

The DNA damage response in tumorigenesis and cancer treatment

Jiri Bartek and Jiri Lukas

The cellular DNA damage response (DDR) machinery is intimately linked with cancer as damage to DNA causes cancer. The DDR provides an intrinsic biological barrier against the development of cancer, and tumours develop when maintenance of genome integrity fails. Germline and somatic defects in the hierarchical DDR network — from sensors of diverse types of DNA lesions, damage signalling and mechanisms of checkpoint activation, to multiple DNA repair pathways — can predispose to cancer

and fuel tumour progression, respectively. Recently, promising anticancer agents have emerged that target components of DNA damage signalling, the checkpoint machinery and DNA repair. Several are in preclinical development or clinical trials, either as monotherapy or to be combined with standard-of-care genotoxic therapies, to selectively target tumour cells. These developments move further towards the exciting promise of personalized therapy.

About KuDOS
KuDOS Pharmaceuticals holds a leading position in the identification and development of drugs that target the DNA damage response (DDR) processes in cells. The company was founded by Professor Steve Jackson, Cambridge University and the Cancer Research Campaign (now Cancer Research UK) in 1997 and in that time has identified potent inhibitors of a number of DDR targets including PARP, ATM and DNA-PK. The company was acquired in 2006 by AstraZeneca.

Inhibitors of DDR pathways offer exciting new prospects for identifying targeted cancer therapies. In addition to the potential to enhance the effectiveness of DNA damaging chemotherapies and ionizing radiation treatment, DDR inhibitors also have the possibility for single agent activity in specific tumour genetic backgrounds. This is exemplified by inhibitors of the DDR protein PARP, which are now in Phase II clinical trials and which have been shown to induce tumour-specific cell death (synthetic lethality) in cancers deficient in homologous recombination repair, including those deficient in *BRCA1* and *BRCA2*.

Abbreviations

53BP1, p53 binding protein 1; ATM, ataxia telangiectasia mutated; ATR, ataxia telangiectasia and Rad3 related; ATRIP, ATR-interacting protein; BER, base excision repair; BLM, Bloom syndrome, RecQL helicase-like; BRIP1, BRCA1-interacting protein C-terminal helicase 1 (also known as BACH1); CDC25A, cell division cycle 25A; CDK, cyclin-dependent kinase; CSA/B, Cockayne syndrome A/B; CtIP, CTBP-interacting protein (also known as RBBP8); DDB2, damage-specific DNA binding protein 2; DDR, DNA damage response; DNA-PK, DNA-dependent protein kinase; DSB, double-strand break; ERCC1, excision repair cross-complementing rodent repair deficiency, complementation group 1; EXO1, exonuclease 1; FA, Fanconi anaemia; FANCI, Fanconi anaemia, complementation group; FEN1, flap structure-specific endonuclease 1; HR, homologous recombination; LIG4, ligase; MMT, O-6-methylguanine-DNA methyltransferase; MLH1, mutL homologue 1; MMR, mismatch repair; MRE11, meiotic recombination 11; MRN, MRE11-RAD50-NBS1 complex; MSH, mutS homologue; NBS1, nibrin (also known as NBN); NER, nucleotide excision repair; NHEJ, non-homologous end joining; PALB2, partner and localizer of BRCA2; PARP1, poly(ADP-ribose) polymerase 1; PCNA, proliferating cell nuclear antigen; PMS2, postmeiotic segregation increased 2; POL, polymerase; RFC, replication factor C; RMI1/2, RecQL mediated genome instability 1/2; ROS, reactive oxygen species; RPA, replication protein A; SLX4, structure-specific endonuclease subunit SLX4; SMCI, structural maintenance of chromosomes 1; SSB, single-strand break; TFIH, transcription factor IIF; TOPBP1, topoisomerase II binding protein 1; TOPBP1, DNA topoisomerase 3; Ub, ubiquitin; USP1, ubiquitin-specific peptidase 1; XLF, XRCC4-like factor; XP, xeroderma pigmentosum, complementation group; XRCC, X-ray repair complementing defective repair in Chinese hamster cells.

homologue 1; MMR, mismatch repair; MRE11, meiotic recombination 11; MRN, MRE11-RAD50-NBS1 complex; MSH, mutS homologue; NBS1, nibrin (also known as NBN); NER, nucleotide excision repair; NHEJ, non-homologous end joining; PALB2, partner and localizer of BRCA2; PARP1, poly(ADP-ribose) polymerase 1; PCNA, proliferating cell nuclear antigen; PMS2, postmeiotic segregation increased 2; POL, polymerase; RFC, replication factor C; RMI1/2, RecQL mediated genome instability 1/2; ROS, reactive oxygen species; RPA, replication protein A; SLX4, structure-specific endonuclease subunit SLX4; SMCI, structural maintenance of chromosomes 1; SSB, single-strand break; TFIH, transcription factor IIF; TOPBP1, topoisomerase II binding protein 1; TOPBP1, DNA topoisomerase 3; Ub, ubiquitin; USP1, ubiquitin-specific peptidase 1; XLF, XRCC4-like factor; XP, xeroderma pigmentosum, complementation group; XRCC, X-ray repair complementing defective repair in Chinese hamster cells.

Contact information

Jiri Bartek, Center for Genotoxic Stress Research, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark; and Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic. e-mail: jb@cancer.dk
Jiri Lukas, Center for Genotoxic Stress Research, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark. e-mail: jl@cancer.dk
Authors' homepage: <http://www.genotoxic.dk>

Acknowledgements

The authors' work is supported by the Danish Cancer Society, the Danish National Research Foundation, the Czech Ministry of Education and the European Commission (projects INFLA-CARE and GENICA). Edited by Gemma K. Alderton and Nicola McCarthy, copyedited by Catriona Rodwell, designed by Lara Crow. © 2010 Nature Publishing Group. <http://www.nature.com/nrc/posters/dnadrage>

Examples of DDR inhibitors

Inhibitor	Target	Stage in clinical development
KU-55933	ATM	Preclinical
KU-60019	ATM	Preclinical
XL844	CHK1 and CHK2	Preclinical
AZD7762	CHK1 and CHK2	Phase I
PF-47736	CHK1	Phase I
NU-7441 (KU-57788)	DNA-PK	Preclinical
TRC102	Binds covalently to apurinic/apyrimidinic sites and prevents BER	Phase I
AZD2281	PARP1	Phase II
AG014699	PARP1	Phase II
ABT-888	PARP1 and PARP2	Phase II
BSI-201	PARP1	Phase III
INO-1001	PARP1	Preclinical
O6-BG	MGMT	Phase II
Several	p53 (such as inhibitors of MDM2 and re-activators of mutant p53)	Phase I, I, II