Browse free open source Speech Recognition software and projects below. Use the toggles on the left to filter open source Speech Recognition software by OS, license, language, programming language, and project status.

  • AI-powered service management for IT and enterprise teams Icon
    AI-powered service management for IT and enterprise teams

    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity. Maximize operational efficiency with refreshingly simple, AI-powered Freshservice.
    Try it Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    " Deep Learning " is the only comprehensive book in the field of deep learning. The full name is also called the Deep Learning AI Bible (Deep Learning) . It is edited by three world-renowned experts, Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Includes linear algebra, probability theory, information theory, numerical optimization, and related content in machine learning. At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. Finally, the Deep Learning book provides research directions covering theoretical topics including linear factor models, autoencoders, representation learning, structured probabilistic models, etc.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    A project which uses existing speech recognition and speech translation resources to build conversation partners for beginning language students, based on the idea of a "translation game".
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Language Tutor helps any language student in English, Spanish & French, to master that language. Language tutor has Speech Recognition ability, A student can Listen, Read, Write, Comprehend and Self Evaluate.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Tool for helping in the diagnosis of the dislexy, based on the speech recognition done with the usage of HTK
    Downloads: 0 This Week
    Last Update:
    See Project
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 5
    Voice Interactive Classroom
    Voice interactive classroom explores the use of audio technologies for browsing Web-based learning management systems. It includes a set of OKI-compliant voice modules which can be assembled for use upon different LMSs, including Moodle and Sakai.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    wav2letter++

    wav2letter++

    Facebook AI research's automatic speech recognition toolkit

    First, install Flashlight (using the 0.3 branch is required) with the ASR application. This repository includes recipes to reproduce the following research papers as well as pre-trained models. All results reproduction must use Flashlight <= 0.3.2 for exact reproducibility. At least one of LZMA, BZip2, or Z is required for LM compression with KenLM. It is highly recommended to build KenLM with position-independent code (-fPIC) enabled, to enable python compatibility. After installing, run export KENLM_ROOT_DIR=... so that wav2letter++ can find it. This is needed because KenLM doesn't support a make install step.wav2letter++ expects audio and transcription data to be prepared in a specific format so that they can be read from the pipelines. Each dataset (test/valid/train) needs to be in a separate file with one sample per line. A sample is specified using 4 columns separated by space (or tabs).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next