Open Source Python Financial Software for Windows

Python Financial Software for Windows

View 1689 business solutions

Browse free open source Python Financial Software for Windows and projects below. Use the toggles on the left to filter open source Python Financial Software for Windows by OS, license, language, programming language, and project status.

  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • AI-powered service management for IT and enterprise teams Icon
    AI-powered service management for IT and enterprise teams

    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity. Maximize operational efficiency with refreshingly simple, AI-powered Freshservice.
    Try it Free
  • 1
    FinGPT

    FinGPT

    Open-Source Financial Large Language Models

    FinGPT is an open-source, finance-specialized large language model framework that blends the capabilities of general LLMs with real-time financial data feeds, domain-specific knowledge bases, and task-oriented agents to support market analysis, research automation, and decision support. It extends traditional GPT-style models by connecting them to live or historical financial datasets, news APIs, and economic indicators so that outputs are grounded in relevant and recent market conditions rather than generic knowledge alone. The platform typically includes tools for fine-tuning, context engineering, and prompt templating, enabling users to build specialized assistants for tasks like sentiment analysis, earnings summary generation, risk profiling, trading signal interpretation, and document extraction from financial reports.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 2
    OpenBB Terminal

    OpenBB Terminal

    Investment research for everyone, anywhere

    Fully written in python which is one of the most used programming languages due to its simplified syntax and shallow learning curve. It is the first time in history that users, regardless of their background, can so easily add features to an investment research platform. The MIT Open Source license allows any user to fork the project to either add features to the broader community or create their own customized terminal version. The terminal allows for users to import their own proprietary datasets to use on our econometric menu. In addition, users are allowed to export any type of data to any type of format whether that is raw data in Excel or an image in PNG. This is ideal for finance content creation. Create notebook templates (through papermill) which can be run on different tickers. This level of automation allows to speed up the development of your investment thesis and reduce human error.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 3
    AutoTrader

    AutoTrader

    A Python-based development platform for automated trading systems

    AutoTrader is a Python-based platform—now archived—designed to facilitate the full lifecycle of automated trading systems. It provides tools for backtesting, strategy optimization, visualization, and live trading integration. A feature-rich trading simulator, supporting backtesting and paper trading. The 'virtual broker' allows you to test your strategies in a risk-free, simulated environment before going live. Capable of simulating multiple order types, stop-losse,s and take-profits, cross-exchange arbitrage and portfolio strategies, AutoTrader has more than enough to build a profitable trading system.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 4
    Prophet

    Prophet

    Tool for producing high quality forecasts for time series data

    Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well. Prophet is used in many applications across Facebook for producing reliable forecasts for planning and goal setting. We’ve found it to perform better than any other approach in the majority of cases. We fit models in Stan so that you get forecasts in just a few seconds. Get a reasonable forecast on messy data with no manual effort. Prophet is robust to outliers, missing data, and dramatic changes in your time series.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Yahoo! Finance market data downloader

    Yahoo! Finance market data downloader

    Yahoo! Finance market data downloader

    Ever since Yahoo! finance decommissioned their historical data API, many programs that relied on it to stop working. yfinance aims to solve this problem by offering a reliable, threaded, and Pythonic way to download historical market data from Yahoo! finance. yfinance aimed to offer a temporary fix to the problem by scraping the data from Yahoo! Finance and returning a the data in the same format as pandas_datareader's get_data_yahoo(), thus keeping the code changes in existing software to a minimum. The latest version of yfinance is a complete re-write of the libray, offering a reliable method of downloading historical market data from Yahoo! Finance, up to 1 minute granularity, with a more Pythonic way. The Ticker() module allows you get market and metadata for security, using a Pythonic way.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    AI Hedge Fund

    AI Hedge Fund

    An AI Hedge Fund Team

    This repository demonstrates how to build a simplified, automated hedge fund strategy powered by AI/ML. It integrates financial data collection, preprocessing, feature engineering, and predictive modeling to simulate decision-making in trading. The code shows workflows for pulling stock or market data, applying machine learning algorithms to forecast trends, and generating buy/sell/hold signals based on the predictions. Its structure is educational: intended more as a proof-of-concept than a ready-to-use financial product, giving learners insight into the mechanics of quantitative finance automation. The project underlines AI’s potential in investment strategies but also carries disclaimers that it is for research and not financial advice. The implementation is designed so developers can study the pipeline end-to-end: from data ingestion through modeling to simulated portfolio management.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    Optopsy

    Optopsy

    A nimble options backtesting library for Python

    Optopsy is a Python-based, nimble backtesting and statistics library focused on evaluating options trading strategies like calls, puts, straddles, spreads, and more, using pandas-driven analysis. The csv_data() function is a convenience function. Under the hood it uses Panda's read_csv() function to do the import. There are other parameters that can help with loading the csv data, consult the code/future documentation to see how to use them. Optopsy is a small simple library that offloads the heavy work of backtesting option strategies, the API is designed to be simple and easy to implement into your regular Panda's data analysis workflow. As such, we just need to call the long_calls() function to have Optopsy generate all combinations of a simple long call strategy for the specified time period and return a DataFrame. Here we also use Panda's round() function afterwards to return statistics within two decimal places.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    ValueCell

    ValueCell

    Community-driven, multi-agent platform for financial applications

    ValueCell is a community-driven multi-agent AI platform focused on financial research, analysis, and decision-making that lets users leverage multiple specialized AI agents for tasks like data retrieval, investment research, strategy execution, and market tracking. The system brings together a suite of collaborative agents—such as research agents that gather and interpret fundamentals, strategy agents that implement trading logic, and news agents that deliver personalized updates—to help users make more informed financial decisions across stocks, crypto, and other markets. ValueCell supports integrations with multiple language model providers and market data sources, giving developers flexibility in customizing agents and incorporating external APIs to enhance insights. Sensitive user data is stored locally, a design choice that prioritizes privacy and security while still enabling rich analytic workflows.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 9
    Odoo

    Odoo

    Open-source business management software

    Odoo 18 is a comprehensive open-source business management software that offers a suite of integrated applications to streamline various organizational processes. Designed for flexibility and scalability, it provides tools for managing functions like sales, inventory, accounting, human resources, and customer relationships. Odoo's modular structure allows businesses to adopt only the features they need while maintaining the option to expand functionality as they grow. The open-source version is community-driven, making it cost-effective and continuously improving through global developer contributions. Its user-friendly interface and robust customization options make it a popular choice for small to medium-sized businesses seeking an adaptable and efficient ERP solution.
    Downloads: 72 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 10
    FinRobot

    FinRobot

    An Open-Source AI Agent Platform for Financial Analysis using LLMs

    FinRobot is an open-source AI framework focused on automating financial data workflows by combining data ingestion, feature engineering, model training, and automated decision-making pipelines tailored for quantitative finance applications. It provides developers and quants with structured modules to fetch market data, process time series, generate technical indicators, and construct features appropriate for machine learning models, while also supporting backtesting and evaluation metrics to measure strategy performance. Built with modularity in mind, FinRobot allows users to plug in custom models — from classical algorithms to deep learning architectures — and orchestrate components in pipelines that can run reproducibly across experiments. The framework also tends to include automation layers for deployment, enabling trained models to operate in live or simulated environments with scheduled re-training and risk controls in place.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 11
    QuantDinger

    QuantDinger

    AI-driven, local-first quantitative trading platform for research

    QuantDinger is a local-first, open-source quantitative trading platform designed to bring AI-assisted analysis, strategy development, backtesting, and live execution into a self-hosted workspace where data and API credentials remain under your control. Unlike cloud-locked quant services, it lets users run the entire trading workflow on their own infrastructure using Docker, with a PostgreSQL database backend, a Python backend API, and a web frontend UI that supports visualization and strategy management. Traders and researchers can develop custom strategies in Python, run historical backtests, analyze performance, and connect to supported exchanges for live trading, making it suitable for equities, crypto, forex, and futures markets in a local environment. QuantDinger also incorporates optional AI features via external APIs, assisting in tasks like strategy ideation or interpreting market indicators, but strategy logic remains inspectable and transparent in code.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    QuickFIX
    QuickFIX is the worlds first Open Source C++ FIX (Financial Information eXchange) engine, helping financial institutions easily integrate with each other. The SVN repository is now locked. Latest code is hosted at github. https://github.com/quickfix/quickfix
    Downloads: 28 This Week
    Last Update:
    See Project
  • 13
    NautilusTrader

    NautilusTrader

    A high-performance algorithmic trading platform

    NautilusTrader is an open-source, high-performance, production-grade algorithmic trading platform, provides quantitative traders with the ability to backtest portfolios of automated trading strategies on historical data with an event-driven engine, and also deploy those same strategies live, with no code changes. The platform is 'AI-first', designed to develop and deploy algorithmic trading strategies within a highly performant and robust Python native environment. This helps to address the parity challenge of keeping the Python research/backtest environment, consistent with the production live trading environment. NautilusTraders design, architecture and implementation philosophy holds software correctness and safety at the highest level, with the aim of supporting Python native, mission-critical, trading system backtesting and live deployment workloads.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    Polar.sh

    Polar.sh

    Polar is the best funding & monetization platform for developers

    Focus on building your passion, while we focus on the infrastructure to get you paid. Your Polar page can be displayed as an official funding option across your GitHub repositories. Get one-time donations of support from your community with ease. Turn issues into a crowdfunded backlog and share the funding with your contributors.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    PyBroker

    PyBroker

    Algorithmic Trading in Python with Machine Learning

    Are you looking to enhance your trading strategies with the power of Python and machine learning? Then you need to check out PyBroker! This Python framework is designed for developing algorithmic trading strategies, with a focus on strategies that use machine learning. With PyBroker, you can easily create and fine-tune trading rules, build powerful models, and gain valuable insights into your strategy’s performance.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Tally

    Tally

    Let agents classify your bank transactions

    Tally is an open-source, AI-assisted tool designed to automate the classification of personal financial transactions, helping users turn raw bank data into meaningful categories without manual tagging. At its core, Tally pairs a local rule engine with large language models so that an AI assistant (like Claude Code, Copilot, or any CLI agent) interprets, suggests, and categorizes expenses, savings, subscriptions, and income events based on your own rules and behavior. It generates human-readable reports and can produce HTML, JSON, or Markdown outputs to suit dashboards or personal finance workflows. The project emphasizes transparency, allowing users to see why a particular transaction was classified a certain way and to refine rules over time. While it’s tailored toward developers and advanced users, it also includes an interactive command-line experience for initializing budgets, generating charts, and diving deep into spending patterns.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    WYGIWYH

    WYGIWYH

    A simple but powerful self-hosted finance tracker

    WYGIWYH (What You Get Is What You Have) is a self-hosted, principles-first personal finance tracker built for people who prefer a simple, intuitive approach to tracking money without complicated budgets or categories. Based on a philosophy that you should use what you earn each month for that month, it helps you understand where your funds go while keeping savings clearly separated so they aren’t accidentally dipped into for everyday expenses. The app supports multiple currencies, customizable transaction types, and built-in tools like dollar-cost averaging tracking to help you see investment activity alongside regular expenses, making it flexible for real world financial situations and global use. Its interface is designed to prioritize clarity and ease of entry, so you can quickly record and review spending without being overwhelmed by features you don’t need.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18

    Technical indicators in Python

    Technical indicators in Python

    Technical indicators in Python For now there are: RSI - Relative Strength Index, SMA - Simple Moving Average, WMA - Weighted Moving Average, EMA - Exponential Moving Average, BB - Bollinger Bands, Bollinger Bandwidth, %B, ROC and MA envelopes When I can I will add more. If anyone wishes to contribute with new code or corrections/suggestions, feel free.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 19
    Financial Calculator

    Financial Calculator

    Windows 11 only — includes 16 sections with text and visual reports.

    Take control of your finances with Financial Calculator 7.9, a professional yet easy-to-use desktop tool built for precise, everyday financial calculations. From planning loans and estimating taxes to generating invoices and creating QR codes, this all-in-one software offers 16 specialized sections that make your daily financial and business tasks faster, clearer, and more accurate. Whether you’re a student, small business owner, or finance professional, Financial Calculator brings professional-grade precision to your desktop—no installation required. Perform calculations for Bank, Barcode, Building, Buy & Sell, Commodity, Dividing Money, Inflation, Interest, Internet Usage, Invoice, Loan, Password, Phone, QR Code, Stock Market, and Tax. Unlock the full version with a small cryptocurrency payment (as low as $0.01).
    Downloads: 12 This Week
    Last Update:
    See Project
  • 20
    Card credit checker, allows you to check credit card number for validity. It can verify Visa, MasterCard, Diners Club, Carte Blanche, American Express (AMEX), Discover, card numbers. it uses LUHN10 algorithm as well as first digits verification.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 21
    A quantitative finance C++ library for modeling, pricing, trading, and risk management in real-life. A cross-platform free/open-source tool for derivatives and financial engineering.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    TinyERP has been replaced by openerp, in october 2008. Check the openerp website for more information.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 23
    The Python Checkbook Manager (aka PyCheckbook) is a personal finance manager that focuses on simplicity and portability. It will run on any platform that can run Python and Tkinter. It handles very simple checkbook register features.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 24
    Custom provides small to medium sized businesses, that buy and sell goods, with: - an e-commerce front-end for their customers - access to anti-fraud protected credit card verification - a Point-of-Sale front-end for the shop floor - Account report
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    98Softwares

    98Softwares

    Softwares for 98Softwares system

    Compilation of softwares to use with 98Softwares.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next