42249" "GSM42271"
..$ train.data.level: Named num [1:24]1 1111 -1 -1 -1 -1 -1 -1
.. ..— attr(*, "names")= chr [1:24] "GSM42246" "GSM42250"
..$ test.data.level : Named num [1:3] 1 1 1
..— attr(*, "names"”)= chr [1:3] "GSM42248" "GSM42249" "GSM42271"
:List of 5
..$ feature.ids : int [1:2204] 2064 370 2032 1446 1174 2105 ...
..$ train.data.ids : chr [1:25] "GSM42246" "GSM42248" ...
..$ test.data.ids : chr [1:2] "GSM42258" "GSM42259"
..$ train.data.level: Named num [1:25] 11111 -1 -1 -1
.. ..— attr(*, "names")= chr [1:25] "GSM42246" "GSM42248" ...
..$ test.data.level : Named num [1:2] 1 1
..~ attr(*, "names")= chr [1:2] "GSM42258" "GSM42259"
:List of 5
..$ feature.ids : int [1:2204] 2064 1913 781 1164 533 370 1914 ...
..$ train.data.ids : chr [1:25] "GSM42246" "GSM42248" "GSM42250" ...
..$ test.data.ids : chr [1:2] "GSM42268" "GSM42247"
..$ train.data.level: Named num [1:25]1 1 1 111 -1 -1 -1
.. ..— attr(*, "names")= chr [1:25] "GSM42246" "GSM42248" ...
..$ test.data.level : Named num [1:2] -1 1
..— attr(*, "names")= chr [1:2] "GSM42268" "GSM42247"
:List of 5
..$ feature.ids : int [1:2204] 2064 1519 625 1996 2032 ...
..$ train.data.ids : chr [1:25] "GSM42246" "GSM42248" ...
..$ test.data.ids : chr [1:2] "GSM42254" "GSM42266"
..$ train.data.level: Named num [1:25] 1 1 11 -1 -1 -1 -1 -1 -1
.. ..— attr(*, "names")= chr [1:25] "GSM42246" "GSM42248" ...
..$ test.data.level : Named num [1:2] 1 -1
..~ attr(*, "names")= chr [1:2] "GSM42254" "GSM42266"
Value
results Return the values stored in the variable.
Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2280

References

O’Donnell RK, Kupferman M, Wei SJ, Singhal S et al. Gene expression signature predicts lym-
phatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene 2005 Feb 10;24(7):1244-
51. PMID: 15558013

Examples

data(results)
## maybe str(results) ; plot(results) ...
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sigCVError Mean external cross validation (k-fold) error calculation.

Description
The function "sigCVError()" computes the mean external cross validation (k-fold) errors and the
standered deviation of the errors.

Usage

sigCVError(i, results, input)

Arguments
i number of features/genes from top of the ranked list.
results the results is produced from sigFeatureRanking.enfold() function.
input vector of class labels -1 or 1’s (for n samples/patients). n-by-d data matrix to
train (n chips/patients, d features/genes).
Details

The features which are produced on the basis of frequency are used here to enumerate mean external
cross validation (k-fold) errors and the standard deviation of the errors. Training and test samples
are same which are initially produced after splitting the main sample set in to k-fold. In each
iteration k-1 folds are considered as training samples and remaining one fold is considered as test
samples.In this external cross validation procedure, feature numbers are increased one by one by
using the expression values from training dataset as well as test dataset. After that, traning samples
are trained to test the tesing samples dynamically. The number of un classified samples are averaged
and are called as external cross validation error rate.

Value

error Return the error list.

Author(s)

Pijush Das <topijush@gmail.com>, et al.

References
Zhang, H. H., Ahn, J., Lin, X. and Park, C. (2006). Gene selection using support vector machines
with nonconvex penalty. Bioinformatics, 22, pp. 88-95.

See Also

findgacv.scad, predict.penSVM, sim.data
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Examples

#Example for sigCVError()

#Data set taken from GSE2280
#library(SummarizedExperiment)
#data(ExampleRawData, package="sigFeature")

#x <- t(assays(ExampleRawData)$counts)
#y <- colData(ExampleRawData)$samplelLabels

#inputdata <- data.frame(y=as.factor(y) ,x=x)

#For 10 fold cross validation.
#results = sigFeature.enfold(x, y, "kfold",10)

#Find out the frequency of the top 400 features selected by every iteration.
#FeatureBasedonFrequency <- sigFeatureFrequency(results, 400, 400, pf=FALSE)
#str(FeatureBasedonFrequency[1])

#To run the code given bellow will take huge time.
#featsweepSigFe = lapply(1:400, sigCVError, FeatureBasedonFrequency, inputdata)

#Thus the process data is given below.
data("featsweepSigFe")
str(featsweepSigFe[1])

sigFeature Significant Feature Selection by using SVM-RFE & t-statistic.

Description

Significant Feature selected by using SVM-RFE and t-statistic.

Usage

sigFeature(X,Y)

Arguments
X n-by-d data matrix to train (n samples/patients, d features/genes)
Y vector of class labels -1 or 1’s (for n samples/patients)

Details

The idea of "sigFeature" (Significant Feature Selection) begins from the lack of support vector
machine recursive feature (SVM-RFE) method. The feature ranked by the SVM-RFE algorithm
may or may not be differentially significant among the classes (in case of binary classification).
Significant features which have good classification accuracy and which are differentially significant
have an impotent role in biological aspect.

In data mining and optimisation, the feature selection is a very active field of research where the
SVM-REFE is distinguished as one of the most effective methods. This is a greedy method that only
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hopes to find the best possible combination for classification. In this algorithm, greedy method
similar to SVM-RFE is used. The prime intention of this algorithm is to enumerate the ranking
weights for all the features and sort the features according to weight vectors as the basis for clas-
sification. The coefficient and the expression mean differences between two compared groups are
used to calculate the weight value of that particular feature. The iteration process is followed by
backward removal of the feature. The iteration process is continued until there is only one feature
remaining in the dataset. The smallest ranking weight will be removed by the algorithm while the
feature variables with significant impact remains. Finally, the feature variables will be listed in the
descending order of descriptive difference degree.

Value

returns the feature list.

Author(s)

Pijush Das <topijush@gmail.com>, et al.

References

1. Karatzoglou, Alexandros, David Meyer, and Kurt Hornik. "Support vector machines in R."
(2005).

2. O’Donnell RK, Kupferman M, Wei SJ, Singhal S et al. Gene expression signature predicts lym-
phatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene 2005 Feb 10;24(7):1244-
51.

See Also

SVM, predict.penSVM

Examples

#Data set taken from GSE2280
library(SummarizedExperiment)
data(ExampleRawData, package="sigFeature")

x <- t(assays(ExampleRawData)$counts)
y <- colData(ExampleRawData)$samplelLabels

#Number of features are reduced to minimized the build time.
x <= x[ , 1:100]

#Feature selection with sigFeature functio.
system. time(sigfeatureRankedList <- sigFeature(x,y))
str(sigfeatureRankedList)
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sigFeature.enfold Significant feature selection with k-fold data.

Description
After converting the dataset into k-folds the function named "sigFeature.enfold()" is used to select
significant features from the classes. The randomization process is used to sub-sample the dataset.
Usage
sigFeature.enfold(x, y, CV, CVnumber=0)

Arguments
X n-by-d data matrix to train (n chips/patients, d clones/genes)
y vector of class labels -1 or 1 s (for n chips/patiens )
Y the number of folds in case of k-fold cross validation.
CVnumber the number of folds in case of n fold cross validation.
Details

The "sigFeature()" function is further enhanced by incorporating one cross validation methods such
as k-fold external cross validation. In this k-fold cross validation procedure k-1 fold are used for
selecting the feature and one fold remain untouched which will latter used as test sample set.

Value

feature.ids selected significant features.
train.data.ids training chips/patients ids.

test.data.ids testng chips/patients ids.
train.data.level

vector of class labels -1 or 1s (for n chips/patiens ) for train da.
test.data.level

vector of class labels -1 or 1s (for n chips/patiens ) for test da.

Note

This function will compute the feature with cross checking.

Author(s)

Pijush Das <topijush@gmail.com>, et al.

References
Zhang, H. H., Ahn, J., Lin, X. and Park, C. (2006). Gene selection using support vector machines
with nonconvex penalty. Bioinformatics, 22, pp. 88-95.

See Also

findgacv.scad, predict.penSVM, sim.data
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Examples

#Example for sigFeature.enfold()

#Data set taken from GSE2280
#library(SummarizedExperiment)
#data(ExampleRawData, package="sigFeature")

#x <- t(assays(ExampleRawData)$counts)
#y <- colData(ExampleRawData)$samplelLabels

#For ten fold external cross validation.
#results = sigFeature.enfold(x,y, "kfold",10)

#Compactly display the internal structure of an R object named "results”
data(results)
str(results)

sigFeatureFrequency Arrange the features on the basis of frequency.

Description

Arrange the features on the basis of frequency.

Usage

sigFeatureFrequency(x, results, n, m, pf=FALSE)

Arguments

X n-by-d data matrix to train (n samples/patients, d features/genes.

results The "results" variable contains the output produced by the function "sigFea-
ture.enfold()".

List of 1
$ :List of 5
..$ feature.ids : int [1:2204] 2064 2031 2035 1573 370
..$ train.data.ids : chr [1:24] "GSM42246" "GSM42248" ...
..$ test.data.ids : chr [1:3] "GSM42263" "GSM42251" "GSM42260"
..$ train.data.level: Named num [1:241 11111 -1-1-1-1-1 ...
..~ attr(*, "names")= chr [1:24] "GSM42246" "GSM42248"
..$ test.data.level : Named num [1:3] -1 1 1
. ..—-attr(*, "names")= chr [1:3] "GSM42263" "GSM42251" "GSM42260"

n n number of top features which will be taken from each feature lists.
m m number of top features which will be selected on the basis of frequency.

pf this variable used to print the all the output data into a .csv file.
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Details

15

In this example a new function is introduced named as "sigFeatureFrequency()". The main purpose
of this function is to arrange the features on the basis of its frequency. In the previous session the
dataset is divided into k-folds. Out of which k-1 folds are used for training purpose and one fold is
kept for test purpose. Thus each time the algorithm will produce a set of feature lists which finally
end up with k number of feature lists. "sigFeatureFrequency()" function is used which will rank all
the feature according to its frequency. Details description of this function is given in the help file.

Value

List of
$ :List
%

.3
.3
$

Author(s)

1
of 5
feature.ids : num [1:400] 187 225 246 303 313 370 394 469

train.data.ids : chr [1:24] "GSM42246" "GSM42248" "GSM42250" ...

test.data.ids : chr [1:3] "GSM42263" "GSM42251" "GSM42260"
train.data.level: Named num [1:24] 11111 -1 -1 -1 -1 -1

..— attr(*, "names")= chr [1:24] "GSM42246" "GSM42248" "GSM42250" ...

test.data.level : Named num [1:3] -1 1 1

..— attr(*, "names"”)= chr [1:3] "GSM42263" "GSM42251" "GSM42260"

Pijush Das <topijush@gmail.com>, et al.

References

Zhang, H. H., Ahn, J,, Lin, X. and Park, C. (2006). Gene selection using support vector machines
with nonconvex penalty. Bioinformatics, 22, pp. 88-95.

See Also

findgacv.scad, predict.penSVM, sim.data

Examples

#Example for sigFeatureFrequency()

#Data set taken from GSE2280
library(SummarizedExperiment)
data(ExampleRawData, package="sigFeature")

x <- t(assays(ExampleRawData)$counts)
y <- colData(ExampleRawData)$samplelLabels

#For ten fold external cross validation.

#results

= sigFeature.enfold(x,y, "kfold",10)

data(results)
FeatureBasedonFrequency <- sigFeatureFrequency(x, results, 400, 400, pf=FALSE)
str(FeatureBasedonFrequency[1])
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sigFeaturePvalue Find the p-value of those ranked features by using t-statistic

Description
This function will compute the p-value of those ranked features between the two classes by using
t-statistic.

Usage

sigFeaturePvalue(x, y, NumberOfSignificantGene=0, SignificantGenelLilt=0)

Arguments
X n-by-d data matrix to train (n chips/patients, d clones/genes)
y vector of class labels -1 or 1\’s (for n chips/patients )

NumberOfSignificantGene

Number of the selected features.
SignificantGenelilt

Selected feature list.

Details

This function will calculate the p-value.

Value

returns p-value list.

Author(s)

Pijush Das <topijush@gmail.com>, et al.

References

Peng CH, Liao CT, Peng SC, Chen YJ et al. A novel molecular signature identified by systems ge-
netics approach predicts prognosis in oral squamous cell carcinoma. PLoS One 2011;6(8):e23452.
PMID: 21853135

See Also

svm, svm.fs

Examples

#Example for sigFeaturePvalue() function
#Data set taken from GSE2280
library(SummarizedExperiment)
data(ExampleRawData, package="sigFeature")

x <- t(assays(ExampleRawData)$counts)
y <- colData(ExampleRawData)$samplelLabels
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#Claculating the p-value.

pvalues <- sigFeaturePvalue(x,y)

#Histogram plot of those p-values.
hist(unlist(pvalues),breaks=seq(0,0.08,0.0015),
xlab = "p-value”, ylab = "Frequency”, main = "")

#lLoad the process "sigfeatureRankedList” data.
data("sigfeatureRankedList")

#Claculating the p-value.

pvalues <- sigFeaturePvalue(x, y, 50, sigfeatureRankedList)
#Histogram plot of those p value.
hist(unlist(pvalues),breaks=seq(0,0.08,0.0015), xlab =
"p-value”, ylab = "Frequency”, main = "")

#lLoad the process "featureRankedList” data.
data("featureRankedList")

#Claculating the p-value.

pvalues <- sigFeaturePvalue(x, y, 50, featureRankedList)
#Histogram plot of those p value.
hist(unlist(pvalues),breaks=seq(0,0.08,0.0015), xlab =
"p-value"”, ylab = "Frequency"”, main = "")

sigfeatureRankedList  Processed output data after using the function named "sigFeature()".

Description

The variable "sigfeatureRankedList" contains the output of the function named "sigFeature()".

Usage

data("sigfeatureRankedList"”)

Format
The format is:
int [1:2204] 2064 370 2032 2035 1519 1573 1446 2105 997 611
Details
The dataset contains the ranked feature address which can indicate the expression values inside the

expression dataset.

Value

sigfeatureRankedList
returns the feature list.
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Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2280

References

Guyon, I, et al. (2002) Gene selection for cancer classification using support vector machines,
Machine learning, 46, 389-422.

Examples

data(sigfeatureRankedList)
## maybe str(sigfeatureRankedlList) ; plot(sigfeatureRankedList) ...

svmrfeFeatureRanking R implementation of the SVM-RFE algorithm for binary classification
problems

Description

To solve the classification problem with the help of ranking the features an algorithm was proposed
by Guyon, Isabelle, et al. named SVM-RFE. In this algorithm the dataset has been trained with
SVM linear kernel model and the feature containing the smallest ranking is removed. This criterion
is the w value of the decision hyperplane given by the SVM.

Usage
svmrfeFeatureRanking(x,y)
Arguments
X x n-by-d data matrix to train (n samples/patients, d clones/genes)
y y vector of class labels -1 or 1\’s (for n chips/patients )
Details

Adopted from R code: http://www.uccor.edu.ar/busquedas/?txt_palabra=seminarios

Value

returns the feature list.

Note

This function also rank the feature.

Author(s)

Guyon, Isabelle, et al.
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References

Guyon, Isabelle, et al. "Gene selection for cancer classification using support vector machines."
Machine learning 46.1-3 (2002): 389-422.

Zhang, H. H., Ahn, J,, Lin, X. and Park, C. (2006). Gene selection using support vector machines
with nonconvex penalty. Bioinformatics, 22, pp. 88-95.
See Also

scadsvc, predict.penSVM, sim.data

Examples

#Example for svmrfeFeatureRanking()

#Data set taken from GSE2280
library(SummarizedExperiment)
data(ExampleRawData, package="sigFeature")

x <- t(assays(ExampleRawData)$counts)
y <- colData(ExampleRawData)$samplelLabels

x <= x[ ,1:500]

#featureRankedList = svmrfeFeatureRanking(x,y)
print(featureRankedList[1:10])

#Train the data with ranked frature

#library(el1071)
#svmmodel = svm(x[ , featureRankedList[1:50]], y, cost = 10, kernel="linear")
#summary (svmmodel)
WritesigFeature Write the features and sample IDs.
Description

This function will write the output data produce from the function sigFeatureRanking.enfold.

Usage

WritesigFeature(results, x, fileName="Result")

Arguments
results the object produce by the function named sigFeatureRanking.enfold
X n-by-d data matrix to train (n chips/patients, d clones/genes).
fileName name of the output file.

Details

This function will write the variables.
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Value

results output file.

Author(s)

Pijush Das <topijush@gmail.comn>, et al.

References

Becker, N., Werft, W., Toedt, G., Lichter, P. and Benner, A.(2009) PenalizedSVM: a R-package for
feature selection SVM classification, Bioinformatics, 25(13),p 1711-1712

See Also

predict.penSVM, svm (in package e1071)

Examples

#Example for WritesigFeature()

#Data set taken from GSE2280
library(SummarizedExperiment)
data(ExampleRawData, package="sigFeature")

x <- t(assays(ExampleRawData)$counts)
y <- colData(ExampleRawData)$samplelLabels

#For 10 fold cross validation.
#results = sigFeature.enfold(x,y, "kfold",10)

#to write the output
#data(results)
#WritesigFeature(results, x)
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