About the Project
4 Elementary FunctionsTrigonometric Functions

Β§4.20 Derivatives and Differential Equations

4.20.1 ddz⁑sin⁑z =cos⁑z,
4.20.2 ddz⁑cos⁑z =βˆ’sin⁑z,
4.20.3 ddz⁑tan⁑z =sec2⁑z,
4.20.4 ddz⁑csc⁑z =βˆ’csc⁑z⁒cot⁑z,
4.20.5 ddz⁑sec⁑z =sec⁑z⁒tan⁑z,
4.20.6 ddz⁑cot⁑z =βˆ’csc2⁑z,
4.20.7 dndzn⁑sin⁑z =sin⁑(z+12⁒n⁒π),
4.20.8 dndzn⁑cos⁑z =cos⁑(z+12⁒n⁒π).

With a≠0, the general solutions of the differential equations

4.20.9 d2wdz2+a2⁒w =0,
4.20.10 (dwdz)2+a2⁒w2 =1,
4.20.11 dwdzβˆ’a2⁒w2 =1,

are respectively

4.20.12 w =A⁒cos⁑(a⁒z)+B⁒sin⁑(a⁒z),
4.20.13 w =(1/a)⁒sin⁑(a⁒z+c),
4.20.14 w =(1/a)⁒tan⁑(a⁒z+c),

where A,B,c are arbitrary constants.

For other differential equations see Kamke (1977, pp.Β 355–358 and 396–400).