Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Excitatory amino acid transporters support mast cell degranulation via α-KG-mediated methylation of Spp1

Abstract

Excitatory amino acid transporters (EAATs) mediate the progression of inflammatory diseases. However, the involvement of EAATs in the activation of mast cells (MCs) and MC-associated diseases remains unclear. Here, we demonstrate that EAAT2 expression (encoded by Slc1a2) directed by immunoglobulin E (IgE)-mediated high-affinity IgE receptor (FcεRI)-p38 signaling is indispensable for MC degranulation through osteopontin (OPN, encoded by Spp1). Mechanistically, EAAT2 regulates intracellular glutamate/alpha-ketoglutarate/reactive oxygen species (ROS) metabolism to reduce the DNA and histone H3K9 methylation of Spp1. Most importantly, MC-specific depletion of Slc1a2 alleviates the allergic response in mice, and EAAT2 expression is positively correlated with MC-associated diseases in humans. Taken together, our findings establish a mechanistic link between amino acid transporters and epigenetic modifications with MC activation and provide potential therapeutic targets for allergic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gilfillan AM, Beaven MA. Regulation of mast cell responses in health and disease. Crit Rev Immunol. 2011;31:475–529. https://doi.org/10.1615/critrevimmunol.v31.i6.30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Elieh Ali Komi D, Wöhrl S, Bielory L. Mast cell biology at molecular level: a comprehensive review. Clin Rev Allergy Immunol. 2020;58:342–65. https://doi.org/10.1007/s12016-019-08769-2.

    Article  PubMed  Google Scholar 

  3. Shamji MH, et al. The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy. 2021;76:3627–41. https://doi.org/10.1111/all.14908.

    Article  PubMed  CAS  Google Scholar 

  4. Xia Y, et al. Glycerophospholipid metabolism licenses IgE-mediated mast cell degranulation. Cell Rep. 2025;44:115742 https://doi.org/10.1016/j.celrep.2025.115742.

    Article  PubMed  CAS  Google Scholar 

  5. Ji L, et al. Slc6a8-mediated creatine uptake and accumulation reprogram macrophage polarization via regulating cytokine responses. Immunity. 2019;51:272–84.e7. https://doi.org/10.1016/j.immuni.2019.06.007.

    Article  PubMed  CAS  Google Scholar 

  6. Kobayashi T, et al. The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity. 2014;41:375–88.

    Article  PubMed  CAS  Google Scholar 

  7. Yu W, et al. One-carbon metabolism supports S-adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol Cell. 2019;75:1147–60.e5. https://doi.org/10.1016/j.molcel.2019.06.039.

    Article  PubMed  CAS  Google Scholar 

  8. Wang C, et al. Serine synthesis sustains macrophage IL-1β production via NAD(+)-dependent protein acetylation. Mol Cell. 2024;84:744–59.e6. https://doi.org/10.1016/j.molcel.2024.01.002.

    Article  PubMed  CAS  Google Scholar 

  9. Rodriguez AE, et al. Serine metabolism supports macrophage IL-1β production. Cell Metab. 2019;29:1003–11.e4. https://doi.org/10.1016/j.cmet.2019.01.014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Xia Y, et al. GABA transporter sustains IL-1β production in macrophages. Sci Adv. 2021;7:eabe9274 https://doi.org/10.1126/sciadv.abe9274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Liao Y, et al. GABA signaling enforces intestinal germinal center B cell differentiation. Proc Natl Acad Sci USA. 2022;119:e2215921119 https://doi.org/10.1073/pnas.2215921119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kato T, et al. Structural insights into inhibitory mechanism of human excitatory amino acid transporter EAAT2. Nat Commun. 2022;13:4714. https://doi.org/10.1038/s41467-022-32442-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gan Z, et al. Excitatory amino acid transporter supports inflammatory macrophage responses. Sci Bull. 2024. https://doi.org/10.1016/j.scib.2024.03.055.

  14. Bahri R, et al. Human melanoma-associated mast cells display a distinct transcriptional signature characterized by an upregulation of the complement component 3 that correlates with poor prognosis. Front Immunol. 2022;13:861545. https://doi.org/10.3389/fimmu.2022.861545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Casaro M, Souza VR, Oliveira FA, Ferreira CM. OVA-induced allergic airway inflammation mouse model. Methods Mol Biol. 2019;1916:297–301. https://doi.org/10.1007/978-1-4939-8994-2_28.

    Article  PubMed  CAS  Google Scholar 

  16. Lin KC, Huang DY, Huang DW, Tzeng SJ, Lin WW. Inhibition of AMPK through Lyn-Syk-Akt enhances FcεRI signal pathways for allergic response. J Mol Med. 2016;94:183–94. https://doi.org/10.1007/s00109-015-1339-2.

    Article  PubMed  CAS  Google Scholar 

  17. Xiao X, et al. Liver ACSM3 deficiency mediates metabolic syndrome via a lauric acid-HNF4α-p38 MAPK axis. EMBO J. 2024;43:507–32. https://doi.org/10.1038/s44318-023-00020-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Taguchi K, Kaneko N, Okudaira K, Matsumoto T, Kobayashi T. Endothelial dysfunction caused by circulating microparticles from diabetic mice is reduced by PD98059 through ERK and ICAM-1. Eur J Pharmacol. 2021;913:174630. https://doi.org/10.1016/j.ejphar.2021.174630.

    Article  PubMed  CAS  Google Scholar 

  19. Wang Q, et al. Roles of SP600125 in expression of JNK, RANKL and OPG in cultured dental follicle cells. Mol Biol Rep. 2019;46:3073–81. https://doi.org/10.1007/s11033-019-04745-3.

    Article  PubMed  CAS  Google Scholar 

  20. Zou J, Xu C, Zhao ZW, Yin SH, Wang G. Asprosin inhibits macrophage lipid accumulation and reduces atherosclerotic burden by up-regulating ABCA1 and ABCG1 expression via the p38/Elk-1 pathway. J Transl Med. 2022;20:337. https://doi.org/10.1186/s12967-022-03542-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Fu H, et al. Chemoenzymatic synthesis and pharmacological characterization of functionalized aspartate analogues as novel excitatory amino acid transporter inhibitors. J Med Chem. 2018;61:7741–53. https://doi.org/10.1021/acs.jmedchem.8b00700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Feske S, Skolnik EY, Prakriya, M. Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol. 2012;12:532–47.

  23. Zhu B, et al. Abnormal histidine metabolism promotes macrophage lipid accumulation under Ox-LDL condition. Biochem Biophys Res Commun. 2022;588:161–7.

  24. Pataskar A, et al. Tryptophan depletion results in tryptophan-to-phenylalanine substitutants. Nature. 2022;603:721–7.

  25. Zhang F, Hong F, Wang L, Fu R, Qi J, Yu B. MrgprX2 regulates mast cell degranulation through PI3K/AKT and PLCγ signaling in pseudo-allergic reactions. Int Immunopharmacol. 2022;102:108389.

  26. Zhao H, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021;6:263. https://doi.org/10.1038/s41392-021-00658-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bill R, et al. CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers. Science. 2023;381:515–24. https://doi.org/10.1126/science.ade2292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hu S, et al. Secreted phosphoprotein 1 regulates natural compound 3’,4’,5,7-tetrahydroxyflavone to inhibit mast cell-mediated allergic inflammation. Immunopharmacol Immunotoxicol. 2023;45:672–81. https://doi.org/10.1080/08923973.2023.2228478.

    Article  PubMed  CAS  Google Scholar 

  29. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134:489–92. https://doi.org/10.1093/jn/134.3.489.

    Article  PubMed  CAS  Google Scholar 

  30. Liu S, et al. Mycobacterium tuberculosis suppresses host DNA repair to boost its intracellular survival. Cell Host Microbe. 2023;31:1820–36.e10. https://doi.org/10.1016/j.chom.2023.09.010.

    Article  PubMed  CAS  Google Scholar 

  31. Robb EL, et al. Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat. Free Radic Biol Med. 2015;89:883–94. https://doi.org/10.1016/j.freeradbiomed.2015.08.021.

    Article  PubMed  CAS  Google Scholar 

  32. Wang X, et al. α-Ketoglutarate-activated NF-κB signaling promotes compensatory glucose uptake and brain tumor development. Mol Cell. 2019;76:148–62.e7. https://doi.org/10.1016/j.molcel.2019.07.007.

    Article  PubMed  CAS  Google Scholar 

  33. Jin L, et al. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell. 2015;27:257–70. https://doi.org/10.1016/j.ccell.2014.12.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Corcoran SE, O’Neill LA. HIF1α and metabolic reprogramming in inflammation. J Clin Invest. 2016;126:3699–707. https://doi.org/10.1172/jci84431.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deshmukh P, Unni S, Krishnappa G, Padmanabhan B. The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys Rev. 2017;9:41–56. https://doi.org/10.1007/s12551-016-0244-4.

    Article  PubMed  CAS  Google Scholar 

  36. Mills E, O’Neill LA. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 2014;24:313–20. https://doi.org/10.1016/j.tcb.2013.11.008.

    Article  PubMed  CAS  Google Scholar 

  37. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21:268–83. https://doi.org/10.1038/s41580-020-0227-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Huang F, et al. Control of histone demethylation by nuclear-localized α-ketoglutarate dehydrogenase. Science. 2023;381:eadf8822 https://doi.org/10.1126/science.adf8822.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang JY, et al. The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 2021;31:980–97. https://doi.org/10.1038/s41422-021-00506-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yip KH, et al. The Nedd4-2/Ndfip1 axis is a negative regulator of IgE-mediated mast cell activation. Nat Commun. 2016;7:13198. https://doi.org/10.1038/ncomms13198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zhang, S et al. Nonpeptidergic neurons suppress mast cells via glutamate to maintain skin homeostasis. Cell. 2021. https://doi.org/10.1016/j.cell.2021.03.002.

  42. Liu FT, Goodarzi H, Chen HY. IgE, mast cells, and eosinophils in atopic dermatitis. Clin Rev Allergy Immunol. 2011;41:298–310. https://doi.org/10.1007/s12016-011-8252-4.

    Article  PubMed  CAS  Google Scholar 

  43. Chong AC, Chwa WJ, Ong PY. Aeroallergens in atopic dermatitis and chronic urticaria. Curr Allergy Asthma Rep. 2022;22:67–75. https://doi.org/10.1007/s11882-022-01033-2.

    Article  PubMed  CAS  Google Scholar 

  44. Levite M. Glutamate, T cells and multiple sclerosis. J Neural Transm. 2017;124:775–98. https://doi.org/10.1007/s00702-016-1661-z.

    Article  PubMed  CAS  Google Scholar 

  45. Shao L, et al. Role of solute carrier transporters in regulating dendritic cell maturation and function. Eur J Immunol. 2024;54:e2350385 https://doi.org/10.1002/eji.202350385.

    Article  PubMed  CAS  Google Scholar 

  46. Chelombitko MA, Fedorov AV, Ilyinskaya OP, Zinovkin RA, Chernyak BV. Role of reactive oxygen species in mast cell degranulation. Biochemistry. 2016;81:1564–77. https://doi.org/10.1134/s000629791612018x.

    Article  PubMed  CAS  Google Scholar 

  47. Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: a mutual interplay. Redox Biol. 2015;6:260–71. https://doi.org/10.1016/j.redox.2015.08.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hunter KD, Crozier RWE, Braun JL, Fajardo VA, MacNeil AJ. Acute activation of SERCA with CDN1163 attenuates IgE-mediated mast cell activation through selective impairment of ROS and p38 signaling. FASEB J. 2023;37:e22748 https://doi.org/10.1096/fj.202201272R.

    Article  PubMed  CAS  Google Scholar 

  49. Kietzmann T, Petry A, Shvetsova A, Gerhold JM, Görlach A. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br J Pharmacol. 2017;174:1533–54. https://doi.org/10.1111/bph.13792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lin AP, et al. D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2. Nat Commun. 2015;6:7768. https://doi.org/10.1038/ncomms8768.

    Article  PubMed  CAS  Google Scholar 

  51. Baksh SC, Finley LWS. Metabolic coordination of cell fate by α-ketoglutarate-dependent dioxygenases. Trends Cell Biol. 2021;31:24–36. https://doi.org/10.1016/j.tcb.2020.09.010.

    Article  PubMed  CAS  Google Scholar 

  52. Yi W, et al. The tumor-suppressive effects of alpha-ketoglutarate-dependent dioxygenase FTO via N6-methyladenosine RNA methylation on bladder cancer patients. Bioengineered. 2021;12:5323–33. https://doi.org/10.1080/21655979.2021.1964893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Shoaib Y, Hu J, Manduzio S, Kang H. Alpha-ketoglutarate-dependent dioxygenase homolog 10B, an N(6) -methyladenosine mRNA demethylase, plays a role in salt stress and abscisic acid responses in Arabidopsis thaliana. Physiol Plant. 2021;173:1078–89. https://doi.org/10.1111/ppl.13505.

    Article  PubMed  CAS  Google Scholar 

  54. Zhu X, Tang H, Yang M, Yin K. N6-methyladenosine in macrophage function: a novel target for metabolic diseases. Trends Endocrinol Metab. 2023;34:66–84. https://doi.org/10.1016/j.tem.2022.12.006.

    Article  PubMed  CAS  Google Scholar 

  55. Han D, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566:270–4. https://doi.org/10.1038/s41586-019-0916-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Galli SJ, Gaudenzio N, Tsai M. Mast cells in inflammation and disease: recent progress and ongoing concerns. Annu Rev Immunol. 2020;38:49–77. https://doi.org/10.1146/annurev-immunol-071719-094903.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (32521006, 32225047, and U22A20510), Yuelushan Laboratory Talent Program (2025RC3002), Double First-class Discipline Promotion Project (2023B10564001), Independent Research Fund of State Key Laboratory of Swine and Poultry Breeding Industry (2025ZQQZ-G26), Science and Technology Innovation Program of Hunan Province (2025RC4006), and Laboratory of Lingnan Modern Agriculture Project (NT2025004).

Author information

Authors and Affiliations

Authors

Contributions

W Ren designed the experiments. Z Gan, Y Xia, P Bin, M Zhao, and B Liu conducted the experiments. Y Xia and Y Zhou conducted the human experiments. Z Gan analyzed the data and drafted the manuscript. Y Xia, P Bin, and W Ren revised the manuscript. W Ren approved the final manuscript.

Corresponding author

Correspondence to Wenkai Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Z., Xia, Y., Bin, P. et al. Excitatory amino acid transporters support mast cell degranulation via α-KG-mediated methylation of Spp1. Cell Mol Immunol (2026). https://doi.org/10.1038/s41423-025-01375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41423-025-01375-7

Keywords

Search

Quick links