Mitochondrial function and cancer
Douglas C. Wallace

In addition to compartmentalizing the metabolic pathways and physiological states
of the cell, mitochondria generate much of the cellular energy, regulate the cellular
oxidation-reduction (redox) state, produce most of the cellular reactive oxygen
species (ROS), buffer cellular Ca?* and initiate cellular apoptosis. Mitochondria
were first proposed to be relevant to cancer by Otto Warburg who reported that
cancer cells exhibited “aerobic glycolysis”. Although this was originally interpreted
as indicating that the function of the mitochondria was defective, we now
understand that cancer cells are in an altered metabolic state with increased
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glycolytic metabolism and the continued use of oxygen. Mutations that occur in
nuclear-DNA-encoded mitochondrial proteins and mitochondrial-DNA-encoded
proteins can re-orient cellular metabolism towards glycolysis, glutaminolysis,
intense macromolecular biogenesis and the oxidoreduction of NADP* to NADPH.
Both somatic and germline mitochondrial DNA mutations have been associated
with many types of cancers, and recent data indicate that cancer cells may tolerate
mitochondrial DNA mutations for two purposes: they alter cancer cell metabolism
and/or proliferation and they enable adaption to a changing environment.
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into the outer membrane cleft. This reduces
mitochondrial uptake of Ca?, which stabilizes
the mitochondrial permeability transition pore
inhibiting apoptosis, and increases cytosolic Ca*
levels.

Reduced mitochondrial DNA copy number and
other types of mitochondrial stress can activate
the mitochondrial retrograde signalling pathway
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cytosolic Ca?" levels, activation of calcineurin
and NF-«B, and activation of the nuclear
enhanceosome, which upregulates proteins
involved in Ca* regulation, tumorigenesis and
invasive growth (not shown).
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¢ In-cell ELISA kits

® Western blotting antibody cocktails

e Cell fractionation kits

e Cellular assay kits, such as ROS detection, ATP
measurement and cell viability assays

¢ Mitochondrial lysates from a range of tissues

e Active proteins to the Pyruvate dehygrogenase
kinases

These also encompass a comprehensive range of

tools to analyse the Pyruvate Dehydrogenase and

Oxidative Phosphorylation pathway.

Why don’t you pair up these research tools with
antibodies to study cancer metabolism?

We have over 25,000 antibodies in our cancer
range:

¢ Hypoxia

¢ Apoptosis

e Autophagy

¢ Cell cycle

¢ Cancer stem cells

e Signal transduction

and many more.

Allow your metabolism research to go further.

Unique to Abcam, the MitoSciences range has over

200 products in the areas of mitochondria,

metabolism and apoptosis, offering a portfolio of

tools in this highly evolving field of research.

These include:

¢ Highly validated monoclonal antibodies with
diverse species cross-reactivity

e Dipstick assays, which employ lateral-flow
technology

* Enzyme activity assays

Abcam also offers a growing range of non-antibody products such as
proteins, peptide, lysates, immunoassays, immunohistochemistry kits,
western blotting kits and kits for chromatin research. In total, our

extensive catalog contains over 86, 000 quality products, each

accompanied by a comprehensive and up-to-date datasheet that
includes customer reviews, frequently asked questions and scientific

paper citations. Our range is constantly expanding so visit our

website today and find out how our products could help advance

your research.

Discover more at www.abcam.com/mitochondriacancerposter
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Abbreviations

ANT; adenine nucleotide transporter; CHCHD4, coiled-coil-
helix—coiled-coil-helix domain-containing protein 4; CoQ,
coenzyme Q; COX, cyctochrome c oxidase; Cu-ZnSOD,
copper-zinc superoxide dismutase; Cyt c, cytochrome c; ETC,
electron transport chain; FH, Fumarate hydratase; G6P,
glucose 6-phosphate; GLUT1, glucose transporter 1; GSH,
reduced glutathione; HIF1a, hypoxia-inducible factor 1a;
HMOX1, haemoxygenase 1; IDH, isocitrate dehydrogenase;
KEAP1; kelch-like ECH-associated protein 1; LDHA, lactate
dehyrogenase A; LKB1, liver kinase B1; MnSOD, manganese
superoxide dismutase; NNT, nicotinamide nucleotide

transhydrogenase; NRF2, nuclear factor erythroid related
factor 2; PDH, pyruvate dehydrogenase; PGC1a, peroxisome
proliferator-activated receptor-y coactivator 1a; ROS,
reactive oxygen species; SCL1A5, solute carrier family 1
(neutral amino acid transporter) member 5; SDH, succinate
dehydrogenase TIGAR, TP53-induced glycolysis and
apoptosis regulator; TRX, thioredoxin; TSC1, hamartin; TSC2,
tuberin; VDAC, voltage-dependent anion channel.
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